1
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Pignatelli A, Benedusi M, Barbieri M, Pecorelli A, Valacchi G. Tropospheric ozone effect on olfactory perception and olfactory bulb dopaminergic interneuron excitability. Neurotoxicology 2024; 104:36-44. [PMID: 39004287 DOI: 10.1016/j.neuro.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Ozone (O3) forms in the Earth's atmosphere, both naturally and by reactions of man-made air pollutants. Deleterious effects of O3 have been found in the respiratory system. Here, we examine whether O3 alters olfactory behavior and cellular properties in the olfactory system. For this purpose, mice were exposed to O3 at a concentration found in highly polluted city air [0.8 ppm], and the behavior elicited by social and non-social odors in habituation/dishabituation tests was assessed. In addition, the electrical responses of dopaminergic olfactory bulb (OB) neurons were also evaluated. O3 differentially compromises olfactory perception to odors: it reduces responses to social and non-social odors in Swiss Webster mice, while this effect was observed in C57BL/6 J mice only for some non-social odors. Additionally, O3 reduced the rate of spontaneous spike firing in periglomerular dopaminergic cells (PG-DA) of the OB. Because this effect could reflect changes in excitability and/or synaptic inputs, the ability of O3 to alter PG-DA spontaneous activity was also tested together with cell membrane resistance, membrane potential, rheobase and chronaxie. Taken together, our data suggest the ability of O3 to affect olfactory perception.
Collapse
Affiliation(s)
- Angela Pignatelli
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Mario Barbieri
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy.
| | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Dept. of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea.
| |
Collapse
|
3
|
Jo K. Evaluating the Effects of Long-Term Exposure to Fine Particulate Matter (PM 2.5) on Depressive Mood among Korean Older Adults Using Multilevel Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1785-1795. [PMID: 39415854 PMCID: PMC11475172 DOI: 10.18502/ijph.v53i8.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/18/2023] [Indexed: 10/19/2024]
Abstract
Background The harmful effects of particulate matter (PM) are amplified in older adults, who experience a decline in physiological function, reducing their ability to expel and detoxify inhaled PM. Moreover, older adults may be more vulnerable to fine particulate toxicity due to underlying medical conditions. We assessed the effects of long-term exposure to fine particulate matter (PM2.5) on depressive mood (DM) in adults aged > 65 yr using community-based data. Methods In the 2017, Korean Community Health Survey (KCHS) data, data of PM2.5 and community factors were constructed based on participants who responded to DM in a sample of 67,802 individuals. To evaluate the effect of PM2.5 on DM among older adults, a multilevel regression model was constructed using individual-(KCHS) and community-level data (PM2.5, green area per capita, urban area, social welfare budget, health, and social business). For PM2.5, an independent variable, quartiles were used to classify regions according to concentration. Results A positive correlation was found between PM2.5 and DM of older adults. Compared to Q1, the odds ratio increased to 1.15 (95% CI 0.76-1.74) in Q2, 1.55 (95% CI 1.02-2.35) in Q3, and 1.60 (95% CI 1.16-2.20) in Q4. Conclusion DM may increase in older individuals living in areas with high PM2.5. Systematic mental health management is required for older individuals residing in such areas.
Collapse
Affiliation(s)
- Kyunghee Jo
- Department of Rehabilitation Health, Songwon University, Gwangju 61756, Korea
| |
Collapse
|
4
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Renzetti S, van Thriel C, Lucchini RG, Smith DR, Peli M, Borgese L, Cirelli P, Bilo F, Patrono A, Cagna G, Rechtman E, Idili S, Ongaro E, Calza S, Rota M, Wright RO, Claus Henn B, Horton MK, Placidi D. A multi-environmental source approach to explore associations between metals exposure and olfactory identification among school-age children residing in northern Italy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:699-708. [PMID: 38802534 DOI: 10.1038/s41370-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Metal exposures can adversely impact olfactory function. Few studies have examined this association in children. Further, metal exposure occurs as a mixture, yet previous studies of metal-associated olfactory dysfunction only examined individual metals. Preventing olfactory dysfunctions can improve quality of life and prevent neurodegenerative diseases with long-term health implications. OBJECTIVE We aimed to test the association between exposure to a mixture of 12 metals measured in environmental sources and olfactory function among children and adolescents residing in the industrialized province of Brescia, Italy. METHODS We enrolled 130 children between 6 and 13 years old (51.5% females) and used the "Sniffin' Sticks" test to measure olfactory performance in identifying smells. We used a portable X-ray fluorescence instrument to determine concentrations of metals (arsenic (As), calcium, cadmium (Cd), chromium, copper, iron, manganese, lead (Pb), antimony, titanium, vanadium and zinc) in outdoor and indoor deposited dust and soil samples collected from participants' households. We used an extension of weighted quantile sum (WQS) regression to test the association between exposure to metal mixtures in multiple environmental media and olfactory function adjusting for age, sex, socio-economic status, intelligence quotient and parents' smoking status. RESULTS A higher multi-source mixture was significantly associated with a reduced Sniffin' Sticks identification score (β = -0.228; 95% CI -0.433, -0.020). Indoor dust concentrations of Pb, Cd and As provided the strongest contributions to this association (13.8%, 13.3% and 10.1%, respectively). The metal mixture in indoor dust contributed more (for 8 metals out of 12) to the association between metals and olfactory function compared to soil or outdoor dust. IMPACT STATEMENT Among a mixture of 12 metals measured in three different environmental sources (soil, outdoor and indoor dust), we identified Pb, Cd and As measured in indoor dust as the main contributors to reduced olfactory function in children and adolescents residing in an industrialized area. Exposure to indoor pollution can be effectively reduced through individual and public health interventions allowing to prevent the deterioration of olfactory functions. Moreover, the identification of the factors that can deteriorate olfactory functions can be a helpful instrument to improve quality of life and prevent neurodegenerative diseases as long-term health implications.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy.
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Neurotoxicology and Chemosensation, TU Dortmund, Dortmund, Germany
| | - Roberto G Lucchini
- Department of Biochemical, Biomedical and Neurosciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Paola Cirelli
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Fabjola Bilo
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandra Patrono
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Stefania Idili
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elisa Ongaro
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Matteo Rota
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
6
|
Bai L, Wang K, Liu D, Wu S. Potential Early Effect Biomarkers for Ambient Air Pollution Related Mental Disorders. TOXICS 2024; 12:454. [PMID: 39058106 PMCID: PMC11280925 DOI: 10.3390/toxics12070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Air pollution is one of the greatest environmental risks to health, with 99% of the world's population living where the World Health Organization's air quality guidelines were not met. In addition to the respiratory and cardiovascular systems, the brain is another potential target of air pollution. Population- and experiment-based studies have shown that air pollution may affect mental health through direct or indirect biological pathways. The evidence for mental hazards associated with air pollution has been well documented. However, previous reviews mainly focused on epidemiological associations of air pollution with some specific mental disorders or possible biological mechanisms. A systematic review is absent for early effect biomarkers for characterizing mental health hazards associated with ambient air pollution, which can be used for early warning of related mental disorders and identifying susceptible populations at high risk. This review summarizes possible biomarkers involved in oxidative stress, inflammation, and epigenetic changes linking air pollution and mental disorders, as well as genetic susceptibility biomarkers. These biomarkers may provide a better understanding of air pollution's adverse effects on mental disorders and provide future research direction in this arena.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Dandan Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
| |
Collapse
|
7
|
Valdés-Fuentes M, Rodríguez-Martínez E, Rivas-Arancibia S. Accumulation of Alpha-Synuclein and Increase in the Inflammatory Response in the substantia nigra, Jejunum, and Colon in a Model of O 3 Pollution in Rats. Int J Mol Sci 2024; 25:5526. [PMID: 38791561 PMCID: PMC11122268 DOI: 10.3390/ijms25105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to study the effect of repeated exposure to low doses of ozone on alpha-synuclein and the inflammatory response in the substantia nigra, jejunum, and colon. Seventy-two male Wistar rats were divided into six groups. Each group received one of the following treatments: The control group was exposed to air. The ozone groups were exposed for 7, 15, 30, 60, and 90 days for 0.25 ppm for four hours daily. Afterward, they were anesthetized, and their tissues were extracted and processed using Western blotting, immunohistochemistry, and qPCR. The results indicated a significant increase in alpha-synuclein in the substantia nigra and jejunum from 7 to 60 days of exposure and an increase in NFκB from 7 to 90 days in the substantia nigra, while in the jejunum, a significant increase was observed at 7 and 15 days and a decrease at 60 and 90 days for the colon. Interleukin IL-17 showed an increase at 90 days in the substantia nigra in the jejunum and increases at 30 days and in the colon at 15 and 90 days. Exposure to ozone increases the presence of alpha-synuclein and induces the loss of regulation of the inflammatory response, which contributes significantly to degenerative processes.
