1
|
Longo M, Greco E, Listorti I, Varricchio MT, Litwicka K, Arrivi C, Mencacci C, Greco P. Telomerase activity, telomere length, and the euploidy rate of human embryos. Gynecol Endocrinol 2024; 40:2373742. [PMID: 38946430 DOI: 10.1080/09513590.2024.2373742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Telomeres maintain chromosome stability, while telomerase counteracts their progressive shortening. Telomere length varies between cell types, with leukocyte telomere length (LTL) decreasing with age. Reduced telomerase activity has been linked to reproductive issues in females, such as low pregnancy rates and premature ovarian failure, with recent studies indicating correlations between telomere length in granulosa cells and IVF outcomes. OBJECTIVES The study aims to explore the relationship between telomere length, telomerase activity, and euploid blastocyst rate in infertile women undergoing IVF/ICSI PGT-A cycles. METHODS This prospective study involves 108 patients undergoing controlled ovarian stimulation and PGT-A. Telomere length and telomerase activity were measured in peripheral mononuclear cells and granulosa cells (GC), respectively. RESULTS The telomere repeat copy number to single gene copy number ratio (T/S) results respectively 0.6 ± 0.8 in leukocytes and 0.7 ± 0.9 in GC. An inverse relationship was found between LTL and the patient's age (p < .01). A higher aneuploid rate was noticed in patients with short LTL, with no differences in ovarian reserve markers (p = .15), number of oocytes retrieved (p = .33), and number of MII (p = 0.42). No significant association was noticed between telomere length in GC and patients' age (p = 0.95), in ovarian reserve markers (p = 0.32), number of oocytes retrieved (p = .58), number of MII (p = .74) and aneuploidy rate (p = .65). CONCLUSION LTL shows a significant inverse correlation with patient age and higher aneuploidy rates. Telomere length in GCs does not correlate with patient age or reproductive outcomes, indicating differential telomere dynamics between leukocytes and granulosa cells.
Collapse
Affiliation(s)
- Maria Longo
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ermanno Greco
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
- Department of Obstetrician and Gynecology, Saint Camillus International University of Health and Medical Sciences (Unicamillus), Rome, Italy
| | - Ilaria Listorti
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | | | - Katerina Litwicka
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Cristiana Arrivi
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Cecilia Mencacci
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| | - Pierfrancesco Greco
- Center for Reproductive Medicine, Casa di Cura Privata Villa Mafalda, Rome, Italy
| |
Collapse
|
2
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Litt JS, Belfort MB, Everson TM, Haneuse S, Tiemeier H. Neonatal multimorbidity and the phenotype of premature aging in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03617-2. [PMID: 39455859 DOI: 10.1038/s41390-024-03617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Multimorbidity is the co-occurrence of multiple chronic health problems, associated with aging, frailty, and poor functioning. Children born preterm experience more multimorbid conditions in early life compared to term-born peers. Though neonatal multimorbidity is linked to poor health-related quality of life, functional outcomes, and peer group participation, gaps in our theoretical understanding and conceptualization remain. Drawing from life course epidemiology and the Developmental Origins of Heath and Disease models, we offer a framework that neonatal multimorbidity reflects maturational vulnerability posed by preterm birth. The impact of such vulnerability on health and development may be further amplified by adverse exposures and interventions within the environment of the neonatal intensive care unit. This can be exacerbated by disadvantaged home or community contexts after discharge. Uncovering the physiologic and social antecedents of multiple morbid conditions in the neonatal period and their biological underpinnings will allow for more accurate risk-prediction, counseling, and care planning for preterm infants and their families. According to this framework, the maturational vulnerability to multimorbidity imparted by preterm birth and its negative effects on health and development are not predetermined or static. Elucidating pathways of early biologic and physical aging will lead to improvements in care and outcomes. IMPACT: Multimorbidity is associated with significant frailty and dysfunction among older adults and is indicative of early physiologic aging. Preterm infants commonly experience multimorbidities in the newborn period, an underrecognized threat to long-term health and development. We offer a novel framework incorporating multimorbidity, early cellular aging, and life course health development to innovate risk-prediction, care-planning, and therapeutics.
Collapse
Affiliation(s)
- Jonathan S Litt
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, USA.
- Department of Pediatrics, Harvard Medical School, Boston, USA.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA.
| | - Mandy Brown Belfort
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Department of Pediatrics, Brigham and Women's Hospital, Boston, USA
| | - Todd M Everson
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, USA
| |
Collapse
|
4
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
5
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Aali R, Asli Gharehbagh H, Gholampour A, Sorooshian A, Panahi Y. Children exposed to salt-dust emission from Urmia Lake have short telomere length: a case-control pilot study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-8. [PMID: 39192622 DOI: 10.1080/09603123.2024.2394136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
This study aimed to measure telomere length in healthy children living next to Urmia Lake, Iran, which is exposed to salt dust from a drying lakebed. In this case-control pilot study, we recruited 39 sex- and age-matched healthy children from two different geographic regions to study the relative telomere lengths using qPCR. We categorized the study samples into high-impact and low-impact areas based on wind direction, aerosol particle level, and distance from the lake. Our main results revealed that children living in high-impact areas have shorter telomeres than those living in low-impact areas. Furthermore, according to our statistical model, parental age significantly affected telomere length in children, but inversely. When the father's age impact was positive, the mother had a negative effect. Based on our results, to prevent Urmia Lake from dying out completely, national and international organizations should implement comprehensive visions and strategies for its restoration.
