1
|
Matte T, Lane K, Tipaldo JF, Barnes J, Knowlton K, Torem E, Anand G, Yoon L, Marcotullio P, Balk D, Constible J, Elszasz H, Ito K, Jessel S, Limaye V, Parks R, Rutigliano M, Sorenson C, Yuan A. NPCC4: Climate change and New York City's health risk. Ann N Y Acad Sci 2024; 1539:185-240. [PMID: 38922909 DOI: 10.1111/nyas.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 06/28/2024]
Abstract
This chapter of the New York City Panel on Climate Change 4 (NPCC4) report considers climate health risks, vulnerabilities, and resilience strategies in New York City's unique urban context. It updates evidence since the last health assessment in 2015 as part of NPCC2 and addresses climate health risks and vulnerabilities that have emerged as especially salient to NYC since 2015. Climate health risks from heat and flooding are emphasized. In addition, other climate-sensitive exposures harmful to human health are considered, including outdoor and indoor air pollution, including aeroallergens; insect vectors of human illness; waterborne infectious and chemical contaminants; and compounding of climate health risks with other public health emergencies, such as the COVID-19 pandemic. Evidence-informed strategies for reducing future climate risks to health are considered.
Collapse
Affiliation(s)
- Thomas Matte
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathryn Lane
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Jenna F Tipaldo
- CUNY Graduate School of Public Health and Health Policy and CUNY Institute for Demographic Research, New York, New York, USA
| | - Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Kim Knowlton
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Torem
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Gowri Anand
- City of New York, Department of Transportation, New York, New York, USA
| | - Liv Yoon
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - Peter Marcotullio
- Department of Geography and Environmental Science, Hunter College, CUNY, New York, New York, USA
| | - Deborah Balk
- Marxe School of Public and International Affairs, Baruch College and also CUNY Institute for Demographic Research, New York, New York, USA
| | | | - Hayley Elszasz
- City of New York, Mayors Office of Climate and Environmental Justice, New York, New York, USA
| | - Kazuhiko Ito
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Vijay Limaye
- Natural Resources Defense Council, New York, New York, USA
| | - Robbie Parks
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mallory Rutigliano
- New York City Mayor's Office of Management and Budget, New York, New York, USA
| | - Cecilia Sorenson
- Mailman School of Public Health, Columbia University, New York, New York, USA
- Global Consortium on Climate and Health Education, Columbia University, New York, New York, USA
- Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ariel Yuan
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| |
Collapse
|
2
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
3
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
4
|
Chowdhury S, Hänninen R, Sofiev M, Aunan K. Fires as a source of annual ambient PM 2.5 exposure and chronic health impacts in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171314. [PMID: 38423313 DOI: 10.1016/j.scitotenv.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Chronic exposure to ambient PM2.5 is the largest environmental health risk in Europe. We used a chemical transport model and recent exposure response functions to simulate ambient PM2.5, contribution from fires and related health impacts over Europe from 1990 to 2019. Our estimation indicates that the excess death burden from exposure to ambient PM2.5 declined across Europe at a rate of 10,000 deaths per year, from 0.57 million (95 % confidence intervals: 0.44-0.75 million) in 1990 to 0.28 million (0.19-0.42 million) in the specified period. Among these excess deaths, approximately 99 % were among adults, while only around 1 % occurred among children. Our findings reveal a steady increase in fire mortality fractions (excess deaths from fires per 1000 deaths from ambient PM2.5) from 2 in 1990 to 13 in 2019. Notably, countries in Eastern Europe exhibited significantly higher fire mortality fractions and experienced more pronounced increases compared to those in Western and Central Europe. We performed sensitivity analyses by considering fire PM2.5 to be more toxic as compared to other sources, as indicated by recent studies. By considering fire PM2.5 to be more toxic than other PM2.5 sources results in an increased relative contribution of fires to excess deaths, reaching 2.5-13 % in 2019. Our results indicate the requirement of larger mitigation and adaptation efforts and more sustainable forest management policies to avert the rising health burden from fires.
Collapse
Affiliation(s)
| | | | | | - Kristin Aunan
- CICERO Center for International Climate Research, Oslo, Norway
| |
Collapse
|
5
|
Humphrey JL, Kinnee EJ, Robinson LF, Clougherty JE. Disentangling impacts of multiple pollutants on acute cardiovascular events in New York city: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 242:117758. [PMID: 38029813 PMCID: PMC11378578 DOI: 10.1016/j.envres.2023.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Ambient air pollution contributes to an estimated 6.67 million deaths annually, and has been linked to cardiovascular disease (CVD), the leading cause of death. Short-term increases in air pollution have been associated with increased risk of CVD event, though relatively few studies have directly compared effects of multiple pollutants using fine-scale spatio-temporal data, thoroughly adjusting for co-pollutants and temperature, in an exhaustive citywide hospitals dataset, towards identifying key pollution sources within the urban environment to most reduce, and reduce disparities in, the leading cause of death worldwide. OBJECTIVES We aimed to examine multiple pollutants against multiple CVD diagnoses, across lag days, in models adjusted for co-pollutants and meteorology, and inherently adjusted by design for non-time-varying individual and aggregate-level covariates, using fine-scale space-time exposure estimates, in an exhaustive dataset of emergency department visits and hospitalizations across an entire city, thereby capturing the full population-at-risk. METHODS We used conditional logistic regression in a case-crossover design - inherently controlling for all confounders not varying within case month - to examine associations between spatio-temporal nitrogen dioxide (NO2), fine particulate matter (PM2.5), sulfur dioxide (SO2), and ozone (O3) in New York City, 2005-2011, on individual risk of acute CVD event (n = 837,523), by sub-diagnosis [ischemic heart disease (IHD), heart failure (HF), stroke, ischemic stroke, acute myocardial infarction]. RESULTS We found significant same-day associations between NO2 and risk of overall CVD, IHD, and HF - and between PM2.5 and overall CVD or HF event risk - robust to all adjustments and multiple comparisons. Results were comparable by sex and race - though median age at CVD was 10 years younger for Black New Yorkers than White New Yorkers. Associations for NO2 were comparable for adults younger or older than 69 years, though PM2.5 associations were stronger among older adults. DISCUSSION Our results indicate immediate, robust effects of combustion-related pollution on CVD risk, by sub-diagnosis. Though acute impacts differed minimally by age, sex, or race, the much younger age-at-event for Black New Yorkers calls attention to cumulative social susceptibility.
Collapse
Affiliation(s)
- Jamie L Humphrey
- Center Public Health Methods; RTI International, Research Triangle Park, NC, 27709, USA
| | - Ellen J Kinnee
- University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Lucy F Robinson
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Yaar S, Filatova TS, England E, Kompella SN, Hancox JC, Bechtold DA, Venetucci L, Abramochkin DV, Shiels HA. Global Air Pollutant Phenanthrene and Arrhythmic Outcomes in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117002. [PMID: 37909723 PMCID: PMC10619431 DOI: 10.1289/ehp12775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function. OBJECTIVES Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans. METHODS Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes. RESULTS Mouse hearts exposed to ∼ 8 μ M Phe for 15-min exhibited a significantly slower heart rate (p = 0.0006 , N = 10 hearts), a prolonged PR interval (p = 0.036 , N = 8 hearts), and a slower conduction velocity (p = 0.0143 , N = 7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p = 0.0408 , n = 9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (I to ) and ultrarapid potassium current (I Kur )-following Phe exposure. A significant reduction in AP upstroke velocity (p = 0.0445 , n = 9 cells) and inhibition of the fast sodium current (I Na ; p = 0.001 , n = 8 cells) and calcium current (I Ca ; p = 0.0001 ) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to ∼ 8 μ M Phe significantly increased susceptibility to arrhythmias (p = 0.0455 , N = 9 hearts). DISCUSSION To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https://doi.org/10.1289/EHP12775.
Collapse
Affiliation(s)
- Sana Yaar
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Tatiana S. Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Ellie England
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Shiva N. Kompella
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David A. Bechtold
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Luigi Venetucci
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Holly A. Shiels
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Mo S, Hu J, Yu C, Bao J, Shi Z, Zhou P, Yang Z, Luo S, Yin Z, Zhang Y. Short-term effects of fine particulate matter constituents on myocardial infarction death. J Environ Sci (China) 2023; 133:60-69. [PMID: 37451789 DOI: 10.1016/j.jes.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 07/18/2023]
Abstract
Existing evidence suggested that short-term exposure to fine particulate matter (PM2.5) may increase the risk of death from myocardial infarction (MI), while PM2.5 constituents responsible for this association has not been determined. We collected 12,927 MI deaths from 32 counties in southern China during 2011-2013. County-level exposures of ambient PM2.5 and its 5 constituents (i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)) were aggregated from gridded datasets predicted by Community Multiscale Air Quality Modeling System. We employed a space-time-stratified case-crossover design and conditional logistic regression models to quantify the association of MI mortality with short-term exposure to PM2.5 and its constituents across various lag days. Over the study period, the daily mean PM2.5 mass concentration was 77.8 (standard deviation (SD) = 72.7) µg/m3. We estimated an odds ratio of 1.038 (95% confidence interval (CI): 1.003-1.074), 1.038 (1.013-1.063) and 1.057 (1.023-1.097) for MI mortality associated with per interquartile range (IQR) increase in the 3-day moving-average exposure to PM2.5 (IQR = 76.3 µg/m3), EC (4.1 µg/m3) and OC (9.1 µg/m3), respectively. We did not identify significant association between MI death and exposure to water-soluble ions (SO42-, NH4+ and NO3-). Likelihood ratio tests supported no evident violations of linear assumptions for constituents-MI associations. Subgroup analyses showed stronger associations between MI death and EC/OC exposure in the elderly, males and cold months. Short-term exposure to PM2.5 constituents, particularly those carbonaceous aerosols, was associated with increased risks of MI mortality.