Collapse
Affiliation(s)
| | | | - Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.V.-F.); (E.R.-M.)
| |
Collapse
|
8
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
10
|
Maniaci A, Lavalle S, Masiello E, Lechien JR, Vaira L, Boscolo-Rizzo P, Musa M, Gagliano C, Zeppieri M. Platelet-Rich Plasma (PRP) in the Treatment of Long COVID Olfactory Disorders: A Comprehensive Review. Biomedicines 2024; 12:808. [PMID: 38672163 PMCID: PMC11048638 DOI: 10.3390/biomedicines12040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Long COVID has brought numerous challenges to healthcare, with olfactory dysfunction (OD) being a particularly distressing outcome for many patients. The persistent loss of smell significantly diminishes the affected individual's quality of life. Recent attention has been drawn to the potential of platelet-rich plasma (PRP) therapy as a treatment for OD. This comprehensive review aims to evaluate the effectiveness of PRP therapy in ameliorating OD, especially when associated with long-term COVID-19. Methods: We executed a comprehensive search of the literature, encompassing clinical trials and observational studies that utilized PRP in treating OD limited to COVID-19. We retrieved and comprehensively discussed data such as design, participant demographics, and reported outcomes, focusing on the efficacy and safety of PRP therapy for OD in COVID-19 patients. Results: Our comprehensive analysis interestingly found promising perspectives for PRP in OD following COVID-19 infection. The collective data indicate that PRP therapy contributed to a significant improvement in olfactory function after COVID-19 infection. Conclusions: The evidence amassed suggests that PRP is a promising and safe therapeutic option for OD, including cases attributable to Long COVID-19. The observed uniform enhancement of olfactory function in patients receiving PRP highlights the necessity for well-designed, controlled trials. Such studies would help to refine treatment protocols and more definitively ascertain the efficacy of PRP in a broader, more varied patient cohort.
Collapse
Affiliation(s)
- Antonino Maniaci
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
| | - Salvatore Lavalle
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
| | - Edoardo Masiello
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, MI, Italy
| | - Jerome R. Lechien
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7000 Mons, Belgium
| | - Luigi Vaira
- Research Committee of Young Otolaryngologists of International Federation of Otorhinolaryngological Societies (World Ear, Nose, and Throat Federation), 13005 Paris, France
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, SS, Italy
- Biomedical Science Department, Biomedical Science Ph.D. School, University of Sassari, 07100 Sassari, SS, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical, and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, TS, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, EN, Italy; (A.M.)
- Eye Clinic Catania, University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, CT, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, UD, Italy
| |
Collapse
|
11
|
Wei S, Xu T, Sang N, Yue H, Chen Y, Jiang T, Jiang T, Yin D. Mixed Metal Components in PM 2.5 Contribute to Chemokine Receptor CCR5-Mediated Neuroinflammation and Neuropathological Changes in the Mouse Olfactory Bulb. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4914-4925. [PMID: 38436231 DOI: 10.1021/acs.est.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aβ deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Postdoctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Sensory Neuro-Ethology Team, 59 Bd Pinel, Bron 69500, France
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| |
Collapse
|
12
|
Gui J, Wang L, Liu J, Luo H, Huang D, Yang X, Song H, Han Z, Meng L, Ding R, Yang J, Jiang L. Ambient particulate matter exposure induces ferroptosis in hippocampal cells through the GSK3B/Nrf2/GPX4 pathway. Free Radic Biol Med 2024; 213:359-370. [PMID: 38290604 DOI: 10.1016/j.freeradbiomed.2024.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Epidemiological studies have established a robust correlation between exposure to ambient particulate matter (PM) and various neurological disorders, with dysregulation of intracellular redox processes and cell death being key mechanisms involved. Ferroptosis, a cell death form characterized by iron-dependent lipid peroxidation and disruption of antioxidant defenses, may be involved in the neurotoxic effects of PM exposure. However, the relationship between PM-induced neurotoxicity and ferroptosis in nerve cells remains to be elucidated. In this study, we utilized a rat model (exposed to PM at a dose of 10 mg/kg body weight per day for 4 weeks) and an HT-22 cell model (exposed to PM at concentrations of 50, 100, and 200 μg/mL for 24 h) to investigate the potential induction of ferroptosis by PM exposure. Furthermore, RNA sequencing analysis was employed to identify hub genes that potentially contribute to the process of ferroptosis, which was subsequently validated through in vivo and in vitro experiments. The results revealed that PM exposure increased MDA content and Fe2+ levels, and decreased SOD activity and GSH/GSSG ratio in rat hippocampal and HT-22 cells. Through RNA sequencing analysis, bioinformatics analysis, and RT-qPCR experiments, we identified GSK3B as a possible hub gene involved in ferroptosis. Subsequent investigations demonstrated that PM exposure increased GSK3B levels and decreased Nrf2, and GPX4 levels in vivo and in vitro. Furthermore, treatment with LY2090314, a specific inhibitor of GSK3B, was found to mitigate the PM-induced elevation of MDA and ROS and restore SOD activity and GSH/GSSG ratio. The LY2090314 treatment promoted the upregulation of Nrf2 and GPX4 and facilitated the nuclear translocation of Nrf2 in HT-22 cells. Moreover, treatment with LY2090314 resulted in the upregulation of Nrf2 and GPX4, along with the facilitation of nuclear translocation of Nrf2. This study suggested that PM-induced ferroptosis in hippocampal cells may be via the GSK3B/Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Honghong Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Linxue Meng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
13
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, Wang Y, Zhang YF, Lane AP, Ishizuka K, Kamath V, Ma M, Kamiya A, Sawa A. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.09.23.509224. [PMID: 36203543 PMCID: PMC9536041 DOI: 10.1101/2022.09.23.509224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.
Collapse
|
14
|
Dorsey ER, Bloem BR. Parkinson's Disease Is Predominantly an Environmental Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:451-465. [PMID: 38217613 PMCID: PMC11091623 DOI: 10.3233/jpd-230357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
Parkinson's disease is the world's fastest growing brain disorder, and exposure to environmental toxicants is the principal reason. In this paper, we consider alternative, but unsatisfactory, explanations for its rise, including improved diagnostic skills, aging populations, and genetic causes. We then detail three environmental toxicants that are likely among the main causes of Parkinson's disease- certain pesticides, the solvent trichloroethylene, and air pollution. All three environmental toxicants are ubiquitous, many affect mitochondrial functioning, and all can access humans via various routes, including inhalation and ingestion. We reach the hopeful conclusion that most of Parkinson's disease is thus preventable and that we can help to create a world where Parkinson's disease is increasingly rare.