Collapse
Affiliation(s)
- Rahim Aali
- Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | | | - Akbar Gholampour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
McQuillan MA, Verhulst S, Hansen MEB, Beggs W, Meskel DW, Belay G, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Njamnshi AK, Chanock SJ, Aviv A, Tishkoff SA. Association between telomere length and Plasmodium falciparum malaria endemicity in sub-Saharan Africans. Am J Hum Genet 2024; 111:927-938. [PMID: 38701745 PMCID: PMC11080607 DOI: 10.1016/j.ajhg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.
Collapse
Affiliation(s)
- Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania (KIUT), Dares Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Mu C, Lin M, Shao Y, Liao Q, Liang J, Yu C, Wu X, Chen M, Tang Y, Zhou L, Qiu X, Pan D, Huang D. Associations between maternal serum neonicotinoid pesticide exposure during pregnancy and newborn telomere length: Effect modification by sampling season. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116164. [PMID: 38447517 DOI: 10.1016/j.ecoenv.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND An increasing amount of evidence suggests that telomere length (TL) at birth can predict lifespan and is associated with chronic diseases later in life, but newborn TL may be affected by environmental pollutants. Neonicotinoids (NEOs) are widely used worldwide, and despite an increasing number of studies showing that they may have adverse effects on birth in mammals and even humans, few studies have examined the effect of NEO exposure on newborn TLs. OBJECTIVE To investigate the effects of prenatal exposure to NEOs and the interactions between NEOs and sampling season on newborn TL. METHODS We conducted a prospective cohort study of 500 mother-newborn pairs from the Guangxi Zhuang Birth Cohort. Ultraperformance liquid chromatographymass spectrometry was used to detect ten NEOs in maternal serum, and fluorescence quantitative PCR was used to estimate the newborn TL. A generalized linear model (GLM) was used to evaluate the relationships between individual NEO exposures and TLs , and quantile g-computation (Qgcomp) model and Bayesian kernel machine regression (BKMR) model were used to evaluate the combined effect of mixtures of components. RESULTS The results of the GLM showed that compared with maternal TMX levels < LOD, maternal TMX levels < median were negatively correlated with newborn TL (-6.93%, 95% CI%: -11.92%, -1.66%), and the decrease in newborn TL was more pronounced in girls (-9.60%, 95% CI: -16.84%, -1.72%). Moreover, different kinds of maternal NEO exposure had different effects on newborn TL in different sampling seasons, and the effect was statistically significant in all seasons except in autumn. Mixed exposure analysis revealed a potential positive trend between NEOs and newborn TL, but the association was not statistically significant. CONCLUSION Prenatal exposure to TMX may shorten newborn TL, and this effect is more pronounced among female newborns. Furthermore, the relationship between NEO exposure and TL may be modified by the sampling season.
Collapse
Affiliation(s)
- Changhui Mu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yantao Shao
- Department of Medical and Health Management, Logistics Infrastructure Department, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanxiang Yu
- Wujiang District Center for Disease Control and Prevention, Suzhou 215299, China
| | - Xiaolin Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lihong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
11
|
Campisi M, Cannella L, Celik D, Gabelli C, Gollin D, Simoni M, Ruaro C, Fantinato E, Pavanello S. Mitigating cellular aging and enhancing cognitive functionality: visual arts-mediated Cognitive Activation Therapy in neurocognitive disorders. Front Aging Neurosci 2024; 16:1354025. [PMID: 38524114 PMCID: PMC10957554 DOI: 10.3389/fnagi.2024.1354025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dilek Celik
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Gabelli
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Donata Gollin
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Marco Simoni
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Cristina Ruaro
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Elena Fantinato
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
- University Hospital of Padua, Padua, Italy
| |
Collapse
|
12
|
Ahlers NE, Lin J, Weiss SJ. WITHDRAWN: Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.17.23295692. [PMID: 37790308 PMCID: PMC10543047 DOI: 10.1101/2023.09.17.23295692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This manuscript has been withdrawn by the authors as it was submitted and made public without the full consent of all the authors. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The authors have an approved version for citation that is peer reviewed. Ahlers, N.E.; Lin, J.; Weiss, S.J. Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. Air 2024, 2, 24-37. https://doi.org/10.3390/air2010002.