Collapse
Affiliation(s)
- Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Kobayashi S, Yoda Y, Takagi H, Ito T, Wakamatsu J, Nakatsubo R, Horie Y, Hiraki T, Shima M. Short-term effects of the chemical components of fine particulate matter on pulmonary function: A repeated panel study among adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165195. [PMID: 37391138 DOI: 10.1016/j.scitotenv.2023.165195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The effects of the chemical components of fine particulate matter (PM2.5) have been drawing attention. However, information regarding the impact of low PM2.5 concentrations is limited. Hence, we aimed to investigate the short-term effects of the chemical components of PM2.5 on pulmonary function and their seasonal differences in healthy adolescents living on an isolated island without major artificial sources of air pollution. A panel study was repeatedly conducted twice a year for one month every spring and fall from October 2014 to November 2016 on an isolated island in the Seto Inland Sea, which has no major artificial sources of air pollution. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in 47 healthy college students, and the concentrations of 35 chemical components of PM2.5 were analyzed every 24 h. Using a mixed-effects model, the relationship between pulmonary function values and concentrations of PM2.5 components was analyzed. Significant associations were observed between several PM2.5 components and decreased pulmonary function. Among the ionic components, sulfate was strongly related to decreases in PEF and FEV1 (-4.20 L/min [95 % confidence interval (CI): -6.40 to -2.00] and - 0.04 L [95 % CI: -0.05 to -0.02] per interquartile range increase, respectively). Among the elemental components, potassium induced the greatest reduction in PEF and FEV1. Therefore, PEF and FEV1 were significantly reduced as the concentrations of several PM2.5 components increased during fall, with minimal changes observed during spring. Several chemical components of PM2.5 were significantly associated with decreased pulmonary function among healthy adolescents. The concentrations of PM2.5 chemical components differed by season, suggesting the occurrence of distinct effects on the respiratory system depending on the type of component.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroshi Takagi
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima, Ehime 794-2593, Japan
| | - Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Yosuke Horie
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo 654-0037, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
9
|
Li J, Tang W, Li S, He C, Dai Y, Feng S, Zeng C, Yang T, Meng Q, Meng J, Pan Y, Deji S, Zhang J, Xie L, Guo B, Lin H, Zhao X. Ambient PM2.5 and its components associated with 10-year atherosclerotic cardiovascular disease risk in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115371. [PMID: 37643506 DOI: 10.1016/j.ecoenv.2023.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Exposure to particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) may increase the risk of 10-year atherosclerotic cardiovascular disease (ASCVD) risk. While PM2.5 is comprised of various components, the evidence on the correlation of its components with 10-year ASCVD risk and which component contributes most remains limited. METHODS Data were derived from the baseline assessments of China Multi-Ethnic Cohort (CMEC). In total, 69,722 individuals aged 35-74 years were included into this study. The annual average concentration of PM2.5 and its components (black carbon, ammonium, nitrate, sulfate, organic matter, soil particles, and sea salt) were estimated by satellite remote sensing and chemical transport models. The ASCVD risk of individuals was calculated by the equations from the China-PAR Project (prediction for ASCVD risk in China). The relationship between single exposure to PM2.5 and its components and predicted 10-year ASCVD risk was assessed using the logistic regression model. The effect of joint exposure was estimated, and the most significant contributor was identified using the weighted quantile sum approach. RESULTS Totally 69,722 participants were included, of which 95.8 % and 4.2 % had low and high 10-year ASCVD risk, respectively. Per standard deviation increases in the 3-year average concentration of PM2.5 mass (odds ratio [OR] 1.23, 95 % confidence interval [CI]: 1.12-1.35), black carbon (1.21, 1.11-1.33), ammonium (1.21, 1.10-1.32), nitrate (1.25, 1.14-1.38), organic matter (1.29, 1.18-1.42), sulfate (1.17, 1.07-1.28), and soil particles (1.15, 1.04-1.26) were related to high 10-year ASCVD risk. The overall effect (1.19, 1.11-1.28) of the PM2.5 components was positively associated with 10-year ASCVD risk, and organic matter had the most contribution to this relationship. Female participants were more significantly impacted by PM2.5, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles compared to others. CONCLUSION Long-term exposure to PM2.5 mass, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles were positively associated with high 10-year ASCVD risk, while sea salt exhibited a protective effect. Moreover, the organic matter might take primary responsibility for the relationship between PM2.5 and 10-year ASCVD risk. Females were more susceptible to the adverse effect.
Collapse
Affiliation(s)
- Jiawei Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yucen Dai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 850000, China
| | - Jiantong Meng
- Chengdu Center for Disease Control & Prevention, Chengdu, Sichuan 610041, China
| | | | - Suolang Deji
- Tibet Center for Disease Control and Prevention CN, Lhasa 850000, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Wang M, Zhou XHA, Curl C, Fitzpatrick A, Vedal S, Kaufman J. Long-term exposure to ambient air pollution and cognitive function in older US adults: The Multi-Ethnic Study of Atherosclerosis. Environ Epidemiol 2023; 7:e242. [PMID: 36777527 PMCID: PMC9916093 DOI: 10.1097/ee9.0000000000000242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Air pollution effects on cognitive function have been increasingly recognized. Little is known about the impact of different sources of fine particulate (PM2.5). We aim to evaluate the associations between long-term air pollution exposure, including source-specific components in PM2.5, and cognition in older adults. Methods Cognitive assessment, including the Cognitive Abilities Screening Instrument (CASI), Digit Symbol Coding (DSC), and Digit Span (DS), was completed in 4392 older participants in the United States during 2010-2012. Residence-specific air pollution exposures (i.e., oxides of nitrogen [NO2/NOx], PM2.5 and its components: elemental carbon [EC], organic carbon [OC], sulfur [S], and silicon [Si]) were estimated by geo-statistical models. Linear and logistic regression models were used to estimate the associations between each air pollutants metric and cognitive function. Results An interquartile range (IQR) increase in EC (0.8 μg/m3) and Si (23.1 ng/m3) was associated with -1.27 (95% confidence interval [CI]: -0.09, -2.45) and -0.88 (95% CI: -0.21, -1.54) lower CASI scores in global cognitive function. For each IQR increase in Si, the odds of low cognitive function (LCF) across domains was 1.29 times higher (95% CI: 1.04, 1.60). For other tests, NO X was associated with slower processing speed (DSC: -2.01, 95% CI: -3.50, -0.52) and worse working memory (total DS: -0.4, 95% CI: -0.78, -0.01). No associations were found for PM2.5 and two PM2.5 components (OC and S) with any cognitive function outcomes. Conclusion Higher exposure to traffic-related air pollutants including both tailpipe (EC and NO x ) and non-tailpipe (Si) species were associated with lower cognitive function in older adults.
Collapse
Affiliation(s)
- Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Xiao-Hua Andrew Zhou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Cynthia Curl
- School of Public and Population Health, Boise State University, Boise, Idaho
| | - Annette Fitzpatrick
- Department of Family Medicine, School of Public Health, University of Washington, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Department of Global Health, School of Public Health, University of Washington, Seattle, Washington
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Joel Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Yount CS, Utell MJ, Hopke PK, Thurston SW, Lin S, Ling FS, Chen Y, Chalupa D, Deng X, Rich DQ. Triggering of ST-elevation myocardial infarction by ultrafine particles in New York: Changes following Tier 3 vehicle introduction. ENVIRONMENTAL RESEARCH 2023; 216:114445. [PMID: 36181892 DOI: 10.1016/j.envres.2022.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previously, we found increased rates of ST-elevation myocardial infarction (STEMI) associated with increased ultrafine particle (UFP; <100 nm) concentrations in the previous few hours in Rochester, New York. Relative rates were higher after air quality policies and a recession reduced pollutant concentrations (2014-2016 versus 2005-2013), suggesting PM composition had changed and the same PM mass concentration had become more toxic. Tier 3 light duty vehicles, which should produce less primary organic aerosols and oxidizable gaseous compounds, likely making PM less toxic, were introduced in 2017. Thus, we hypothesized we would observe a lower relative STEMI rate in 2017-2019 than 2014-2016. METHODS Using STEMI events treated at the University of Rochester Medical Center (2014-2019), UFP and other pollutants measured in Rochester, a case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increased UFP and other pollutants in the previous hours and days in the 2014-2016 and 2017-2019 periods. RESULTS An increased rate of STEMI was associated with each 3111 particles/cm3 increase in UFP concentration in the previous hour in 2014-2016 (lag hour 0: OR = 1.22; 95% CI = 1.06, 1.39), but not in 2017-2019 (OR = 0.94; 95% CI = 0.80, 1.10). There were similar patterns for black carbon, UFP11-50nm, and UFP51-100nm. In contrast, increased rates of STEMI were associated with each 0.6 ppb increase in SO2 concentration in the previous 120 h in both periods (2014-2016: OR = 1.26, 95% CI = 1.03, 1.55; 2017-2019: OR = 1.21, 95% CI = 0.87, 1.68). CONCLUSIONS Greater rates of STEMI were associated with short term increases in concentrations of UFP and other motor vehicle related pollutants before Tier 3 introduction (2014-2016), but not afterwards (2017-2019). This change may be due to changes in PM composition after Tier 3 introduction, as well as to increased exposure misclassification and greater underestimation of effects from 2017 to 2019.
Collapse
Affiliation(s)
- Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, 8 Clarkson Avenue Box 5708, Potsdam, NY, 13699, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA; Department of Biostatistics and Computational Biology, 265 Crittenden Boulevard CU420630, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Xinlei Deng
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Feng T, Chen H, Liu J. Air pollution-induced health impacts and health economic losses in China driven by US demand exports. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116355. [PMID: 36179470 DOI: 10.1016/j.jenvman.2022.116355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Understanding how trade between regions or countries drives the transfer of air pollution has attracted considerable interest recently, but few studies have explored the various transfer pathways or evaluated economic losses due to the health impact of such air pollution. Here, we assess the air pollutant emissions and related health impacts and economic losses in China caused by export trade due to US demand by combining the linked multi-regional input-output (MRIO) model, GEOS-Chem model, integrated exposure-response model, and the willingness to pay method. We show that the air pollutant emissions embedded in China's export due to the US demand reached 5792.38 Kt in 2012 (2.48% of the total), which includes direct exports of intermediate (40.27%) and final (33.61%) products and indirect exports of intermediate products via domestic provinces (16.43%, domestic spillover) and other countries (9.69%, foreign spillover). The resulting increase in PM2.5 (<2.8 μg m-3) leads to additional 27,963 deaths in 30 provinces, with a higher death toll in coastal areas and the corresponding economic loss was higher in more developed regions and reached USD 2.08 billion. This study highlights the region-different air pollution and health impacts in China embedded in the US-demand trade, and provides a framework for the analysis of health and economic losses hidden in global trade, particularly between developing and developed countries.
Collapse
Affiliation(s)
- Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, 315211, China; Institute of East China Sea, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongwen Chen
- School of Tourism, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianzheng Liu
- School of Public Affairs, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
13
|
Lou X, Zhang P, Shi N, Ding Z, Xu Z, Liu B, Hu W, Yan T, Wang J, Liu L, Zha Y, Wang J, Chen W, Xu C, Xu J, Jiang H, Ma H, Yuan W, Wang C, Liao Y, Wang D, Yao L, Chen M, Li G, Li Y, Wang P, Li X, Lu C, Tang W, Wan J, Li R, Xiao X, Zhang C, Jiao J, Zhang W, Yuan J, Lan L, Li J, Zhang P, Zheng W, Chen J. Associations between short-term exposure of ambient particulate matter and hemodialysis patients death: A nationwide, longitudinal case-control study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158215. [PMID: 36028020 DOI: 10.1016/j.scitotenv.2022.158215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Long-term exposure to particulate air pollutants can lead to an increase in mortality of hemodialysis patients, but evidence of mortality risk with short-term exposure to ambient particulate matter is lacking. This study aimed to estimate the association of short-term exposure to ambient particulate matter across a wide range of concentrations with hemodialysis patients mortality. METHODS We performed a time-stratified case-crossover study to estimate the association between short-term exposures to PM2.5 and PM10 and mortality of hemodialysis patients. The study included 18,114 hemodialysis death case from 279 hospitals in 41 cities since 2013. Daily particulate matter exposures were calculated by the inverse distance-weighted model based on each case's dialysis center address. Conditional logistic regression were implemented to quantify exposure-response associations. The sensitivity analysis mainly explored the lag effect of particulate matter. RESULTS During the study period, there were 18,114 case days and 61,726 control days. Of all case and control days, average PM2.5 and PM10 levels were 43.98 μg/m3 and 70.86 μg/m3, respectively. Each short-term increase of 10 μg/m3 in PM2.5 and PM10 were statistically significantly associated with a relative increase of 1.07 % (95 % confidence interval [CI]: 0.99 % - 1.15 %) and 0.89 % (95 % CI: 0.84 % - 0.94 %) in daily mortality rate of hemodialysis patients, respectively. There was no evidence of a threshold in the exposure-response relationship. The mean of daily exposure on the same day of death and one-day prior (Lag 01 Day) was the most plausible exposure time window. CONCLUSIONS This study confirms that short-term exposure to particulate matter leads to increased mortality in hemodialysis patients. Policy makers and public health practices have a clear and urgent opportunity to pass air quality control policies that care for hemodialysis populations and incorporate air quality into the daily medical management of hemodialysis patients.