Collapse
Affiliation(s)
- E. Ray Dorsey
- Center for Health + Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, the Netherlands
| |
Collapse
|
15
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
16
|
Mussalo L, Avesani S, Shahbaz MA, Závodná T, Saveleva L, Järvinen A, Lampinen R, Belaya I, Krejčík Z, Ivanova M, Hakkarainen H, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Aakko-Saksa P, Chew S, Rönkkö T, Jalava P, Kanninen KM. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167038. [PMID: 37709087 DOI: 10.1016/j.scitotenv.2023.167038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 μm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, VTT, 02044 Espoo, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Irina Belaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | | | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
17
|
Yu SE, Athni TS, Mitchell MB, Zhou X, Chiang S, Lee SE. The Impact of Ambient and Wildfire Air Pollution on Rhinosinusitis and Olfactory Dysfunction. Curr Allergy Asthma Rep 2023; 23:665-673. [PMID: 38047993 DOI: 10.1007/s11882-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW With increasing industrialization, exposure to ambient and wildfire air pollution is projected to increase, necessitating further research to elucidate the complex relationship between exposure and sinonasal disease. This review aims to summarize the role of ambient and wildfire air pollution in chronic rhinosinusitis (CRS) and olfactory dysfunction and provide a perspective on gaps in the literature. RECENT FINDINGS Based on an emerging body of evidence, exposure to ambient air pollutants is correlated with the development of chronic rhinosinusitis in healthy individuals and increased symptom severity in CRS patients. Studies have also found a robust relationship between long-term exposure to ambient air pollutants and olfactory dysfunction. Ambient air pollution exposure is increasingly recognized to impact the development and sequelae of sinonasal pathophysiology. Given the rising number of wildfire events and worsening impacts of climate change, further study of the impact of wildfire-related air pollution is a crucial emerging field.
Collapse
Affiliation(s)
- Sophie E Yu
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tejas S Athni
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret B Mitchell
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head & Neck Surgery, Massachusetts Eye & Ear, Boston, USA
| | - Xiaodan Zhou
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Simon Chiang
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella E Lee
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Singh S A, Suresh S, Vellapandian C. Ozone-induced neurotoxicity: In vitro and in vivo evidence. Ageing Res Rev 2023; 91:102045. [PMID: 37652313 DOI: 10.1016/j.arr.2023.102045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Together with cities in higher-income nations, it is anticipated that the real global ozone is rising in densely populated areas of Asia and Africa. This review aims to discuss the possible neurotoxic pollutants and ozone-induced neurotoxicity: in vitro and in vivo, along with possible biomarkers to assess ozone-related oxidative stress. As a methodical and scientific strategy for hazard identification and risk characterization of human chemical exposures, toxicological risk assessment is increasingly being implemented. While traditional methods are followed by in vitro toxicology, cell culture techniques are being investigated in modern toxicology. In both human and rodent models, aging makes the olfactory circuitry vulnerable to spreading immunological responses from the periphery to the brain because it lacks the blood-brain barrier. The ozone toxicity is elusive as it shows ventral and dorsal root injury cases even in the milder dose. Its potential toxicity should be disclosed to understand further the clear mechanism insights of how it acts in cellular aspects. Human epidemiological research has confirmed the conclusions that prenatal and postnatal exposure to high levels of air pollution are linked to behavioral alterations in offspring. O3 also enhances blood circulation. It has antibacterial action, which may have an impact on the gut microbiota. It also activates immunological, anti-inflammatory, proteasome, and growth factor signaling Prolonged O3 exposure causes oxidative damage to plasma proteins and lipids and damages the structural and functional integrity of the mitochondria. Finally, various studies need to be conducted to identify the potential biomarkers associated with ozone and the brain.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India.
| |
Collapse
|
19
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|
20
|
Kumar P, Singh AB, Arora T, Singh S, Singh R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162163. [PMID: 36781134 DOI: 10.1016/j.scitotenv.2023.162163] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality (IAQ) is one of the fundamental elements affecting people's health and well-being. Currently, there is a lack of awareness among people about the quantification, identification, and possible health effects of IAQ. Airborne pollutants such as volatile organic compounds (VOCs), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), nitrous oxide (NO), polycyclic aromatic hydrocarbons (PAHs) microbial spores, pollen, allergens, etc. primarily contribute to IAQ deterioration. This review discusses the sources of major indoor air pollutants, molecular toxicity mechanisms, and their effects on cardiovascular, ocular, neurological, women, and foetal health. Additionally, contemporary strategies and sustainable methods for regulating and reducing pollutant concentrations are emphasized, and current initiatives to address and enhance IAQ are explored, along with their unique advantages and potentials. Due to their longer exposure times and particular physical characteristics, women and children are more at risk for poor indoor air quality. By triggering many toxicity mechanisms, including oxidative stress, DNA methylation, epigenetic modifications, and gene activation, indoor air pollution can cause a range of health issues. Low birth weight, acute lower respiratory tract infections, Sick building syndromes (SBS), and early death are more prevalent in exposed residents. On the other hand, the main causes of incapacity and early mortality are lung cancer, chronic obstructive pulmonary disease, and cardiovascular disorders. It's crucial to acknowledge anticipated research needs and implemented efficient interventions and policies to lower health hazards.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India
| | - A B Singh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road Campus, Delhi 07, India
| | - Taruna Arora
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India; Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
21
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
22
|
Kang JY, Kim JM, Park SK, Lee HL, Heo HJ. A Mixture of Artemisia argyi and Saururus chinensis Improves PM 2.5-Induced Cognitive Dysfunction by Regulating Oxidative Stress and Inflammatory Response in the Lung and Brain. PLANTS (BASEL, SWITZERLAND) 2023; 12:1230. [PMID: 36986919 PMCID: PMC10059966 DOI: 10.3390/plants12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study was performed to investigate the improving effect of a mixture of Artemisia argyi and Saururus chinensis (AASC) on cognitive dysfunction in mice with long-term exposure to fine particles (particulate matter smaller than 2.5 µm: PM2.5). The main compounds of AASC were identified as dicaffeoylquinic acid isomers of A. argyi and a quercetin-3-glucoside of S. chinesis. As a result of behavioral tests for the evaluation of cognitive function, it was confirmed that cognitive dysfunction was induced in the PM2.5 exposure group, and a tendency to improve in the AASC group was confirmed. Increased oxidative stress and inflammatory response and mitochondrial dysfunction were observed in the brain and lung tissues of the PM group. Damage to the brain and lung affected the accumulation of amyloid beta (Aβ) in the brain. It increased Aβ and induced the cholinergic dysfunction, hyperphosphorylation of the tau protein, and activation of apoptosis, leading to cognitive impairment. However, AASC suppressed brain and lung oxidative stress and inflammation, thereby suppressing brain Aβ expression. Consequently, this study shows the potential that a steady intake of plant resources with antioxidant and anti-inflammatory activity could prevent cognitive impairment caused by PM2.5.
Collapse
Affiliation(s)
- Jin-Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seon-Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Korea Food Research institute, Wanju-Gun 55365, Republic of Korea
| | - Hyo-Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho-Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
23
|
Andersson J, Sundström A, Nordin M, Segersson D, Forsberg B, Adolfsson R, Oudin A. PM2.5 and Dementia in a Low Exposure Setting: The Influence of Odor Identification Ability and APOE. J Alzheimers Dis 2023; 92:679-689. [PMID: 36776047 PMCID: PMC10041445 DOI: 10.3233/jad-220469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Growing evidence show that long term exposure to air pollution increases the risk of dementia. OBJECTIVE The aim of this study was to investigate associations between PM2.5 exposure and dementia in a low exposure area, and to investigate the role of olfaction and the APOE ɛ4 allele in these associations. METHODS Data were drawn from the Betula project, a longitudinal study on aging, memory, and dementia in Sweden. Odor identification ability was assessed using the Scandinavian Odor Identification Test (SOIT). Annual mean PM2.5 concentrations were obtained from a dispersion-model and matched at the participants' residential address. Proportional hazard regression was used to calculate hazard ratios. RESULTS Of 1,846 participants, 348 developed dementia during the 21-year follow-up period. The average annual mean PM2.5 exposure at baseline was 6.77μg/m3, which is 1.77μg/m3 above the WHO definition of clean air. In a fully adjusted model (adjusted for age, sex, APOE, SOIT, cardiovascular diseases and risk factors, and education) each 1μg/m3 difference in annual mean PM2.5-concentration was associated with a hazard ratio of 1.23 for dementia (95% CI: 1.01-1.50). Analyses stratified by APOE status (ɛ4 carriers versus non-carriers), and odor identification ability (high versus low), showed associations only for ɛ4 carriers, and for low performance on odor identification ability. CONCLUSION PM2.5 was associated with an increased risk of dementia in this low pollution setting. The associations between PM2.5 and dementia seemed stronger in APOE carriers and those with below average odor identification ability.