Collapse
Affiliation(s)
- Xiaowei Lou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; Zhejiang Dialysis Quality Control Center, PR China
| | - Nan Shi
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Zhe Ding
- College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhonggao Xu
- First Hospital of Jilin University, PR China
| | - Bicheng Liu
- Affiliated Zhongda Hospital of Southeast University, PR China
| | - Wenbo Hu
- Qinghai Provincial Peoples Hospital, PR China
| | - Tiekun Yan
- Tianjin Medical University General Hospital, PR China
| | - Jinwen Wang
- Yan'an Hospital of Kunming Medical University, PR China
| | - Ling Liu
- Second Affiliated Hospital of Chongqing Medical University, PR China
| | - Yan Zha
- Guizhou Provincial People's Hospital, PR China
| | - Jianqin Wang
- Second Affiliated Hospital of Lanzhou University, PR China
| | - Wei Chen
- First Affiliated Hospital of Sun yat-sen University, PR China
| | - Chenyun Xu
- Second Affiliated Hospital of Nanchang University, PR China
| | - Jinsheng Xu
- Fourth Hospital of Hebei Medical University, PR China
| | - Hongli Jiang
- First Affiliated Hospital of Xian Jiaotong University, PR China
| | - Huichao Ma
- Second Hospital of Tibet Autonomous Region, PR China
| | | | - Caili Wang
- First Affiliated Hospital of Baotou Medical College, PR China
| | - Yunhua Liao
- First Affiliated Hospital of Guangxi Medical University, PR China
| | - Deguang Wang
- Second Affiliated Hospital of Anhui Medical University, PR China
| | - Li Yao
- First Affiliated Hospital of China Medical University, PR China
| | - Menghua Chen
- General Hospital of Ningxia Medical University, PR China
| | - Guisen Li
- Sichuan Provincial Peoples Hospital, PR China
| | - Yun Li
- Jiangxi Provincial Peoples Hospital, PR China
| | - Pei Wang
- First Affiliated Hospital of Zhengzhou University, PR China
| | - Xuemei Li
- Peking Union Medical College Hospital, PR China
| | - Chen Lu
- Peoples Hospital of Xinjiang Uygur Autonomous Region, PR China
| | | | - Jianxin Wan
- First Affiliated Hospital of Fujian Medical University, PR China
| | - Rongshan Li
- Shanxi Provincial People's Hospital, PR China
| | | | - Chun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Jundong Jiao
- Second Affiliated Hospital of Harbin Medical University, PR China
| | - Wei Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Jing Yuan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Jingsong Li
- Research Center for Healthcare Data Science, Zhejiang Lab, PR China
| | - Peng Zhang
- School of Mathematical Sciences, Zhejiang University, PR China.
| | - Weijun Zheng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; National Key Clinical Department of Kidney Diseases, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, PR China; Zhejiang Dialysis Quality Control Center, PR China.
| |
Collapse
|
14
|
Zhou P, Hu J, Yu C, Bao J, Luo S, Shi Z, Yuan Y, Mo S, Yin Z, Zhang Y. Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2527-2538. [PMID: 35713841 DOI: 10.1007/s11427-021-2098-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies associated increased mortality with exposures to specific fine particulate (PM2.5) constituents, while great heterogeneity exists between locations. In China, evidence linking PM2.5 constituents and mortality was extensively sparse. This study primarily aimed to quantify short-term associations between PM2.5 constituents and non-accidental mortality among the Chinese population. We collected daily mortality records from 32 counties in China between January 1, 2011, and December 31, 2013. Daily concentrations of main PM2.5 constituents (organic carbon (OC), elemental carbon (EC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+)) were estimated using the modified Community Multiscale Air Quality model. Time-stratified case-crossover design with conditional logistic regression models was adopted to estimate mortality risks associated with short-term exposures to PM2.5 mass and its constituents. Stratification analyses were done by sex, age, and season. A total of 116,959 non-accidental deaths were investigated. PM2.5 concentrations on the day of death were averaged at 75.7 µg m-3 (control day: 75.6 µg m-3), with an interquartile range (IQR) of 65.2 µg m-3. Per IQR rise in PM2.5, EC, OC, NO3-, SO42-, and NH4+ at lag-04 day was associated with an increase in non-accidental mortality of 2.4% (95% confidence interval, (1.0-3.7), 1.7% (0.8-2.7), 2.9% (1.6-4.3), 2.1% (0.4-3.9), 1.0% (0.2-1.9), and 1.6% (0.3-2.9), respectively. Both PM2.5 mass and its constituents were strongly associated with elevated cardiovascular mortality risks, but only PM2.5, EC, and OC were positively associated with respiratory mortality at lag-3 day. PM2.5 mass and its constituents associated effects on mortality varied among sex- and age-specific subpopulations. Differences in the seasonal pattern of associations exist among PM2.5 constituents, with stronger effects related to EC and NO3- in warm months but SO42- and NH4+ in cold months. Short-term exposures to PM2.5 compositions were positively associated with increased risks of mortality, particularly those constituents from combustion-related sources.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yang Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
15
|
Kim S, Yang J, Park J, Song I, Kim DG, Jeon K, Kim H, Yi SM. Health effects of PM 2.5 constituents and source contributions in major metropolitan cities, South Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82873-82887. [PMID: 35761136 DOI: 10.1007/s11356-022-21592-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Ambient PM2.5 is one of the major risk factors for human health, and is not fully explained solely by mass concentration. We examined the short-term associations of cause-specific mortality (i.e., all-cause, cardiovascular, and respiratory mortality) with the 15 chemical constituents and sources of PM2.5 in four metropolitan cities of South Korea during 2014-2018. We found transition metals consistently showed significant associations with all-cause mortality, while the effects of other constituents varied across the cities and for cause of death. Carbonaceous components strongly affected the all-cause, cardiovascular, and respiratory mortality in Daejeon. Secondary inorganic aerosols, SO42- and NH4+, showed significant associations with respiratory mortality in Gwangju. We also found the sources from which species closely linked to mortality generally increased the relative mortality risks. Heavy metal markers from soil or industrial sources were significantly associated with mortality in all cities. However, several sources influenced mortality despite their marker species not being significantly associated with it. Secondary nitrate and secondary sulfate sources were linked to mortality in DJ. This could be attributed to the deep inland location, which might have facilitated formation of secondary inorganic aerosols. In addition, primary sources including mobile and coal combustion seemed to have acute impacts on respiratory mortality in Gwangju. Our findings suggest the necessity of positive matrix factorization (PMF)-based approaches for evaluating health effects of PM2.5 while considering the spatial heterogeneity in the compositions and source contributions of PM2.5.
Collapse
Affiliation(s)
- Sangcheol Kim
- Sejong Institute of Health and Environment, Sejong, Republic of Korea
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Juyeon Yang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jieun Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Inho Song
- Climate and Air Quality Research Department Air Quality Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Dae-Gon Kim
- Climate and Air Quality Research Department Air Quality Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ho Kim
- Graduate School of Public Health & Institute of Health and Environment, Seoul National University, 1 Gwanak ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Seung-Muk Yi
- Graduate School of Public Health & Institute of Health and Environment, Seoul National University, 1 Gwanak ro, Gwanak gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Methods for assessing the impact of PM2.5 concentration on mortality while controlling for socio-economic factors. Heliyon 2022; 8:e10729. [PMID: 36203891 PMCID: PMC9529546 DOI: 10.1016/j.heliyon.2022.e10729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 11/22/2021] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Even though industrial development has brought vast improvements to our daily lives, it carries with it negative effects such as adverse health outcomes caused by PM2.5 and other pollutants. The negative externalities and external costs might occur when property rights are not properly defined, which means that if no one holds a property right on the atmosphere and the quality of air, there is no appropriate mechanism to prevent a further expansion of negative effects. An economic burden of pollution related to premature morbidity and mortality in individual countries can account for 5–14% of GDP (World Bank, 2021). In 2019, the worldwide health cost of mortality and morbidity caused by exposure to PM2.5 concentration was $8.1 trillion, which is equivalent to 6.1 percent of the global gross domestic product (GDP) (World Bank estimate). Policymakers require evidence-based results that clearly show the impact that air pollution has on the economy and society, in order to be able to establish the proper regulations and ensure their successful implementation. The purpose of this long term study is to provide methods for assessing the negative effects of PM2.5 concentration on PM2.5-related mortality using panel data structure and demonstrate how socio-economic factors affect this relation. This study employed advanced econometric techniques to analyse the long-term impact of PM2.5 on human health, while controlling for socio economic indicators. This study has demonstrated significant effects of socio-economic, health risk and system and governance variables on the relation between PM2.5 concentration and PM2.5-related mortality.
Collapse
|
17
|
Shukla K, Seppanen C, Naess B, Chang C, Cooley D, Maier A, Divita F, Pitiranggon M, Johnson S, Ito K, Arunachalam S. ZIP Code-Level Estimation of Air Quality and Health Risk Due to Particulate Matter Pollution in New York City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7119-7130. [PMID: 35475336 PMCID: PMC9178920 DOI: 10.1021/acs.est.1c07325] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/19/2023]
Abstract
Exposure to PM2.5 is associated with hundreds of premature mortalities every year in New York City (NYC). Current air quality and health impact assessment tools provide county-wide estimates but are inadequate for assessing health benefits at neighborhood scales, especially for evaluating policy options related to energy efficiency or climate goals. We developed a new ZIP Code-Level Air Pollution Policy Assessment (ZAPPA) tool for NYC by integrating two reduced form models─Community Air Quality Tools (C-TOOLS) and the Co-Benefits Risk Assessment Health Impacts Screening and Mapping Tool (COBRA)─that propagate emissions changes to estimate air pollution exposures and health benefits. ZAPPA leverages custom higher resolution inputs for emissions, health incidences, and population. It, then, enables rapid policy evaluation with localized ZIP code tabulation area (ZCTA)-level analysis of potential health and monetary benefits stemming from air quality management decisions. We evaluated the modeled 2016 PM2.5 values against observed values at EPA and NYCCAS monitors, finding good model performance (FAC2, 1; NMSE, 0.05). We, then, applied ZAPPA to assess PM2.5 reduction-related health benefits from five illustrative policy scenarios in NYC focused on (1) commercial cooking, (2) residential and commercial building fuel regulations, (3) fleet electrification, (4) congestion pricing in Manhattan, and (5) these four combined as a "citywide sustainable policy implementation" scenario. The citywide scenario estimates an average reduction in PM2.5 of 0.9 μg/m3. This change translates to avoiding 210-475 deaths, 340 asthma emergency department visits, and monetized health benefits worth $2B to $5B annually, with significant variation across NYC's 192 ZCTAs. ZCTA-level assessments can help prioritize interventions in neighborhoods that would see the most health benefits from air pollution reduction. ZAPPA can provide quantitative insights on health and monetary benefits for future sustainability policy development in NYC.
Collapse
Affiliation(s)
- Komal Shukla
- Institute
for the Environment, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Catherine Seppanen
- Institute
for the Environment, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Brian Naess
- Institute
for the Environment, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Charles Chang
- Institute
for the Environment, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - David Cooley
- Abt
Associates, Durham, North Carolina 27703, United States
| | - Andreas Maier
- Abt
Associates, Durham, North Carolina 27703, United States
| | - Frank Divita
- Abt
Associates, Durham, North Carolina 27703, United States
| | - Masha Pitiranggon
- New
York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, New York, New York 10013, United States
| | - Sarah Johnson
- New
York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, New York, New York 10013, United States
| | - Kazuhiko Ito
- New
York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, New York, New York 10013, United States
| | - Saravanan Arunachalam
- Institute
for the Environment, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Han B, Xu J, Zhang Y, Li P, Li K, Zhang N, Han J, Gao S, Wang X, Geng C, Yang W, Zhang L, Bai Z. Associations of Exposure to Fine Particulate Matter Mass and Constituents with Systemic Inflammation: A Cross-Sectional Study of Urban Older Adults in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7244-7255. [PMID: 35148063 DOI: 10.1021/acs.est.1c04488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Systemic inflammation is a key mechanism in the development of cardiovascular diseases induced by exposure to fine particles (particles with aerodynamic diameter ≤2.5 μm [PM2.5]). However, little is known about the effects of chemical constituents of PM2.5 on systemic inflammation. In this cross-sectional study, filter samples of personal exposure to PM2.5 were collected from community-dwelling older adults in Tianjin, China, and the chemical constituents of PM2.5 were analyzed. Blood samples were collected immediately after the PM2.5 sample collection. Seventeen cytokines were measured as targets. A linear regression model was applied to estimate the relative effects of PM2.5 and its chemical constituents on the measured cytokines. A positive matrix factorization model was employed to distinguish the sources of PM2.5. The calculated source contributions were used to estimate their effects on cytokines. After adjusting for other covariates, higher PM2.5-bound copper was significantly associated with increased levels of interleukin (IL)1β, IL6, IL10, and IL17 levels. Source analysis showed that an increase in PM2.5 concentration that originated from tire/brake wear and cooking emissions was significantly associated with enhanced levels of IL1β, IL6, tumor necrosis factor alpha (TNFα), and IL17. In summary, personal exposure to some PM2.5 constituents and specific sources could increase systemic inflammation in older adults. These findings may explain the cardiopulmonary effects of specific particulate chemical constituents of urban air pollution.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kangwei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinbao Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
19
|
Song X, Hu Y, Ma Y, Jiang L, Wang X, Shi A, Zhao J, Liu Y, Liu Y, Tang J, Li X, Zhang X, Guo Y, Wang S. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022; 12:e049516. [PMID: 35504636 PMCID: PMC9066484 DOI: 10.1136/bmjopen-2021-049516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adverse health effects of fine particles (particulate matter2.5) have been well documented by a series of studies. However, evidences on the impacts of black carbon (BC) or elemental carbon (EC) on health are limited. The objectives were (1) to explored the effects of BC and EC on cardiovascular and respiratory morbidity and mortality, and (2) to verified the reliability of the meta-analysis by drawing p value plots. DESIGN The systematic review and meta-analysis using adapted Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and p value plots approach. DATA SOURCES PubMed, Embase and Web of Science were searched from inception to 19 July 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Time series, case cross-over and cohort studies that evaluated the associations between BC/EC on cardiovascular or respiratory morbidity or mortality were included. DATA EXTRACTION AND SYNTHESIS Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcomes were analysed via a random effects model and reported as relative risk (RR) with 95% CI. The certainty of evidences was assessed by adapted GRADE. The reliabilities of meta-analyses were analysed by p value plots. RESULTS Seventy studies met our inclusion criteria. (1) Short-term exposure to BC/EC was associated with 1.6% (95% CI 0.4% to 2.8%) increase in cardiovascular diseases per 1 µg/m3 in the elderly; (2) Long-term exposure to BC/EC was associated with 6.8% (95% CI 0.4% to 13.5%) increase in cardiovascular diseases and (3) The p value plot indicated that the association between BC/EC and respiratory diseases was consistent with randomness. CONCLUSIONS Both short-term and long-term exposures to BC/EC were related with cardiovascular diseases. However, the impact of BC/EC on respiratory diseases did not present consistent evidence and further investigations are required. PROSPERO REGISTRATION NUMBER CRD42020186244.
Collapse
Affiliation(s)
- Xuping Song
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Hu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Liangzhen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Wang
- Second Clinical College, Lanzhou University, Lanzhou, Gansu, China
| | - Anchen Shi
- Department of General Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Junxian Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxu Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yafei Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Tang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiayang Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Zhang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yong Guo
- Department of Civil Affairs in Guizhou Province, Guizhou Province People's Government, Guiyang, Guizhou, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Rahman MM, Thurston G. A hybrid satellite and land use regression model of source-specific PM 2.5 and PM 2.5 constituents. ENVIRONMENT INTERNATIONAL 2022; 163:107233. [PMID: 35429918 DOI: 10.1016/j.envint.2022.107233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Although PM2.5 mass varies in source and composition over time and space, most health effects assessment have made the inherent assumption that all PM2.5 mass has the same health implications, irrespective of composition. Nationwide estimates of source-specific PM2.5 mass and constituents at local-scale would allow for epidemiological studies and health effects assessments that consider the variability in PM2.5 characteristics in their health impact assessments. In response, we developed US models of annual exposures at the census tract level for five major PM2.5 sources (traffic, soil, coal, oil, and biomass combustion) and six trace elements (elemental carbon, sulfur, silicon, selenium, nickel, and non-soil potassium) for 2001 through 2014. We employed Absolute Factor Analysis (APCA) to derive the source-specific PM2.5 impacts at monitoring stations. Random forest algorithms that incorporated predictors derived from satellite, chemical transport model, and census tract resolution land-use data on traffic, meteorology, and emissions, which were rigorously tested by 10-fold cross-validation (CV), were then employed to estimate elemental and source-specific PM2.5 levels at non-monitoring site census-tracts over the study years. Model performances were moderate to good, with CV R2 ranging from 0.41 to 0.95. For PM2.5 sources, the highest CV R2 was attained for traffic PM2.5 (CV R2 = 0.73), followed by coal (CV R2 = 0.65), oil (CV R2 = 0.62), soil (CV R2 = 0.60), and biomass (CV R2 = 0.41). Among constituents, the CV was highest for sulfur (CV R2 = 0.95). Our analyses provided highly resolved spatial estimates of annual elemental and source-specific PM2.5 concentrations at the census-tract level, for 2001 through 2014. This dataset offers exposure estimates in support of future nationwide long-term health effects studies of source-specific PM2.5 mass and constituents, enabling epidemiological research that addresses the fact that not all particles are the same.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States.
| | - George Thurston
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States; Department of Population Health, New York University Grossman School of Medicine, New York, NY 10010, United States
| |
Collapse
|
21
|
Malik AO, Jones PG, Chan PS. Association of ambient air pollution with risk of out of hospital cardiac arrest in the United States. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100151. [PMID: 36035228 PMCID: PMC9410193 DOI: 10.1016/j.ahjo.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Objective We assessed the association of acute exposure to ambient air particulate matter < 2.5 μm (PM2.5) and Ozone with risk of out of hospital cardiac arrest (OHCA). Methods We used data from the Cardiac Arrest Registry to Enhance Survival (CARES), a prospective multicenter registry of patients with OHCA in the U.S. Environmental data was obtained from publicly available data and linked with each patient. A case-crossover design was used to estimate association of acute exposure to ambient air PM2.5 and Ozone with risk of OHCA. Case day was defined as the day of the OHCA, and control days were same days of the week from preceding two weeks. Results Of 187,047 patients with OHCA, mean age was 61.5 ± 19.9 years, 59.7 % were males and 47.1 % were of White race. Mean daily PM2.5 concentration on case day was 9.2 ± 4.9 μg/m3 and mean averaged 8-hour Ozone concentration was 36.9 ± 12.1 ppb. Each 5 μg/m3 increase in PM2.5 concentration (case day vs. control day) was not associated with risk of OHCA (OR 0.99 [95 % CI 0.998, 1.017] p = 0.72). In contrast, there was an association of exposure to Ozone with risk of OHCA with every 12 ppb increase in Ozone associated with a higher risk for OHCA on case day (OR 1.011 [95 % CI 1.003, 1.019] p = 0.01). Conclusion In the U.S., higher exposure to Ozone was associated with increased risk of OHCA.
Collapse
Affiliation(s)
- Ali O. Malik
- Corresponding author at: Saint Lukes' Mid America Heart Institute/University of Missouri Kansas City, 4401 Wornall Road, 9th Floor, Kansas City, MO 64111, USA.
| | - Philip G. Jones
- Saint Luke's Mid America Heart Institute, Kansas City, MO, USA
- University of Missouri Kansas City, MO, USA
| | - Paul S. Chan
- Saint Luke's Mid America Heart Institute, Kansas City, MO, USA
- University of Missouri Kansas City, MO, USA
| |
Collapse
|
22
|
Huang R, Li Z, Ivey CE, Zhai X, Shi G, Mulholland JA, Devlin R, Russell AG. Application of an Improved Gas-constrained Source Apportionment Method Using Data Fused Fields: a Case Study in North Carolina, USA. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 276:119031. [PMID: 35814352 PMCID: PMC9262331 DOI: 10.1016/j.atmosenv.2022.119031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A number of studies have found differing associations of disease outcomes with PM2.5 components (or species) and sources (e.g., biomass burning, diesel vehicles and gasoline vehicles). Here, a unique method of fusing daily chemical transport model (Community Multiscale Air Quality Modeling) results with observations has been utilized to generate spatiotemporal fields of the concentrations of major gaseous pollutants (CO, NO2, NOx, O3, and SO2), total PM2.5 mass, and speciated PM2.5 (including crustal elements) over North Carolina for 2002-2010. The fused results are then used in chemical mass balance source apportionment model, CMBGC-Iteration, which uses both gas constraint and particulate matter concentrations to quantify source impacts. The method, as applied to North Carolina, quantifies the impacts of ten source categories and provides estimates of source contributions to PM2.5 concentrations. The ten source categories include both primary sources (diesel vehicles, gasoline vehicles, dust, biomass burning, coal-fired power plants and sea salt) and secondary components (ammonium sulfate, ammonium bisulfate, ammonium nitrate and secondary organic carbon). The results show a steady decrease in anthropogenic source impacts, especially from diesel vehicles and coal-fired power plants. Secondary pollutant components accounted for approximately 70% of PM2.5 mass. This study demonstrates an ability to provide spatiotemporal fields of both PM components and source impacts using a chemical transport model fused with observation data, linked to a receptor-based source apportionment method, to develop spatiotemporal fields of multiple pollutants.
Collapse
Affiliation(s)
- Ran Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zongrun Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Cesunica E. Ivey
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California, USA
| | - Xinxin Zhai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Center for Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - James A. Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert Devlin
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Armistead G. Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Correspondence:
| |
Collapse
|
23
|
Qi N, Tan X, Wu T, Tang Q, Ning F, Jiang D, Xu T, Wu H, Ren L, Deng W. Temporal and Spatial Distribution Analysis of Atmospheric Pollutants in Chengdu-Chongqing Twin-City Economic Circle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074333. [PMID: 35410015 PMCID: PMC8998823 DOI: 10.3390/ijerph19074333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022]
Abstract
In order to study the temporal and spatial distribution characteristics of atmospheric pollutants in cities (districts and counties) in the Chengdu–Chongqing Twin-city Economic Circle (CCEC) and to provide a theoretical basis for atmospheric pollution prevention and control, this paper combined Ambient Air Quality Standards (AAQS) and WHO Global Air Quality Guidelines (GAQG) to evaluate atmospheric pollution and used spatial correlation to determine key pollution areas. The results showed that the distribution of atmospheric pollutants in CCEC presents a certain law, which was consistent with the air pollution transmission channels. Except for particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5) and ozone (O3), other pollutants reached Grade II of AAQS in 2020, among which particulate matter with an aerodynamic diameter equal to or less than 10 μm (PM10), PM2.5, sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) have improved. Compared with the air quality guidelines given in the GAQG, PM10, PM2.5, NO2 and O3 have certain effects on human health. The spatial aggregation of PM10 and PM2.5 decreased year by year, while the spatial aggregation of O3 increased with the change in time, and the distribution of NO2 pollution had no obvious aggregation. Comprehensive analysis showed that the pollution problems of particulate matter, NO2 and O3 in CCEC need to be further controlled.