Collapse
Affiliation(s)
| | - Anna Sundström
- Department of Psychology, Umeå University, Umeå, Sweden.,Centre for Demographic and Ageing Research (CEDAR), Umeå University, Sweden.,Department of Research and Development, Sundsvall Hospital, Sundsvall, Sweden
| | - Maria Nordin
- Department of Psychology, Umeå University, Umeå, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
25
|
Liang C, Jiang Y, Zhang T, Ji Y, Zhang Y, Sun Y, Li S, Qi Y, Wang Y, Cai Y, Lai T, Cui L. Atmospheric particulate matter impairs cognition by modulating synaptic function via the nose-to-brain route. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159600. [PMID: 36280068 DOI: 10.1016/j.scitotenv.2022.159600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric particulate matter (PM), a ubiquitous air pollutant, is the leading environmental risk factor for mortality worldwide. Experimental and epidemiological studies consistently suggest a strong link between long-term exposure to PM2.5 (<2.5 μm, fine PM) and cognitive impairment. The neuroinflammatory response is presumed to be one of the main mechanisms of PM2.5-induced cognitive impairment, possibly leading to synaptic dysfunction. However, the main route and mechanism underlying the cause of cognitive dysfunction and pathogenic alterations in PM2.5-exposure mice remain poorly understood. Therefore, this study aimed to investigate the main route and mechanism of PM2.5-induced cognitive impairment. Our results showed that PM2.5 directly entered the brain following nasal administration, and both the short-term PM2.5 administration via atomization and nasal drops induced learning and memory impairments and neuronal damage in adult mice. Moreover, astrocytes and microglia were both activated in the two short-term PM2.5 exposure models, while few changes in the inflammatory response were observed in the peripheral circulatory system. Furthermore, a further transcriptional analysis revealed that short-term PM2.5 administration led to cognitive impairment mainly by modulating synaptic functions and that although glia were activated, the glia-related pathological pathways were not significantly activated. Notably, following PM2.5 exposure, PLX3397-induced microglial deletion did not restore the cognitive function of the mice. In conclusion, our results provide evidence that PM2.5 enters the brain via the nose-to-brain route to impair cognitive function, and short-term exposure to PM2.5 directly alters synaptic function rather than the neuroinflammatory response to affect cognition.
Collapse
Affiliation(s)
- Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuling Jiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianzhen Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Qi
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianwen Lai
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
26
|
Guo C, Lyu Y, Xia S, Ren X, Li Z, Tian F, Zheng J. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114350. [PMID: 36508794 DOI: 10.1016/j.ecoenv.2022.114350] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a major air pollutant, PM2.5 can induce apoptosis of nerve cells, causing impairment of the learning and memory capabilities of humans and animals. Ferroptosis is a newly discovered way of programmed cell death. It is unclear whether the neurotoxicity induced by PM2.5 is related to the ferroptosis of nerve cells. In this study, we observed the changes in ferroptosis hallmarks of SH-SY5Y cells after exposure to various doses (40, 80, and 160 μg/mL PM2.5) for 24 h, exposure to 40 μg/mL PM2.5 for various times (24, 48, and 72 h), as well as exposure to various components (Po, organic extracts; Pw, water-soluble extracts; Pc, carbon core component). The results showed that PM2.5 reduced the cell viability, the content of GSH, and the activity of GSH-PX and SOD in SH-SY5Y cells with exposure dose and duration increasing. On the other hand, PM2.5 increased the content of iron, MDA, and the level of lipid ROS in SH-SY5Y cells with exposure dose and duration increasing. Additionally, PM2.5 reduced the expression levels of HO-1, NRF2, SLC7A11, and GPX4. The ferroptosis inhibitors Fer-1 and DFO significantly increase the cells viabilities and significantly reversed the changes of other above ferroptosis hallmarks. We also observed the different effects on ferroptosis hallmarks in the SH-SY5Y cells exposed to PM2.5 (160 μg/mL) and its various components (organic extracts, water-soluble extracts, and carbon core) for 24 h. We found that only the organic extracts shared similar results with PM2.5 (160 μg/mL). This study demonstrated that PM2.5 induced ferroptosis of SH-SY5Y cells, and organic extracts might be the primary component that caused ferroptosis.
Collapse
Affiliation(s)
- CanCan Guo
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Yi Lyu
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China; Department of Biochemistry and Molecular Biology, School of Preclinical Medicine in Shanxi Medical University, Taiyuan 030001, China
| | - ShuangShuang Xia
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - XueKe Ren
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - ZhaoFei Li
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - FengJie Tian
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - JinPing Zheng
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China; Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
27
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
28
|
Goldman AW. Olfaction in (Social) Context: The Role of Social Complexity in Trajectories of Older Adults' Olfactory Abilities. J Aging Health 2023; 35:108-124. [PMID: 35739641 DOI: 10.1177/08982643221108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Olfaction is an important correlate of later-life health, including cognition and mortality risk. Environmental enrichment protects against olfactory decline, yet little research considers the social context as a source of sensory enrichment or stimulation. This study examines how exposure to social complexity (i.e., diversity or novelty in social networks and activities) shapes later-life olfaction. Methods: Cross-sectional and longitudinal ordered logit models analyze data from 1,447 older adults interviewed at Rounds 1 and 2 of the National Social Life, Health, and Aging Project. Results: Exposure to greater social complexity (larger social networks, greater network diversity) is associated with significantly better olfaction at baseline. Increases in network diversity and fewer network losses significantly protect against olfactory decline over time. Discussion: Findings highlight the social context as an important, yet relatively overlooked source of sensory enrichment, and underscore the need for biological applications to integrate social life dynamics into studies of health trajectories.
Collapse
Affiliation(s)
- Alyssa W Goldman
- Department of Sociology, 6019Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
29
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
31
|
Armas FV, D’Angiulli A. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review. TOXICS 2022; 10:666. [PMID: 36355957 PMCID: PMC9698785 DOI: 10.3390/toxics10110666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this scoping review, we provide a selective mapping of the global literature on the effects of air pollution on the life-span development of the central nervous system. Our synthesis first defines developmental neurotoxicants and the model effects of particulate matter. We then discuss air pollution as a test bench for neurotoxicants, including animal models, the framework of systemic inflammation in all affected organs of the body, and the cascade effects on the developing brain, with the most prevalent neurological structural and functional outcomes. Specifically, we focus on evidence on magnetic resonance imaging and neurodegenerative diseases, and the links between neuronal apoptosis and inflammation. There is evidence of a developmental continuity of outcomes and effects that can be observed from utero to aging due to severe or significant exposure to neurotoxicants. These substances alter the normal trajectory of neurological aging in a propulsive way towards a significantly higher rate of acceleration than what is expected if our atmosphere were less polluted. The major aggravating role of this neurodegenerative process is linked with the complex action of neuroinflammation. However, most recent evidence learned from research on the effects of COVID-19 lockdowns around the world suggests that a short-term drastic improvement in the air we breathe is still possible. Moreover, the study of mitohormesis and vitagenes is an emerging area of research interest in anti-inflammatory and antidegenerative therapeutics, which may have enormous promise in combatting the deleterious effects of air pollution through pharmacological and dietary interventions.
Collapse
Affiliation(s)
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
32
|
Andersson J, Oudin A, Nordin S, Forsberg B, Nordin M. PM 2.5 exposure and olfactory functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2484-2495. [PMID: 34461775 DOI: 10.1080/09603123.2021.1973969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence indicates that air pollution can negatively impact cognitive functions. The olfactory system is interesting in this context as it is directly exposed to pollutants and also associated with cognitive functions. The aim of this study was to investigate long- and short-term PM2.5 exposure in association with olfactory functions. Scores from odor tests were obtained from the Betula project - a longitudinal cohort study. Estimates of annual mean PM2.5 concentrations at the participants' residential address were obtained from a dispersion-model. Daily mean PM2.5 concentrations were obtained from a measuring station close to the test location. We found a positive association between long-term PM2.5 exposure and odor identification, i.e. exposure was associated with a better ability to identify odors. We also found an interaction effect between PM2.5 and age on odor identification. We found no associations between any PM2.5 exposure and odor detection or between short-term PM2.5 exposure and olfactory functions.
Collapse
Affiliation(s)
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Steven Nordin
- Department of Psychology Umeå University, Umeå, Sweden
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Maria Nordin
- Department of Psychology Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Noël A, Ashbrook DG, Xu F, Cormier SA, Lu L, O’Callaghan JP, Menon SK, Zhao W, Penn AL, Jones BC. Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust. Int J Mol Sci 2022; 23:12461. [PMID: 36293318 PMCID: PMC9603950 DOI: 10.3390/ijms232012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Air pollution is a known environmental health hazard. A major source of air pollution includes diesel exhaust (DE). Initially, research on DE focused on respiratory morbidities; however, more recently, exposures to DE have been associated with neurological developmental disorders and neurodegeneration. In this study, we investigated the effects of sub-chronic inhalation exposure to DE on neuroinflammatory markers in two inbred mouse strains and both sexes, including whole transcriptome examination of the medial prefrontal cortex. We exposed aged male and female C57BL/6J (B6) and DBA/2J (D2) mice to DE, which was cooled and diluted with HEPA-filtered compressed air for 2 h per day, 5 days a week, for 4 weeks. Control animals were exposed to HEPA-filtered air on the same schedule as DE-exposed animals. The prefrontal cortex was harvested and analyzed for proinflammatory cytokine gene expression (Il1β, Il6, Tnfα) and transcriptome-wide response by RNA-seq. We observed differential cytokine gene expression between strains and sexes in the DE-exposed vs. control-exposed groups for Il1β, Tnfα, and Il6. For RNA-seq, we identified 150 differentially expressed genes between air and DE treatment related to natural killer cell-mediated cytotoxicity per Kyoto Encyclopedia of Genes and Genomes pathways. Overall, our data show differential strain-related effects of DE on neuroinflammation and neurotoxicity and demonstrate that B6 are more susceptible than D2 to gene expression changes due to DE exposures than D2. These results are important because B6 mice are often used as the default mouse model for DE studies and strain-related effects of DE neurotoxicity warrant expanded studies.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Stephania A. Cormier
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James P. O’Callaghan
- Molecular Neurotoxicology Laboratory, Toxicology, and Molecular Biology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, NIOSH, Morgantown, WV 26508, USA
| | - Shyam K. Menon
- Department of Mechanical and Industrial Engineering, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenyuan Zhao
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arthur L. Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Byron C. Jones
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
34
|
Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, Wang Y, An Z, Li J, Wu H, Wu W. Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants (Basel) 2022; 11:antiox11081482. [PMID: 36009201 PMCID: PMC9404971 DOI: 10.3390/antiox11081482] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution remains a prominent environmental problem worldwide, posing great threats to human health. The adverse effects of PM2.5 on the respiratory and cardiovascular systems have been extensively studied, while its detrimental effects on the central nervous system (CNS), specifically neurodegenerative disorders, are less investigated. Neurodegenerative disorders are characterized by reduced neurogenesis, activated microglia, and neuroinflammation. A variety of studies involving postmortem examinations, epidemiological investigations, animal experiments, and in vitro cell models have shown that PM2.5 exposure results in neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, and ultimately neurodegenerative disorders, which are strongly associated with the activation of microglia. Microglia are the major innate immune cells of the brain, surveilling and maintaining the homeostasis of CNS. Upon activation by environmental and endogenous insults, such as PM exposure, microglia can enter an overactivated state that is featured by amoeboid morphology, the over-production of reactive oxygen species, and pro-inflammatory mediators. This review summarizes the evidence of microglial activation and oxidative stress and neurodegenerative disorders following PM2.5 exposure. Moreover, the possible mechanisms underlying PM2.5-induced microglial activation and neurodegenerative disorders are discussed. This knowledge provides certain clues for the development of therapies that may slow or halt the progression of neurodegenerative disorders induced by ambient PM.
Collapse
Affiliation(s)
- Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Keyang Han
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Ya Wang
- Nursing School, Zhenjiang College, Zhenjiang 212028, China;
| | - Rongrong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yuan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Shaolan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; (J.S.); (K.H.); (R.Q.); (Y.L.); (S.W.); (Y.W.); (Z.A.); (J.L.); (H.W.)
- Correspondence:
| |
Collapse
|
35
|
Ji X, Liu R, Guo J, Li Y, Cheng W, Pang Y, Zheng Y, Zhang R, Tang J. Olfactory bulb microglia activation mediated neuronal death in real-ambient particulate matter exposure mice with depression-like behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153456. [PMID: 35093369 DOI: 10.1016/j.scitotenv.2022.153456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Growing evidence has indicated that air pollution is associated with depression, and damage of olfactory bulb (OB) is regarded as an early marker for depression. However, the toxicity of fine particulate matter (PM2.5) on OB and underlying mechanisms remains to be elucidated. In our study, a real-ambient PM2.5 exposure system was applied to explore the effects of PM2.5 on OB in C57BL/6 mice for 4 or 8 weeks. After 8 weeks exposure, the mice emerged potential depressive-like responses with reduction and disorder of cells in olfactory bulb tissues. Apoptosis and ultra-microstructure analysis indicated that the real-ambient PM2.5 exposure caused the neuronal death of OB. The immunofluorescence observation and KEGG pathway analysis revealed the real-ambient PM2.5 exposure induced microglia activation along with tumor necrosis factor α (TNFα)-mediated signaling enriched in OB of mice with depression-like behaviors. Moreover, results from ex vivo biosensor assay exhibited that PM2.5 might trigger systemic inflammation with increased levels of various proinflammatory factors to activate microglia. Further in vitro co-culture model identified that the PM2.5 evoked microglia cells activation with TNFα secretion and induced neuronal cells apoptosis via classical caspase3 signaling. Our findings provide new insights that PM2.5 induced microglia activation characterized by the release of TNFα to cause neurotoxicity either by direct action or by circulatory inflammation, resulting in OB damage, which may play a critical role in early diagnosis and pathogenic mechanisms for PM2.5 to cause depression.