Collapse
Affiliation(s)
- Ning Qi
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
- Correspondence: (N.Q.); (T.W.); Tel.: +86-153-1099-6890 (N.Q.); +86-132-1020-1286 (T.W.)
| | - Xuemei Tan
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
| | - Tengfei Wu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (N.Q.); (T.W.); Tel.: +86-153-1099-6890 (N.Q.); +86-132-1020-1286 (T.W.)
| | - Qing Tang
- Chongqing Fushide Environmental Affairs Co., Ltd., Chongqing 401147, China;
| | - Fengshou Ning
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
| | - Debin Jiang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
| | - Tengtun Xu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
| | - Hong Wu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (X.T.); (F.N.); (D.J.); (T.X.); (H.W.)
| | - Lingxiao Ren
- Nanjing Institute of Technology, School of Environmental Engineering, Nanjing 211167, China;
| | - Wei Deng
- Center of Yangtze River Ecological Protection and High Quality Development, Chongqing Academy of Environmental Science, Chongqing 401147, China;
| |
Collapse
|
24
|
Vinceti M, Filippini T, Jablonska E, Saito Y, Wise LA. Safety of selenium exposure and limitations of selenoprotein maximization: Molecular and epidemiologic perspectives. ENVIRONMENTAL RESEARCH 2022; 211:113092. [PMID: 35259406 DOI: 10.1016/j.envres.2022.113092] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 μg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Susceptibility of patients with chronic obstructive pulmonary disease to heart rate difference associated with the short-term exposure to metals in ambient fine particles: A panel study in Beijing, China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:387-397. [PMID: 34008166 DOI: 10.1007/s11427-020-1912-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Susceptibility of patients with chronic obstructive pulmonary disease (COPD) to cardiovascular autonomic dysfunction associated with exposure to metals in ambient fine particles (PM2.5, particulate matter with aerodynamic diameter ≤2.5 µm) remains poorly evidenced. Based on the COPDB (COPD in Beijing) panel study, we aimed to compare the associations of heart rate (HR, an indicator of cardiovascular autonomic function) and exposure to metals in PM2.5 between 53 patients with COPD and 82 healthy controls by using linear mixed-effects models. In all participants, the HR levels were significantly associated with interquartile range increases in the average concentrations of Cr, Zn, and Pb, but the strength of the associations differed by exposure time (from 1.4% for an average 9 days (d) Cr exposure to 3.5% for an average 9 d Zn exposure). HR was positively associated with the average concentrations of PM2.5 and certain metals only in patients with COPD. Associations between HR and exposure to PM2.5, K, Cr, Mn, Ni, Cu, Zn, As, and Se in patients with COPD significantly differed from those in health controls. Furthermore, association between HR and Cr exposure was robust in COPD patients. In conclusion, our findings indicate that COPD could exacerbate difference in HR following exposure to metals in PM2.5.
Collapse
|
26
|
Zhang Y, Liu L, Zhang L, Yu C, Wang X, Shi Z, Hu J, Zhang Y. Assessing short-term impacts of PM 2.5 constituents on cardiorespiratory hospitalizations: Multi-city evidence from China. Int J Hyg Environ Health 2021; 240:113912. [PMID: 34968974 DOI: 10.1016/j.ijheh.2021.113912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Apart from concentrations of particulate mass, PM2.5-associated effects on health may largely depend on its chemical components. However, little is known regarding the underlying effects of specific PM2.5 constituents. The study included nearly 1 million hospital admissions from five Chinese cities during 2015-2017. Based on the modified Community Multiscale Air Quality model, our study simulated daily concentrations of PM2.5 and five main components. We used a time-stratified case-crossover design with conditional logistic regression models to estimate short-term effects of PM2.5 constituents on cause-specific hospital admissions. Per interquartile range increase in exposure to PM2.5, elemental carbon, organic carbon, nitrate, sulfate and ammonium at lag 04-day was related to an excess risk (ER%) for non-accidental admissions of 1.6% [95% confidence interval: 1.1-2.0], 1.9% [1.3-2.4], 1.0% [0.5-1.6], 1.2% [0.4-2.0], 1.2% [0.9-1.5] and 1.4% [0.9-1.9], respectively. Great heterogeneities of constituents-admission associations existed in diverse causes and constituents. This study provided multi-center high-quality evidence that hospital admissions, particularly those for ischemic heart disease (ER% ranging from 2.3 to 5.4% at lag 04-day) and pneumonia (1.9-5.1% at lag 4-day), could be triggered by short-term exposures to ambient PM2.5 constituents. Relatively stronger constituents-admission associations were found among females for respiratory causes and the elderly for cardiovascular causes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liansheng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China; Institute of Global Health, Wuhan University, Wuhan, 430071, China
| | - Xuyan Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
27
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Wang M, Li H, Huang S, Qian Y, Steenland K, Xie Y, Papatheodorou S, Shi L. Short-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 202:111766. [PMID: 34331919 PMCID: PMC8578359 DOI: 10.1016/j.envres.2021.111766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ambient air pollution has been characterized as a leading cause of mortality worldwide and has been associated with cardiovascular and respiratory diseases. There is increasing evidence that short-term exposure to nitrogen dioxide (NO2), is related to adverse health effects and mortality. METHODS We conducted a systematic review of short-term NO2 and daily mortality, which were indexed in PubMed and Embase up to June 2021. We calculated random-effects estimates by different continents and globally, and tested for heterogeneity and publication bias. RESULTS We included 87 articles in our quantitative analysis. NO2 and all-cause as well as cause-specific mortality were positively associated in the main analysis. For all-cause mortality, a 10 ppb increase in NO2 was associated with a 1.58% (95%CI 1.28%-1.88%, I2 = 96.3%, Eggers' test p < 0.01, N = 57) increase in the risk of death. For cause-specific mortality, a 10 ppb increase in NO2 was associated with a 1.72% (95%CI 1.41%-2.04%, I2 = 87.4%, Eggers' test p < 0.01, N = 42) increase in cardiovascular mortality and a 2.05% (95%CI 1.52%-2.59%, I2 = 78.5%, Eggers' test p < 0.01, N = 38) increase in respiratory mortality. In the sensitivity analysis, the meta-estimates for all-cause mortality, cardiovascular and respiratory mortality were nearly identical. The heterogeneity would decline to varying degrees through regional and study-design stratification. CONCLUSIONS This study provides evidence of an association between short-term exposure to NO2, a proxy for traffic-sourced air pollutants, and all-cause, cardiovascular and respiratory mortality.
Collapse
Affiliation(s)
- Mingrui Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Haomin Li
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shiwen Huang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yaoyao Qian
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, China
| | | | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010599. [PMID: 34682345 PMCID: PMC8535937 DOI: 10.3390/ijerph182010599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Pneumonia, one of the important causes of death in children, may be induced or aggravated by particulate matter (PM). Limited research has examined the association between PM and its constituents and pediatric pneumonia-related emergency department (ED) visits. Measurements of PM2.5, PM10, and four PM2.5 constituents, including elemental carbon (EC), organic carbon (OC), nitrate, and sulfate, were extracted from 2007 to 2010 from one core station and two satellite stations in Kaohsiung City, Taiwan. Furthermore, the medical records of patients under 17 years old who had visited the ED in a medical center and had a diagnosis of pneumonia were collected. We used a time-stratified, case-crossover study design to estimate the effect of PM. The single-pollutant model demonstrated interquartile range increase in PM2.5, PM10, nitrate, OC, and EC on lag 3, which increased the risk of pediatric pneumonia by 18.2% (95% confidence interval (Cl), 8.8-28.4%), 13.1% (95% CI, 5.1-21.7%), 29.7% (95% CI, 16.4-44.5%), 16.8% (95% CI, 4.6-30.4%), and 14.4% (95% Cl, 6.5-22.9%), respectively. After PM2.5, PM10, and OC were adjusted for, nitrate and EC remained significant in two-pollutant models. Subgroup analyses revealed that nitrate had a greater effect on children during the warm season (April to September, interaction p = 0.035). In conclusion, pediatric pneumonia ED visit was related to PM2.5 and its constituents. Moreover, PM2.5 constituents, nitrate and EC, were more closely associated with ED visits for pediatric pneumonia, and children seemed to be more susceptible to nitrate during the warm season.
Collapse
|
30
|
Rappazzo KM, Baxter L, Sacks JD, Alman BL, Peterson GCL, Hubbell B, Neas L. Exploration of PM mass, source, and component-related factors that might explain heterogeneity in daily PM 2.5-mortality associations across the United States. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 262:118650. [PMID: 35572717 PMCID: PMC9106319 DOI: 10.1016/j.atmosenv.2021.118650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multi-city epidemiologic studies examining short-term (daily) differences in fine particulate matter (PM2.5) provide evidence of substantial spatial heterogeneity in city-specific mortality risk estimates across the United States. Because PM2.5 is a mixture of particles, both directly emitted from sources or formed through atmospheric reactions, some of this heterogeneity may be due to regional variations in PM2.5 toxicity. Using inverse variance weighted linear regression, we examined change in percent change in mortality in association with 24 "exposure" determinants representing three basic groupings based on potential explanations for differences in PM toxicity - size, source, and composition. Percent changes in mortality for the PM2.5-mortality association for 313 core-based statistical areas and their metropolitan divisions over 1999-2005 were used as the outcome. Several determinants were identified as potential contributors to heterogeneity: all mass fraction determinants, vehicle miles traveled (VMT) for diesel total, VMT gas per capita, PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate. In multivariable models, only daily correlation of PM2.5 with PM10 and long-term average PM2.5 mass concentration were retained, explaining approximately 10% of total variability. The results of this analysis contribute to the growing body of literature specifically focusing on assessing the underlying basis of the observed spatial heterogeneity in PM2.5-mortality effect estimates, continuing to demonstrate that this heterogeneity is multifactorial and not attributable to a single aspect of PM.
Collapse
Affiliation(s)
- Kristen M. Rappazzo
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| | - Lisa Baxter
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| | - Jason D. Sacks
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| | - Breanna L Alman
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
- work performed at EPA, present affiliation Centers for Disease Control, agency for Toxic Substances and Disease Registry, Atlanta, GA
| | - Geoffrey Colin L Peterson
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| | - Bryan Hubbell
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| | - Lucas Neas
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
| |
Collapse
|
31
|
Nunez Y, Boehme AK, Li M, Goldsmith J, Weisskopf MG, Re DB, Navas-Acien A, van Donkelaar A, Martin RV, Kioumourtzoglou MA. Parkinson's disease aggravation in association with fine particle components in New York State. ENVIRONMENTAL RESEARCH 2021; 201:111554. [PMID: 34181919 PMCID: PMC8478789 DOI: 10.1016/j.envres.2021.111554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Long-term exposure to fine particulate matter (PM2.5) has been associated with neurodegenerative diseases, including disease aggravation in Parkinson's disease (PD), but associations with specific PM2.5 components have not been evaluated. OBJECTIVE To characterize the association between specific PM2.5 components and PD first hospitalization, a surrogate for disease aggravation. METHODS We obtained data on hospitalizations from the New York Department of Health Statewide Planning and Research Cooperative System (2000-2014) to calculate annual first PD hospitalization counts in New York State per county. We used well-validated prediction models at 1 km2 resolution to estimate county level population-weighted annual black carbon (BC), organic matter (OM), nitrate, sulfate, sea salt (SS), and soil particle concentrations. We then used a multi-pollutant mixed quasi-Poisson model with county-specific random intercepts to estimate rate ratios (RR) of one-year exposure to each PM2.5 component and PD disease aggravation. We evaluated potential nonlinear exposure-outcome relationships using penalized splines and accounted for potential confounders. RESULTS We observed a total of 197,545 PD first hospitalizations in NYS from 2000 to 2014. The annual average count per county was 212 first hospitalizations. The RR (95% confidence interval) for PD aggravation was 1.06 (1.03, 1.10) per one standard deviation (SD) increase in nitrate concentrations and 1.06 (1.04, 1.09) for the corresponding increase in OM concentrations. We also found a nonlinear inverse association between PD aggravation and BC at concentrations above the 96th percentile. We found a marginal association with SS and no association with sulfate or soil exposure. CONCLUSION In this study, we detected associations between the PM2.5 components OM and nitrate with PD disease aggravation. Our findings support that PM2.5 adverse effects on PD may vary by particle composition.