Collapse
Affiliation(s)
- Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Rui Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiajun Guo
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
36
|
Ohlsson L, Isaxon C, Wrighton S, El Ouahidi W, Fornell L, Uller L, Ansar S, Voss U. Short-term exposure to urban PM 2.5 particles induces histopathological and inflammatory changes in the rat small intestine. Physiol Rep 2022; 10:e15249. [PMID: 35416410 PMCID: PMC9006536 DOI: 10.14814/phy2.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023] Open
Abstract
Air pollution and exposure to fine airborne particles with aerodynamic diameter <2.5 μm (PM2.5 ) negatively impacts human health. Airways constitute a primary route of exposure but PM2.5 -contaminated food, drinks as well as mucociliary and hepatobiliary clearance all constitute potential entry points into the intestine. This study evaluated intestinal histopathological and inflammatory changes as well as enteric neuronal numbers after short- or long-term exposure to urban PM2.5 . Using a nebulizer, male rats were exposed to a mist with a concentration of 5.3mg PM2.5 /m3 for 8 h (short term) or 1.8 mg PM2.5 /m3 for 3 h/day, 5 days/week for 8 weeks (long-term) with controls run in parallel. Samples were taken from three regions of the small intestine as well as the colon. Results showed that short-term exposure to PM2.5 induces mucosal lesions and reduces IL1β levels in the small intestine but not colon. No significant changes were observed after long-term exposure, suggesting the presence of intestinal adaptation to environmental stressors in the PM2.5 . To our knowledge, this is the first study to systematically characterize regional effects along the intestine.
Collapse
Affiliation(s)
- Lena Ohlsson
- Unit of Experimental Vascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol TechnologyDepartment of Design SciencesLund UniversityLundSweden
| | - Sebastian Wrighton
- Division of Infection MedicineDepartment of Clinical SciencesLund UniversityLundSweden
| | - Wissal El Ouahidi
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Lisa Fornell
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Lena Uller
- Unit of Respiratory ImmunopharmacologyDepartment of Experimental Medical SciencesLund UniversityLundSweden
| | - Saema Ansar
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Ulrikke Voss
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| |
Collapse
|
37
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
38
|
Ekström IA, Rizzuto D, Grande G, Bellander T, Laukka EJ. Environmental Air Pollution and Olfactory Decline in Aging. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27005. [PMID: 35139319 PMCID: PMC8828267 DOI: 10.1289/ehp9563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Olfactory impairment is increasingly common with older age, which may be in part explained by cumulative effects of exposure to inhaled toxins. However, population-based studies investigating the relationship between air pollution and olfactory ability are scarce. OBJECTIVES We aimed to investigate associations between exposure to common air pollutants and longitudinal change in odor identification. METHODS Our study of 2,468 participants (mean age=72.3y; 61.1% female), of which 1,774 participants (mean age=70.5y; 61.9% female) had at least two olfactory assessments over 12 y of follow-up from the Swedish National Study on Aging and Care in Kungsholmen (SNAC-K), Stockholm, Sweden. Participants were free from cognitive impairment and neurodegenerative disease at baseline. Odor identification ability was assessed with Sniffin' Sticks. Change in olfactory performance was estimated with linear mixed models. Exposure to two major airborne pollutants [particulate matter with aerodynamic diameter ≤2.5μm (PM2.5) and nitrogen oxides (NOx)] for the 5 y preceding baseline was assessed using spatiotemporal dispersion models for outdoor levels at residential addresses. RESULTS Participants showed significant decline in odor identification ability for each year in the study {β=-0.20 [95% confidence interval (CI): -0.22, 0.18; p<0.001]}. After adjustment for all covariates, residents of third [β=-0.09 (95% CI: -0.14, -0.04; p<0.001)] and fourth [β=-0.07 (95% CI: -0.12, -0.02; p=0.005)] exposure quartiles of PM2.5 had faster rates of olfactory decline than residents from the first quartile. Similar results were observed for the third [β=-0.05 (95% CI: -0.10, -0.01; p=0.029)] and fourth [β=-0.07 (95% CI: -0.11, -0.02; p=0.006) quartiles of NOx]. DISCUSSION Our results suggest an association between air pollution exposure and subsequent olfactory decline. We speculate that cumulative effects of airborne pollutants on the olfactory system may be one underlying cause of olfactory impairment in aging. https://doi.org/10.1289/EHP9563.
Collapse
Affiliation(s)
- Ingrid A Ekström
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Tom Bellander
- Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm, Sweden
- Center for Occupational and Environmental Health, Stockholm Region, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
39
|
Gartland N, Aljofi HE, Dienes K, Munford LA, Theakston AL, van Tongeren M. The Effects of Traffic Air Pollution in and around Schools on Executive Function and Academic Performance in Children: A Rapid Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020749. [PMID: 35055570 PMCID: PMC8776123 DOI: 10.3390/ijerph19020749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
This review summarises the extant literature investigating the relation between traffic-related air pollution levels in and around schools and executive functioning in primary-school-aged children. An electronic search was conducted using Web of Science, Scopus, and Education Literature Datasets databases (February 2020). Review articles were also searched, and forwards and backwards searches of identified studies were performed. Included papers were assessed for quality. We included 9 separate studies (published in 13 papers). Findings suggest that indoor and outdoor particulate matter with a diameter of 2.5 μm or less (PM2.5) negatively influences executive function and academic achievement and that indoor and outdoor nitrogen dioxide (NO2) adversely affects working memory. Evidence for the effects of particulate matter with a diameter of 10 μm or less (PM10) is limited but suggests potential wide-ranging negative effects on attention, reasoning, and academic test scores. Air pollution in and around schools influences executive function and appears to impede the developmental trajectory of working memory. Further research is required to establish the extent of these effects, reproducibility, consequences for future attainment, and place within the wider context of cognitive development.
Collapse
Affiliation(s)
- Nicola Gartland
- School of Health Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.A.); (L.A.M.); (A.L.T.); (M.v.T.)
- Correspondence:
| | - Halah E. Aljofi
- School of Health Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.A.); (L.A.M.); (A.L.T.); (M.v.T.)
| | - Kimberly Dienes
- School of Psychology, Swansea University, Swansea SA2 8PP, UK;
| | - Luke Aaron Munford
- School of Health Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.A.); (L.A.M.); (A.L.T.); (M.v.T.)
| | - Anna L. Theakston
- School of Health Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.A.); (L.A.M.); (A.L.T.); (M.v.T.)
| | - Martie van Tongeren
- School of Health Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.A.); (L.A.M.); (A.L.T.); (M.v.T.)
| |
Collapse
|
40
|
Martikainen MV, Aakko-Saksa P, van den Broek L, Cassee FR, Carare RO, Chew S, Dinnyes A, Giugno R, Kanninen KM, Malm T, Muala A, Nedergaard M, Oudin A, Oyola P, Pfeiffer TV, Rönkkö T, Saarikoski S, Sandström T, Schins RPF, Topinka J, Yang M, Zeng X, Westerink RHS, Jalava PI. TUBE Project: Transport-Derived Ultrafines and the Brain Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:311. [PMID: 35010571 PMCID: PMC8751045 DOI: 10.3390/ijerph19010311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| | - Päivi Aakko-Saksa
- VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland;
| | | | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands;
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | | | - Rosalba Giugno
- Computer Science Department, University of Verona, 37129 Verona, Italy;
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.C.); (K.M.K.); (T.M.)