Collapse
Affiliation(s)
- Yanelli Nunez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Amelia K Boehme
- Department of Epidemiology and Neurology, Columbia University, New York, NY, USA
| | - Maggie Li
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | | |
Collapse
|
32
|
Respiratory Emergency Department Visits Associations with Exposures to PM 2.5 Mass, Constituents, and Sources in Dhaka, Bangladesh Air Pollution. Ann Am Thorac Soc 2021; 19:28-38. [PMID: 34283949 DOI: 10.1513/annalsats.202103-252oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE To date, there is no published local epidemiological evidence documenting the respiratory health effects of source specific air pollution in South Asia, where PM2.5 composition is different from past studies. Differences include more biomass and residue crop-burning emissions, which may have differing health implications. OBJECTIVES We assessed PM2.5 associations with respiratory emergency department (ED) visits in a biomass-burning dominated high pollution region, and evaluated their variability by pollution source and composition. METHODS Time-series regression modeling was applied to daily ED visits from January 2014 through December 2017. Air pollutant effect sizes were estimated after addressing long-term trends and seasonality, day-of-week, holidays, relative humidity, ambient temperature, and the effect modification by season, age, and sex. RESULTS PM2.5 yielded a significant association with increased respiratory ED visits [0.84% (95% CI: 0.33%, 1.35%)] per 10 μg/m3 increase. The PM2.5 health effect size varied with season, the highest being during monsoon season, when fossil-fuel combustion sources dominated exposures. Results from a source-specific health effect analysis was also consistent with fossil-fuel PM2.5 having a larger effect size per 10 μg/m3 than PM2.5 from other sources [fossil-fuel PM2.5: 2.79% (0.33% to 5.31%), biomass-burning PM2.5: 1.27% (0% to 2.54%), and other-PM2.5: 0.95% (0.06% to 1.85%)]. Age-specific associations varied, with children and older adults being disproportionately affected by the air pollution, especially by the combustion-related particles. CONCLUSIONS This study provided novel and important evidence that respiratory health in Dhaka is significantly affected by particle air pollution, with a greater health impact by fossil-fuel combustion derived PM2.5.
Collapse
|
33
|
Fang J. Impacts of high-speed rail on urban smog pollution in China: A spatial difference-in-difference approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146153. [PMID: 33677287 DOI: 10.1016/j.scitotenv.2021.146153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Smog pollution poses a severe threat to residents' health and economic development in China. High-speed rail (HSR) is a new and efficient infrastructure that is expected to provide economic and environmental benefits. Based on the STIRPAT model and the environment Kuznets curve (EKC) hypothesis, this study employs a spatial difference-in-difference approach using 284 prefecture-level cities' panel data from 2007 to 2016 to explore the impacts of HSR on urban smog pollution. The results demonstrate that urban smog pollution shows strong spatial correlations and that HSR can significantly reduce smog pollution. Causal mediation analysis is used to test two mechanisms related to HSR: sector structure upgrading, which can reduce smog pollution, and real estate market development, which tends to increase smog pollution. After controlling for the two opposite mechanisms, HSR is proven to have positive environmental benefits. Besides HSR, the impacts of per capita GDP and population on smog pollution are further discussed. The relationship between per capita GDP and urban smog pollution follows an N-shaped curve, and smog is proved to reduce to a certain extent as per capita GDP increases. The relationship between population and smog pollution shows a U-shaped curve, provided with a new interpretation relating to economies of scale. The findings have implications for policy-making, as they enrich the EKC hypothesis and provide evidence for the environmental benefits of HSR.
Collapse
Affiliation(s)
- Jing Fang
- School of Economics and Business Administration, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
34
|
Vilcassim MJR, Callahan AE, Zierold KM. Travelling to polluted cities: a systematic review on the harm of air pollution on international travellers' health. J Travel Med 2021; 28:6210993. [PMID: 33823002 DOI: 10.1093/jtm/taab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
RATIONALE FOR REVIEW In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 μm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Callahan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Casquero-Vera JA, Lyamani H, Titos G, Minguillón MC, Dada L, Alastuey A, Querol X, Petäjä T, Olmo FJ, Alados-Arboledas L. Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145282. [PMID: 33736310 DOI: 10.1016/j.scitotenv.2021.145282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we propose a new approach to determine the contributions of primary vehicle exhaust (N1ff), primary biomass burning (N1bb) and secondary (N2) particles to mode segregated particle number concentrations. We used simultaneous measurements of aerosol size distribution in the 12-600 nm size range and black carbon (BC) concentration obtained during winter period at urban and suburban sites influenced by biomass burning (BB) emissions. As expected, larger aerosol number concentrations in the 12-25 and 25-100 nm size ranges are observed at the urban site compared to the suburban site. However, similar concentrations of BC are observed at both sites due to the larger contribution of BB particles to the observed BC at suburban (34%) in comparison to urban site (23%). Due to this influence of BB emissions in our study area, the application of the Rodríguez and Cuevas (2007) method, which was developed for areas mainly influenced by traffic emissions, leads to an overestimation of the primary vehicle exhaust particles concentrations by 18% and 26% in urban and suburban sites, respectively, as compared to our new proposed approach. The results show that (1) N2 is the main contributor in all size ranges at both sites, (2) N1ff is the main contributor to primary particles (>70%) in all size ranges at both sites and (3) N1bb contributes significantly to the primary particles in the 25-100 and 100-600 nm size ranges at the suburban (24% and 28%, respectively) and urban (13% and 20%, respectively) sites. At urban site, the N1ff contribution shows a slight increase with the increase of total particle concentration, reaching a contribution of up to 65% at high ambient aerosol concentrations. New particle formation events are an important aerosol source during summer noon hours but, on average, these events do not implicate a considerable contribution to urban particles.
Collapse
Affiliation(s)
- J A Casquero-Vera
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, Granada, Spain; Department of Applied Physics, University of Granada, Granada, Spain.
| | - H Lyamani
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, Granada, Spain; Department of Applied Physics, University of Granada, Granada, Spain
| | - G Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, Granada, Spain; Department of Applied Physics, University of Granada, Granada, Spain
| | - M C Minguillón
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - L Dada
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - A Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - T Petäjä
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - F J Olmo
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, Granada, Spain; Department of Applied Physics, University of Granada, Granada, Spain
| | - L Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Autonomous Government of Andalusia, Granada, Spain; Department of Applied Physics, University of Granada, Granada, Spain
| |
Collapse
|
36
|
Rahman MM, Begum BA, Hopke PK, Nahar K, Newman J, Thurston GD. Cardiovascular morbidity and mortality associations with biomass- and fossil-fuel-combustion fine-particulate-matter exposures in Dhaka, Bangladesh. Int J Epidemiol 2021; 50:1172-1183. [PMID: 33822936 DOI: 10.1093/ije/dyab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fine-particulate-matter (i.e. with an aerodynamic diameter of ≤2.5 µm, PM2.5) air pollution is commonly treated as if it had 'equivalent toxicity', irrespective of the source and composition. We investigate the respective roles of fossil-fuel- and biomass-combustion particles in the PM2.5 relationship with cardiovascular morbidity and mortality using tracers of sources in Dhaka, Bangladesh. Results provide insight into the often observed levelling of the PM2.5 exposure-response curve at high-pollution levels. METHODS A time-series regression model, adjusted for potentially confounding influences, was applied to 340 758 cardiovascular disease (CVD) emergency-department visits (EDVs) during January 2014 to December 2017, 253 407 hospital admissions during September 2013 to December 2017 and 16 858 CVD deaths during January 2014 to October 2017. RESULTS Significant associations were confirmed between PM2.5-mass exposures and increased risk of cardiovascular EDV [0.27%, (0.07% to 0.47%)] at lag-0, hospitalizations [0.32% (0.08% to 0.55%)] at lag-0 and deaths [0.87%, (0.27% to 1.47%)] at lag-1 per 10-μg/m3 increase in PM2.5. However, the relationship of PM2.5 with morbidity and mortality effect slopes was less steep and non-significant at higher PM2.5 concentrations (during crop-burning-dominated exposures) and varied with PM2.5 source. Fossil-fuel-combustion PM2.5 had roughly a four times greater effect on CVD mortality and double the effect on CVD hospital admissions on a per-µg/m3 basis than did biomass-combustion PM2.5. CONCLUSION Biomass burning was responsible for most PM2.5 air pollution in Dhaka, but fossil-fuel-combustion PM2.5 dominated the CVD adverse health impacts. Such by-source variations in the health impacts of PM2.5 should be considered in conducting ambient particulate-matter risk assessments, as well as in prioritizing air-pollution-mitigation measures and clinical advice.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Atmospheric Science and Engineering, Clarkson University, Potsdam, NY, USA
| | - Kamrun Nahar
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Jonathan Newman
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, NY, USA
| | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.,Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Ala M, Kheyri Z. The rationale for selenium supplementation in inflammatory bowel disease: A mechanism-based point of view. Nutrition 2021; 85:111153. [PMID: 33578241 DOI: 10.1016/j.nut.2021.111153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Management of inflammatory bowel disease (IBD) has always been a challenge for physicians. Current treatment protocols may cause numerous adverse effects. Selenium is known for its putative antiinflammatory properties. Selenium is needed for the biosynthesis of enzymatically active selenoproteins, which contribute to antioxidative defense, and effective function of immune systems. Several studies have shown that patients with IBD have a lower selenium level compared to healthy subjects. Hence, experimental studies mimicking ulcerative colitis and Crohn's disease investigated the effect of selenium supplementation on IBD. Previous studies indicated the following: 1) Selenoproteins can curb the inflammatory response and attenuate oxidative stress. This antiinflammatory property caused remission in animal models of colitis. 2) Selenium supports protective gut microbiota, which indirectly improves management of IBD. 3) Selenium may block some of the predominant tumorigenesis pathways proposed in colitis-associated colorectal cancer. 4) Selenium supplementation showed promising results in preliminary clinical studies, particularly in patients with selenium deficiency. While selenium supplementation seems to be beneficial for IBD, clinical studies have remained too preliminary in this regard. Randomized clinical trials are needed to measure the short-term and long-term effects of selenium on both active and quiescent IBD, particularly in patients with IBD who have documented selenium deficiency.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahedin Kheyri
- Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Xu X, Lu X, Li X, Liu Y, Wang X, Chen H, Chen J, Yang X, Fu TM, Zhao Q, Fu Q. ROS-generation potential of Humic-like substances (HULIS) in ambient PM 2.5 in urban Shanghai: Association with HULIS concentration and light absorbance. CHEMOSPHERE 2020; 256:127050. [PMID: 32446002 DOI: 10.1016/j.chemosphere.2020.127050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) can cause adverse health effects through the generation of reactive oxygen species (ROS) after inhalation. Humic-like substances (HULIS) are major constituents contributing to the ROS-generation potential in organic aerosols. In this study, PM2.5 samples in urban Shanghai during autumn and winter (2018-2019) were collected. Mass-normalized ·OH generation rate in surrogate lung fluid (SLF) was used to denote the intrinsic ROS-generation potential of PM2.5 or of the HULIS isolated from PM2.5. In this study, ROS-generation potential of PM2.5 decreased with increasing ambient PM2.5 concentration due to higher percentage of inorganic components in high PM2.5 event. Same trend was observed for the ROS-generation potential of unit mass of HULIS, which was higher when HULIS and PM2.5 concentrations were both relatively lower. The HULIS with high ROS-generation potential but low concentration (High-ROS/Low-Conc HULIS) were likely produced by the atmospheric aqueous-phase reactions during nighttime or under high relative humidity conditions, not from biomass burning emissions or the photochemical pollution products. The association between ROS-generation potential and light absorption properties of HULIS was studied as well. The High-ROS/Low-Conc HULIS also showed stronger light absorbance than the other HULIS. Our results implied the potentially important roles that HULIS species might play in atmospheric environment and human health even when the PM2.5 pollution is low.
Collapse
Affiliation(s)
- Xiaoya Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaohui Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yaxi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hong Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Tzung-May Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qianbiao Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| |
Collapse
|
39
|
Liu L, Yan Y, Nazhalati N, Kuerban A, Li J, Huang L. The effect of PM 2.5 exposure and risk perception on the mental stress of Nanjing citizens in China. CHEMOSPHERE 2020; 254:126797. [PMID: 32334252 DOI: 10.1016/j.chemosphere.2020.126797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
The multidimensional characteristics and temporal dynamics of environmental risks have stimulated a social-scientific approach towards air pollution issues in recent decades. It's now widely acknowledged that air pollution has an ineligible influence on the psychological wellbeing of citizens beyond its well-established physical impact. We explored how fine particulate matter (PM2.5), an essential air pollutant associated with morbidity and mortality, interacted with aspects of risk perception to influence citizen's mental stress level. Questionnaire data from 508 Nanjing citizens in China were collected across four seasons within an 18-month period. We found no evidence that mental stress was directly influenced by real-time PM2.5 exposure. However, path analysis revealed that mental stress was subjected to the indirect influence of physical symptoms (β = 0.076, p = 0.11), by increasing perceived effect on health and increasing attribution to indoor pollution sources (β = 0.038, p = 0.005). Indoor attribution of PM2.5 pollution was associated with perceived familiarity with risk (β = -0.095, p = 0.033), whereas outdoor attribution was associated with perceived control of risk (β = 0.091, p = 0.041). Public risk acceptable rate (PRAR) decreased as PM2.5 concentration increased. In females, but not males, greater trust for government was associated with the increased acceptance of PM2.5 (Year2017: β = -0.19, p = 0.003; Year2022: β = -0.21, p < 0.001). Using psychological statistical methods, our study implied that air pollution has a substantial association with psychological wellbeing in various ways, which might provide some references for public healthcare and risk communication.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yan Yan
- Department of Psychology, School of Social and Behavioural Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Naerkezi Nazhalati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Alimila Kuerban
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
40
|
Johnson S, Haney J, Cairone L, Huskey C, Kheirbek I. Assessing Air Quality and Public Health Benefits of New York City's Climate Action Plans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9804-9813. [PMID: 32663397 DOI: 10.1021/acs.est.0c00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Strategies that reduce greenhouse gas (GHG) emissions may also provide significant public health benefits and their estimation can help prioritize the case for climate change mitigation policies. In 2014, New York City (NYC) committed to reduce GHG emissions by 80% by 2050 (80 × 50). In this analysis we quantified the air quality-related public health benefits of the policies outlined in the 80 × 50 strategy, compared sector-specific (buildings, energy, transportation) policy impacts, and assessed variations in benefits across NYC neighborhoods. We applied air quality modeling and health impact assessment tools to estimate expected changes in ambient PM2.5 and related health outcomes by Zip Code Tabulation Areas (ZCTA). Full implementation of 80 × 50 strategies would reduce PM2.5 (fine particulates) concentrations across NYC ZCTAs by 7% (3%, 10%) (ZCTA median, 10th, 90th percentile), avoiding between 160 and 390 premature deaths and 460 hospitalizations and emergency department visits for respiratory and cardiovascular disease each year, valued at $3.4 billion annually. Across all the policy scenarios we estimated 10 times more avoided asthma emergency department visits in low-income neighborhoods as compared to the wealthiest neighborhoods even though median declines in ambient PM2.5 were similar. Consideration of public health benefits helps to prioritize climate policy implementation and identify priority neighborhoods.
Collapse
Affiliation(s)
- Sarah Johnson
- New York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, 125 Worth Street, CN-34E, New York, New York 10014, United States
| | - Jay Haney
- ICF International, 126 Indian Hills Drive, Novato, California 94949, United States
| | - Lia Cairone
- New York City Mayor's Office of Sustainability, 253 Broadway -14th Floor, New York, New York 10007, United States
| | - Christopher Huskey
- New York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, 125 Worth Street, CN-34E, New York, New York 10014, United States
| | - Iyad Kheirbek
- C40 Cities Climate Leadership Group Inc., 120 Park Avenue - Floor 23, New York, New York 10017, United States
| |
Collapse
|
41
|
Zhang Q, Lu D, Wang D, Yang X, Zuo P, Yang H, Fu Q, Liu Q, Jiang G. Separation and Tracing of Anthropogenic Magnetite Nanoparticles in the Urban Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9274-9284. [PMID: 32644802 DOI: 10.1021/acs.est.0c01841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanosized magnetite is a highly toxic material due to its strong ability to generate reactive oxygen species in vivo, and the presence of magnetite NPs in the brain has been linked with aging and neurodegenerative diseases such as Alzheimer's disease. Recently, magnetite pollution nanoparticles (NPs) were found to be present in the human brain, heart, and blood, which raises great concerns about the health risks of airborne magnetite NPs. Here, we report the abundant presence and chemical multifingerprints (including high-resolution structural and elemental fingerprints) of magnetite NPs in the urban atmosphere. We establish a methodology for high-efficiency retrieving and accurate quantification of airborne magnetite NPs. We report the occurrence levels (annual mean concentration 75.5 ± 33.2 ng m-3 in Beijing with clear season variations) and the pollution characteristics of airborne magnetite NPs. Based on the chemical multifingerprints of the NPs, we identify and estimate the contributions of the major emission sources for airborne magnetite NPs. We also give an assessment of human exposure risks of airborne magnetite NPs. Our findings support the identification of airborne magnetite NPs as a threat to human health.
Collapse
Affiliation(s)
- Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Fu
- China National Environmental Monitoring Center, Beijing 100029, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Alemayehu YA, Asfaw SL, Terfie TA. Exposure to urban particulate matter and its association with human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27491-27506. [PMID: 32410189 DOI: 10.1007/s11356-020-09132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Human health and environmental risks are increasing following air pollution associated with vehicular and industrial emissions in which particulate matter is a constituent. The purpose of this review was to assess studies on the health effects and mortality induced by particles published for the last 15 years. The literature survey indicated the existence of strong positive associations between fine and ultrafine particles' exposure and cardiovascular, hypertension, obesity and type 2 diabetes mellitus, cancer health risks, and mortality. Its exposure is also associated with increased odds of hypertensive and diabetes disorders of pregnancy and premature deaths. The ever increasing hospital admission and mortality due to heart failure, diabetes, hypertension, and cancer could be due to long-term exposure to particles in different countries. Therefore, its effect should be communicated for legal and scientific actions to minimize emissions mainly from traffic sources.
Collapse
Affiliation(s)
| | - Seyoum Leta Asfaw
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Alemu Terfie
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
43
|
Ho CC, Chen YC, Yet SF, Weng CY, Tsai HT, Hsu JF, Lin P. Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137243. [PMID: 32147111 DOI: 10.1016/j.scitotenv.2020.137243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been associated with vascular diseases in epidemiological studies. We have demonstrated previously that exposure to ambient PM2.5 caused pulmonary vascular remodeling in mice and increased vascular smooth muscle cells (VSMCs) viability. Here, we further demonstrated that exposure of mice to ambient PM2.5 increased urinary 8‑hydroxy‑2'‑deoxyguanosine (8-OHdG) and cytokines concentrations in the broncheoalveolar lavage. The objective of the present study was to identify the PM2.5 components related to vascular dysfunction. Exposure to PM2.5 collected from various areas and seasons in Taiwan significantly increased viability, oxidative stress, and inflammatory cytokines secretion in VSMCs. The mass concentrations of benz[a]anthracene (BaA), benzo[e]pyrene (BeP), perylene, dibenzo[a,e]pyrene, molybdenum, zinc (Zn), vanadium (V), and nickel in the PM2.5 were significantly associated with increased viability of VSMCs. These components, except BaA and BeP, also were significantly associated with chemokine (CC motif) ligand 5 (CCL5) concentrations in the VSMCs. The effects of V and Zn on cell viability and CCL5 expression, respectively, were verified. In addition, the mass concentrations of sulfate and manganese (Mn) in PM2.5 were significantly correlated with increased oxidative stress; this correlation was also confirmed. After extraction, the inorganic fraction of PM2.5 increased cell viability and oxidative stress, but the organic fraction of PM2.5 increased only cell viability, which was inhibited by an aryl hydrocarbon receptor antagonist. These data suggest that controlling the emission of Zn, V, Mn, sulfate, and PAHs may prevent the occurrence of PM2.5-induced vascular diseases.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
44
|
ChooChuay C, Pongpiachan S, Tipmanee D, Deelaman W, Iadtem N, Suttinun O, Wang Q, Xing L, Li G, Han Y, Hashmi MZ, Palakun J, Poshyachinda S, Aukkaravittayapun S, Surapipith V, Cao J. Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai, Thailand. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1750436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chomsri ChooChuay
- Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Songkla, Thailand
| | - Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), Bangkapi, Bangkok, Thailand
| | - Danai Tipmanee
- Faculty of Technology and Environment, Prince of Songkla University Phuket, Phuket, Thailand
| | - Woranuch Deelaman
- Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Songkla, Thailand
| | - Natthapong Iadtem
- Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Songkla, Thailand
| | - Oramas Suttinun
- Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Songkla, Thailand
| | - Qiyuan Wang
- SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Li Xing
- SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Guohui Li
- SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Yongming Han
- SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | | | - Jittree Palakun
- Faculty of Education, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), Pathumthani, Thailand
| | - Saran Poshyachinda
- National Astronomical Research Institute of Thailand (Public Organization, Chiang-Mai, Thailand
| | | | - Vanisa Surapipith
- National Astronomical Research Institute of Thailand (Public Organization, Chiang-Mai, Thailand
| | - Junji Cao
- SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| |
Collapse
|
45
|
Wang C, Hao L, Liu C, Chen R, Wang W, Chen Y, Yang Y, Meng X, Fu Q, Ying Z, Kan H. Associations between fine particulate matter constituents and daily cardiovascular mortality in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110154. [PMID: 31954217 DOI: 10.1016/j.ecoenv.2019.110154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
Limited evidence is available for the associations between fine particulate matter (PM2.5) constituents and daily cardiovascular disease (CVD) mortality in China. In present study, a time-series analysis was conducted to evaluate the associations of PM2.5 constituents (two carbonaceous fractions, eight water-soluble inorganic ions and fifteen elements) with daily CVD mortality in Pudong New Area of Shanghai, China, from 2014 to 2016. Results showed that the effect estimates for the associations of PM2.5 and its constituents with CVD mortality were generally strongest when using the exposures of the previous two day concentrations. The associations of organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead with daily CVD mortality were robust to the adjustment of PM2.5 total mass, their collinearity with PM2.5 total mass, and criteria gaseous air pollutants. An interquartile range increase in the previous two day concentrations of PM2.5, organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead were associated with significant increments of 2.21% (95% confidence interval [95%CI]: 0.54%, 3.88%), 2.83% (95% CIs: 1.16%, 4.50%), 1.90% (95% CIs: 0.35%, 3.45%), 2.29% (95% CIs: 0.80%, 3.77%), 0.94% (95% CIs: 0.13%, 1.75%), 1.53% (95% CIs: 0.37%, 2.69%), 2.08% (95% CIs: 0.49%, 3.68%) and 1.98% (95% CIs: 0.49%, 3.47%) in daily CVD mortality, respectively, in single-pollutant models. In conclusion, this study suggested that organic carbon, sulfate, ammonia, potassium, copper, arsenic, and lead might be mainly responsible for the associations between short-term PM2.5 exposures and increased CVD mortality in Shanghai, China.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Lipeng Hao
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Yichen Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Yining Yang
- Beijing No.171 High School, Beijing, 100013, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S005, Baltimore, MD, 21201, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
46
|
Kim SH, Park JM, Kim H. The prevalence of stroke according to indoor radon concentration in South Koreans: Nationwide cross section study. Medicine (Baltimore) 2020; 99:e18859. [PMID: 31977885 PMCID: PMC7004733 DOI: 10.1097/md.0000000000018859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To investigate the relationship between indoor radon level and stroke, which is a major factor for background radiation.This study combines 2 nationwide studies. Demographic characteristics and medical history of participants were obtained from Korean National Health and Nutrition Examination Survey (KNHANES) from 2007 to 2012. Participants over 40 years old and who completed the questionnaire were included in the study. Indoor radon concentration was analyzed using the mean value of winter housing radon concentration from 2012 to 2016 published by the National Institute of Environmental Research. The average values of each metropolitan city and province were assigned to the residence of the participant. To eliminate the potential confounding factors, participants' age, sex, hypertension, diabetes, dyslipidemia, ischemic heart disease, education level, occupation, smoking, drinking, exercise, and dietary intake were adjusted in multivariable logistic regression.Total of 28,557 participants were included in this study. Indoor radon levels were significantly higher in the participants with stroke, and the prevalence of stroke increased as indoor radon levels increased (P < .001, P for linear trend <.001). Indoor radon level was associated with stroke even after adjusting potential confounding factors (OR: 1.004 [95CI: 1.001-1.007], P = .010) and high radon exposure (indoor radon over 100Bq/m3) was also associated with stroke (OR: 1.242 [95CI: 1.069-1.444], P = .005). Trend analysis showed linear correlation of increased odds between radon quartile and stroke (P for linear trend < .001). In subgroup analysis, elevated indoor radon was most strongly associated in participants with age over 76(OR: 1.872[95%CI:1.320-2.654], P < .001).High indoor radon concentration may be associated with stroke. Specifically, elevated radon was associated with stroke in participants over 76 years old. In high-risk population, home modification to reduce indoor radon may help decreasing the risk of stroke.