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Pedro Oyola
- Centro Mario Molina Chile, Strategic Studies Department, Santiago 602, Chile;
| | | | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland;
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland;
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, 901 87 Umea, Sweden; (A.M.); (A.O.); (T.S.)
| | - Roel P. F. Schins
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Dusseldorf, Germany;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Mo Yang
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Remco H. S. Westerink
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Pasi I. Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (M.Y.); (P.I.J.)
| |
Collapse
|
41
|
Sivakumar B, Kurian GA. Mitochondria and traffic-related air pollution linked coronary artery calcification: exploring the missing link. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:545-563. [PMID: 34821115 DOI: 10.1515/reveh-2020-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
The continuing increase in the exposure to Traffic-related air pollution (TRAP) in the general population is predicted to result in a higher incidence of non-communicable diseases like cardiovascular disease. The chronic exposure of air particulate matter from TRAP upon the vascular system leads to the enhancement of deposition of calcium in the vasculature leading to coronary artery calcification (CAC), triggered by inflammatory reactions and endothelial dysfunction. This calcification forms within the intimal and medial layers of vasculature and the underlying mechanism that connects the trigger from TRAP is not well explored. Several local and systemic factors participate in this active process including inflammatory response, hyperlipidemia, presence of self-programmed death bodies and high calcium-phosphate concentrations. These factors along with the loss of molecules that inhibit calcification and circulating nucleation complexes influence the development of calcification in the vasculature. The loss of defense to prevent osteogenic transition linked to micro organelle dysfunction that includes deteriorated mitochondria, elevated mitochondrial oxidative stress, and defective mitophagy. In this review, we examine the contributory role of mitochondria involved in the mechanism of TRAP linked CAC development. Further we examine whether TRAP is an inducer or trigger for the enhanced progression of CAC.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
42
|
Hasegawa Y, Namkung H, Smith A, Sakamoto S, Zhu X, Ishizuka K, Lane AP, Sawa A, Kamiya A. Causal impact of local inflammation in the nasal cavity on higher brain function and cognition. Neurosci Res 2021; 172:110-115. [PMID: 33932551 PMCID: PMC10693917 DOI: 10.1016/j.neures.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Epidemiological evidence suggests that adverse environmental factors in the nasal cavity may increase the risk for neuropsychiatric diseases. For instance, air pollution and nasal viral infection have been underscored as risk factors for Parkinson's disease, schizophrenia, and mood disorders. These adverse factors can elicit local inflammation in the nasal cavity, which may in turn influence higher brain function. Nevertheless, evidence that directly supports their causal link is missing. To fill this knowledge gap, we used an inducible mouse model for olfactory inflammation and showed the evidence that this local pathological factor can elicit behavioral abnormalities.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Ho Namkung
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Amy Smith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Shinji Sakamoto
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Xiaolei Zhu
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
43
|
Tekcan Sanli DE, Altundag A, Yıldırım D, Kandemirli SG, Sanli AN. Comparison of Olfactory Cleft Width and Volumes in Patients with COVID-19 Anosmia and COVID-19 Cases Without Anosmia. ORL J Otorhinolaryngol Relat Spec 2021; 84:1-9. [PMID: 34569549 PMCID: PMC8678255 DOI: 10.1159/000518672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/24/2021] [Indexed: 12/04/2022]
Abstract
Introduction The aim of this study was to assess the relationship between olfactory cleft width/volume and COVID-19-related anosmia. Methods This study consisted of PCR-proven COVID-19 patients. Cases with COVID-19-related anosmia constituted Group 1 and cases without any olfactory dysfunction (OD) throughout COVID-19 infection or after recovery constituted Group 2. A total of 50 patients were included in the study, comprising 24 cases in Group 1 and 26 cases in Group 2. Group 1 patients underwent a 4-item-odor identification test during active symptoms and a Sniffin' Sticks test after reconversion of PCR results to negative. All patients in Group 2 also underwent the Sniffin' Stick test to document normosmia. All cases had paranasal sinus CT performed. Olfactory cleft widths and olfactory volumes were measured. The differences in width and volume between groups and the correlation with odor test scores (threshold-discrimination-identification [TDI]) were calculated. In addition, regression analyzes analysis was performed for cleft widths, volumes, and TDI scores according to age. Results Olfactory cleft widths and olfactory volumes were significantly higher in Group 1 than those in Group 2 (p = 0.001; p < 0.01). There was a significant negative correlation between total TDI scores and olfactory cleft widths and total olfactory volumes (r = −0.665; r = −0.731, respectively). Patients younger than 40 years of age had significantly higher right olfactory cleft width, left olfactory cleft width, and olfactory cleft volume than those in patients older than 40 years of age (p = 0.004, p = 0.005, p = 0.003; p < 0,01, respectively). However, patients younger than 40 years of age had a significantly lower total TDI score and in all other values individually (t-d-i) than those in patients older than 40 years of age (p = 0.004; p < 0.01). Conclusion Patients with COVID-19-related OD had larger olfactory cleft width and volumes than those without OD in this study. Total TDI score was found to be inversely correlated with cleft width and volume.
Collapse
Affiliation(s)
| | - Aytug Altundag
- Department of Ear Nose Throat, Acibadem Taksim Hospital, Istanbul, Turkey
| | - Duzgun Yıldırım
- Department of Radiology, Acibadem Taksim Hospital, Istanbul, Turkey
| | | | - Ahmet Necati Sanli
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
44
|
Lee SH, Chen YH, Chien CC, Yan YH, Chen HC, Chuang HC, Hsieh HI, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Chen TF, Cheng TJ. Three month inhalation exposure to low-level PM2.5 induced brain toxicity in an Alzheimer's disease mouse model. PLoS One 2021; 16:e0254587. [PMID: 34437570 PMCID: PMC8389369 DOI: 10.1371/journal.pone.0254587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Although numerous epidemiological studies revealed an association between ambient fine particulate matter (PM2.5) exposure and Alzheimer's disease (AD), the PM2.5-induced neuron toxicity and associated mechanisms were not fully elucidated. The present study assessed brain toxicity in 6-month-old female triple-transgenic AD (3xTg-AD) mice following subchronic exposure to PM2.5 via an inhalation system. The treated mice were whole-bodily and continuously exposed to real-world PM2.5 for 3 months, while the control mice inhaled filtered air. Changes in cognitive and motor functions were evaluated using the Morris Water Maze and rotarod tests. Magnetic resonance imaging analysis was used to record gross brain volume alterations, and tissue staining with hematoxylin and eosin, Nissl, and immunohistochemistry methods were used to monitor pathological changes in microstructures after PM2.5 exposure. The levels of AD-related hallmarks and the oxidative stress biomarker malondialdehyde (MDA) were assessed using Western blot analysis and liquid chromatography-mass spectrometry, respectively. Our results showed that subchronic exposure to environmental levels of PM2.5 induced obvious neuronal loss in the cortex of exposed mice, but without significant impairment of cognitive and motor function. Increased levels of phosphorylated-tau and MDA were also observed in olfactory bulb or hippocampus after PM2.5 exposure, but no amyloid pathology was detected, as reported in previous studies. These results revealed that a relatively lower level of PM2.5 subchronic exposure from the environmental atmosphere still induced certain neurodegenerative changes in the brains of AD mice, especially in the olfactory bulb, entorhinal cortex and hippocampus, which is consistent with the nasal entry and spreading route for PM exposure. Systemic factors may also contribute to the neuronal toxicity. The effects of PM2.5 after a more prolonged exposure period are needed to establish a more comprehensive picture of the PM2.5-mediated development of AD.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Horng Yan
- Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-I Hsieh
- Department of Occupational Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, California, United States of America
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
45
|
Wei S, Xu T, Jiang T, Yin D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10911-10922. [PMID: 34355568 DOI: 10.1021/acs.est.1c02048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air pollution composed of the complex interactions among particular matter, chemicals, and pathogens is an emerging and global environmental issue that closely correlates with a variety of diseases and adverse health effects, especially increasing incidences of neurodegenerative diseases. However, as one of the prevalent health outcomes of air pollution, chemosensory dysfunction has not attracted enough concern until recently. During the COVID-19 pandemic, multiple scientific studies emphasized the plausibly essential roles of the chemosensory system in the airborne transmission airway of viruses into the human body, which can also be utilized by pollutants. In this Review, in addition to summarizing current progress regarding the contributions of traditional air pollutants to chemosensory dysfunction, we highlight the roles of emerging contaminants. We not only sum up clarified mechanisms, such as inflammation and apoptosis but also discuss some not yet completely identified mechanisms, e.g., disruption of olfactory signal transduction. Although the existing evidence is not overwhelming, the chemosensory system is expected to be a useful indicator in neurotoxicology and neural diseases based on accumulating studies that continually excavate the deep link between chemosensory dysfunction and neurodegenerative diseases. Finally, we argue the importance of studies concerning chemosensory dysfunction in understanding the health effects of air pollution and provide comments for some future directions of relevant research.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Neuro-Ethology Team, 59 Bd Pinel, 69500 Bron, France
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
46
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
47
|
Jankowska-Kieltyka M, Roman A, Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front Cell Neurosci 2021; 15:647643. [PMID: 34248501 PMCID: PMC8264767 DOI: 10.3389/fncel.2021.647643] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.