Collapse
Affiliation(s)
| | - Jeong Mee Park
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju
| | - Hee Kim
- Department of Occupational Therapy, Konyang University, Dae-jeon, Republic of Korea
| |
Collapse
|
47
|
Wang W, Liu C, Ying Z, Lei X, Wang C, Huo J, Zhao Q, Zhang Y, Duan Y, Chen R, Fu Q, Zhang H, Kan H. Particulate air pollution and ischemic stroke hospitalization: How the associations vary by constituents in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133780. [PMID: 31416039 DOI: 10.1016/j.scitotenv.2019.133780] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The identification of constituents of fine particulate matter (PM2.5) air pollution that had key impacts of ischemic stroke (the predominant subtype of stroke) is important to understand the underlying biological mechanisms and develop air pollution control policies. OBJECTIVES To explore the associations between PM2.5 constituents and hospitalization for ischemic stroke in Shanghai, China. METHODS We conducted a time-series study to explore the associations between 27 constituents of PM2.5 and hospitalization for ischemic stroke in Shanghai, China from 2014 to 2016. The over-dispersed generalized additive models with adjustment for time, day of week, holidays, and weather conditions were used to estimate the associations. We also evaluated the robustness of the effect estimates for each constituent after adjusting for the confounding effects of PM2.5 total mass and gaseous pollutants and the collinearity (the residual) between this constituent and PM2.5 total mass. We also compared the associations between seasons. RESULTS In total, we identified 4186 ischemic stroke hospitalizations during the study period. The associations of ischemic stroke were consistently significant with elemental carbon and several elemental constituents (Chromium, Iron, Copper, Zinc, Arsenic, Selenium, and Lead) at lag 1 day in single-constituent models, models adjusting for PM2.5 total mass or gaseous pollutants and models adjusting for collinearity. The associations were much stronger in cool season than in warm season. CONCLUSIONS The current study provides suggestive evidence that elemental carbon and some metallic elements may be mainly responsible for the risks of ischemic stroke hospitalization induced by short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yihua Zhang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Hao Zhang
- Department of Public Administration, School of Economics and Management, Tongji University, Shanghai 200092, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Minichilli F, Gorini F, Bustaffa E, Cori L, Bianchi F. Mortality and hospitalization associated to emissions of a coal power plant: A population-based cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133757. [PMID: 31756804 DOI: 10.1016/j.scitotenv.2019.133757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Coal-fired thermal power plants represent a significant source of air pollutants, especially sulfur dioxide (SO2) that has been associated with an increased risk of mortality and morbidity for respiratory and cardiovascular disease. A coal power plant in Vado Ligure (Italy) (CPPVL) started in 1970 was stopped in 2014 by the Prosecutor's Office on the grounds of environmental and health culpable disaster. OBJECTIVE To investigate the association between the exposure of residents to atmospheric pollutants emitted by CPPVL and the risk of mortality and hospitalization, considering both cancer and non-cancer causes in a population-based cohort study. METHODS SO2 and nitrogen oxides (NOx), estimated using the ABLE-MOLOCH-ADMS-Urban dispersion model, were selected as representative surrogates of exposure to CPPVL emissions (SO2-CPPVL) and cumulative emissions from other sources of pollution (NOx-MS), respectively. The relationship between each health outcome and categories of exposure to SO2-CPPVL was estimated by the Hazard Ratio (HR) using multiple sex-specific Cox regression models, adjusted for age, exposure to NOx-MS, and socio-economic deprivation index using SO2-CPPVL first quartile as a reference. RESULTS 144,019 individuals were recruited (follow-up 2001-2013). An excess of mortality was found for all natural causes (men: 1.49; 95% CI 1.38-1.60; women: 1.49; 95% CI 1.39-1.59), diseases of the circulatory system (men: 1.41; 95% CI 1.24-1.56; women: 1.59; 95% CI 1.44-1.77), of the respiratory system (men: 1.90; 95% CI 1.47-2.45; women: 1.62; 95% CI 1.25-2.09), and of the nervous system and sense organs (men: 1.34; 95% CI 0.97-1.86; women: 1.38; 95% CI 1.03-1.83), and in men for trachea, bronchus, and lung cancers (1.59; 95% CI 1.26-2.00). Results of hospitalization analysis were consistent with those of mortality. CONCLUSION Results obtained, also when considering multiple sources of exposure, indicate that exposure to CPP emissions represents a risk factor for selected health outcomes as well as the urgently adoption of primary prevention measures and of a specific surveillance programme.
Collapse
Affiliation(s)
- Fabrizio Minichilli
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy.
| | - Francesca Gorini
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Liliana Cori
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
49
|
Gillooly SE, Michanowicz DR, Jackson M, Cambal LK, Shmool JLC, Tunno BJ, Tripathy S, Bain DJ, Clougherty JE. Evaluating deciduous tree leaves as biomonitors for ambient particulate matter pollution in Pittsburgh, PA, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:711. [PMID: 31676989 DOI: 10.1007/s10661-019-7857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution varies spatially and temporally in concentration and composition and has been shown to cause or exacerbate adverse effects on human and ecological health. Biomonitoring using airborne tree leaf deposition as a proxy for particulate matter (PM) pollution has been explored using a variety of study designs, tree species, sampling strategies, and analytical methods. In the USA, relatively few have applied these methods using co-located fine particulate measurements for comparison and relying on one tree species with extensive spatial coverage, to capture spatial variation in ambient air pollution across an urban area. Here, we evaluate the utility of this approach, using a spatial saturation design and pairing tree leaf samples with filter-based PM2.5 across Pittsburgh, Pennsylvania, with the goal of distinguishing mobile and stationary sources using PM2.5 composition. Co-located filter and leaf-based measurements revealed some significant associations with traffic and roadway proximity indicators. We compared filter and leaf samples with differing protection from the elements (e.g., meteorology) and PM collection time, which may account for some variance in PM source and/or particle size capture between samples. To our knowledge, this study is among the first to use deciduous tree leaves from a single tree species as biomonitors for urban PM2.5 pollution in the northeastern USA.
Collapse
Affiliation(s)
- Sara E Gillooly
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Room 429-A, Landmark Center, Boston, MA, 02215, USA.
| | - Drew R Michanowicz
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Mike Jackson
- University of Minnesota Institute for Rock Magnetism, Minneapolis, MN, USA
| | - Leah K Cambal
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Jessie L C Shmool
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brett J Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Sheila Tripathy
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Liu JC, Peng RD. The impact of wildfire smoke on compositions of fine particulate matter by ecoregion in the Western US. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:765-776. [PMID: 30185941 DOI: 10.1038/s41370-018-0064-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 05/24/2023]
Abstract
Epidemiological studies of wildfire PM2.5 constituents are hindered by the limited information on the population exposure to ambient PM2.5 constituents during high-pollution episodes from wildfires ("smoke waves"). The chemical composition of wildfire-related PM2.5 can be affected by different ecosystems. Current literature assessing the differences in PM2.5 pollution from wildfire smoke by ecosystems often analyzes air samples collected from the smoke near the center of an individual fire, but the results might not represent the exposure of the general public living away from the fire center but affected by the smoke of the fire. We assessed the population-based exposure to wildfire-related PM2.5 species by integrating monitor measurements on 29 PM2.5 species and previous findings on smoke waves during 2004-2009 in 51 Western US counties across six ecoregions. We found that across all ecoregions, smoke waves were associated with an increase in the fraction of organic carbon of total PM2.5 by 20 percentage points (95% confidence interval (CI): 17, 23), an increase in the fraction of elemental carbon by 0.99 percentage points (95% CI: 0.43, 1.6), and decreases in fractions of sulfate and crustal species. While the PM2.5 mixtures were dominated by the same source (wildfires), compositions in North American Deserts and the Great Plains during smoke waves were distinct. Besides expanding the knowledge of wildfire PM2.5, our study has implications beyond wildfires and could aid future population-based epidemiological research on PM2.5 mixtures by source and region.
Collapse
Affiliation(s)
- Jia Coco Liu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615N Wolfe St, Baltimore, Maryland, 21205, USA.
| | - Roger D Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615N Wolfe St, Baltimore, Maryland, 21205, USA
| |
Collapse
|