Collapse
Affiliation(s)
- Monika Jankowska-Kieltyka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Roman
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
48
|
James J, Tsvik AM, Chung SY, Usseglio J, Gudis DA, Overdevest JB. Association between social determinants of health and olfactory function: a scoping review. Int Forum Allergy Rhinol 2021; 11:1472-1493. [PMID: 34047496 DOI: 10.1002/alr.22822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Social determinants of health (SDoH) include the socioeconomic, demographic, and social conditions that influence differences in health status among individuals and groups. The impact of these conditions on olfactory function remains poorly understood. In this scoping review, we systematically review the available literature to synthesize the association between SDoH and olfactory function. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review (PRISMA-ScR) guidelines, we performed systematic search queries in PubMed, Embase, and Ovid databases and categorized articles according to themes that emerged regarding SDoH. The primary outcomes included self-reported and objective measurements of smell. RESULTS We identified 722 unique references that underwent title and abstract review by two independent reviewers, with 70 articles undergoing full-text review and 57 relevant for data extraction. Six themes emerged in our review, under which we categorized the studies and synthesized respective associations with olfactory function. These include studies exploring socioeconomic status (n = 19, 33%), education status (n = 27, 47%), occupational exposures (n = 26, 46%), racial/ethnic disparities (n = 12, 21%), and lifestyle/behavioral factors (n = 33, 58%). CONCLUSIONS Within the context of this scoping review, olfactory dysfunction is significantly more prevalent in patients with lower socioeconomic status, exposure to environmental and occupational toxins, and of minority race/ethnicity, whereas the associations between olfactory dysfunction and education level and lifestyle factors such as smoking and drinking seem to be much more elusive. This review highlights the importance of accounting for SDoH in observational studies examining olfactory outcomes. Given the increased awareness of olfactory loss, special consideration should be given to understanding olfactory dysfunction in the context of these factors.
Collapse
Affiliation(s)
- Joel James
- City University of New York School of Medicine, New York, NY
| | - Avraham M Tsvik
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Sei Y Chung
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - John Usseglio
- Augustus C. Long Health Sciences Library, Columbia University Irving Medical Center, New York, NY
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
49
|
Bloom ML, Johnston LB, Datta SR. Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons. Chem Senses 2021; 45:333-346. [PMID: 32333759 DOI: 10.1093/chemse/bjaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both canonical olfactory sensory neurons (OSNs) and sensory neurons belonging to the guanylate cyclase D (GCD) "necklace" subsystem are housed in the main olfactory epithelium, which is continuously bombarded by toxins, pathogens, and debris from the outside world. Canonical OSNs address this challenge, in part, by undergoing renewal through neurogenesis; however, it is not clear whether GCD OSNs also continuously regenerate and, if so, whether newborn GCD precursors follow a similar developmental trajectory to that taken by canonical OSNs. Here, we demonstrate that GCD OSNs are born throughout adulthood and can persist in the epithelium for several months. Phosphodiesterase 2A is upregulated early in the differentiation process, followed by the sequential downregulation of β-tubulin and the upregulation of CART protein. The GCD and MS4A receptors that confer sensory responses upon GCD neurons are initially expressed midway through this process but become most highly expressed once CART levels are maximal late in GCD OSN development. GCD OSN maturation is accompanied by a horizontal migration of neurons toward the central, curved portions of the cul-de-sac regions where necklace cells are concentrated. These findings demonstrate that-like their canonical counterparts-GCD OSNs undergo continuous renewal and define a GCD-specific developmental trajectory linking neurogenesis, maturation, and migration.
Collapse
|
50
|
Zhang Z, Rowan NR, Pinto JM, London NR, Lane AP, Biswal S, Ramanathan M. Exposure to Particulate Matter Air Pollution and Anosmia. JAMA Netw Open 2021; 4:e2111606. [PMID: 34042992 PMCID: PMC8160589 DOI: 10.1001/jamanetworkopen.2021.11606] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IMPORTANCE Anosmia, the loss of the sense of smell, has profound implications for patient safety, well-being, and quality of life, and it is a predictor of patient frailty and mortality. Exposure to air pollution may be an olfactory insult that contributes to the development of anosmia. OBJECTIVE To investigate the association between long-term exposure to particulate matter (PM) with an aerodynamic diameter of no more than 2.5 μm (PM2.5) with anosmia. DESIGN, SETTING, AND PARTICIPANTS This case-control study examined individuals who presented from January 1, 2013, through December 31, 2016, at an academic medical center in Baltimore, Maryland. Case participants were diagnosed with anosmia by board-certified otolaryngologists. Control participants were selected using the nearest neighbor matching strategy for age, sex, race/ethnicity, and date of diagnosis. Data analysis was conducted from September 2020 to March 2021. EXPOSURES Ambient PM2.5 levels. MAIN OUTCOMES AND MEASURES Novel method to quantify ambient PM2.5 exposure levels in patients diagnosed with anosmia compared with matched control participants. RESULTS A total of 2690 patients were identified with a mean (SD) age of 55.3 (16.6) years. The case group included 538 patients with anosmia (20%), and the control group included 2152 matched control participants (80%). Most of the individuals in the case and control groups were women, White patients, had overweight (BMI 25 to <30), and did not smoke (women: 339 [63.0%] and 1355 [63.0%]; White patients: 318 [59.1%] and 1343 [62.4%]; had overweight: 179 [33.3%] and 653 [30.3%]; and did not smoke: 328 [61.0%] and 1248 [58.0%]). Mean (SD) exposure to PM2.5 was significantly higher in patients with anosmia compared with healthy control participants at 12-, 24-, 36-, 60-month time points: 10.2 (1.6) μg/m3 vs 9.9 (1.9) μg/m3; 10.5 (1.7) μg/m3 vs 10.2 (1.9) μg/m3; 10.8 (1.8) μg/m3 vs 10.4 (2.0) μg/m3; and 11.0 (1.8) μg/m3 vs 10.7 (2.1) μg/m3, respectively. There was an association between elevated PM2.5 exposure level and odds of anosmia in multivariate analyses that adjusted for age, sex, race/ethnicity, body mass index, alcohol or tobacco use, and medical comorbidities (12 mo: odds ratio [OR], 1.73; 95% CI, 1.28-2.33; 24 mo: OR, 1.72; 95% CI, 1.30-2.29; 36 mo: OR, 1.69; 95% CI, 1.30-2.19; and 60 mo: OR, 1.59; 95% CI, 1.22-2.08). The association between long-term exposure to PM2.5 and the odds of developing anosmia was nonlinear, as indicated by spline analysis. For example, for 12 months of exposure to PM2.5, the odds of developing anosmia at 6.0 µg/m3 was OR 0.79 (95% CI, 0.64-0.97); at 10.0 µg/m3, OR 1.42 (95% CI, 1.10-1.82); at 15.0 µg/m3, OR 2.03 (95% CI, 1.15-3.58). CONCLUSIONS AND RELEVANCE In this study, long-term airborne exposure to PM2.5 was associated with anosmia. Ambient PM2.5 represents a potentially ubiquitous and modifiable risk factor for the loss of sense of smell.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Global Health, The Peking University School of Public Health, Beijing, China
| | - Nicholas R. Rowan
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jayant M. Pinto
- Section of Otolaryngology–Head and Neck Surgery, Department of Surgery, The University of Chicago, Illinois
| | - Nyall R. London
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew P. Lane
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Murugappan Ramanathan
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|