Collapse
|
13
|
Cheng D, Zhang F, Porter KI, Wang S, Zhang H, Davis CJ, Robertson GP, Zhu J. Humanization of the mouse Tert gene reset telomeres to human length. RESEARCH SQUARE 2024:rs.3.rs-3617723. [PMID: 38260456 PMCID: PMC10802727 DOI: 10.21203/rs.3.rs-3617723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Telomeres undergo shortening with each cell division, serving as biomarkers of human aging, which is characterized by short telomeres and restricted telomerase expression in adult tissues. Contrarily, mice, featuring their longer telomeres and widespread telomerase activity, present limitations as models for understanding telomere-related human biology and diseases. To bridge this gap, we engineered a mouse strain with a humanized mTert gene, hmTert, wherein specific non-coding sequences were replaced with their human counterparts. The hmTert gene, encoding the wildtype mTert protein, was repressed in adult tissues beyond the gonads and thymus, closely resembling the regulatory pattern of the human TERT gene. Remarkably, the hmTert gene rescued telomere dysfunction in late generations of mTert-knockout mice. Through successive intercrosses of Terth/- mice, telomere length progressively declined, stabilizing below 10-kb. Terth/h mice achieved a human-like average telomere length of 10-12 kb, contrasting with the 50-kb length in wildtype C57BL/6J mice. Despite shortened telomeres, Terth/h mice maintained normal body weight and cell homeostasis in highly proliferative tissues. Notably, colonocyte proliferation decreased significantly in Terth/h mice during dextran sodium sulfate-induced ulcerative colitis-like pathology, suggesting limitations on cellular renewal due to short telomeres. Our findings underscore the genetic determination of telomere homeostasis in mice by the Tert gene. These mice, exhibiting humanized telomere homeostasis, serve as a valuable model for exploring fundamental questions related to human aging and cancer.
Collapse
Affiliation(s)
- De Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Fan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Kenneth I. Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Gavin P. Robertson
- Department of Pharmacology, Pathology, Dermatology, and Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
14
|
Kertes DA, Clendinen C, Duan K, Rabinowitz JA, Browning C, Kvam P. The Social Environment Matters for Telomere Length and Internalizing Problems During Adolescence. J Youth Adolesc 2024; 53:21-35. [PMID: 37747680 PMCID: PMC10761382 DOI: 10.1007/s10964-023-01848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023]
Abstract
Depression and anxiety symptoms are on the rise among adolescents. With increasing evidence that cellular aging may be associated with depressive and anxiety symptoms, there is an urgent need to identify the social environment context that may moderate this link. This study addresses this research gap by investigating the moderating role of the social environment on the relation between telomere length and emotional health among adolescents. Participants were 411 non-Hispanic (88.56%) Black (100%) adolescents (M = 14.23 years, SD = 1.85, female = 54%) in a major metropolitan city. Youth and parents reported on an array of social risk and protective factors, and youth provided DNA samples for telomere length measurement. Results demonstrated that the association of telomere length and anxiety symptoms was stronger among youth with higher perceived stress or lower school belongingness, and the association of telomere length with depressive symptoms was stronger under conditions of higher parent inter-partner psychological aggression. The results enhance our understanding of the complex associations between biological aging, the social environment, and mental health in adolescence.
Collapse
Affiliation(s)
- Darlene A Kertes
- Department of Psychology, University of Florida, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
- Genetics Institute, University of Florida, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
| | - Cherita Clendinen
- Department of Psychology, University of Florida, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Ke Duan
- Department of Psychology, University of Florida, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Christopher Browning
- Department of Sociology, Ohio State University, 1885 Neil Ave, Columbus, OH, 43210, USA
| | - Peter Kvam
- Department of Psychology, University of Florida, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| |
Collapse
|
15
|
Pérez-López FR, López-Baena MT, Ulloque-Badaracco JR, Benites-Zapata VA. Telomere Length in Patients with Gestational Diabetes Mellitus and Normoglycemic Pregnant Women: a Systematic Review and Meta-analysis. Reprod Sci 2024; 31:45-55. [PMID: 37491556 PMCID: PMC10784358 DOI: 10.1007/s43032-023-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
We performed a systematic review and meta-analysis of studies assessing telomere length in blood leukocytes or mononuclear cells in women with gestational diabetes mellitus (GDM) and normoglycemic pregnant women (NPW) and their infants. The review protocol was registered in PROSPERO (CRD42022300950). Searches were conducted in PubMed, Embase, LILACS, CNKI, and Wang Fang, from inception through November 2022. The primary outcomes were maternal and offspring telomere length. The Newcastle-Ottawa Scale was used to assess the quality of included studies. Random-effect meta-analyses were applied to estimate standardized mean differences (SMDs) and their 95% confidence interval (CI). The meta-analysis of four studies showed no significant maternal telomere length difference (SMD = -0.80, 95% CI: -1.66, 0.05) in women with GDM compared to NPW. In the sensibility analysis omitting one study with a small sample of women, the telomere length becomes significantly reduced in women with GDM (SMD = -1.10, 95% CI: -2.18, -0.02). GDM patients had increased glucose (SMD = 0.28, 95% CI: 0.09, 0.46) and glycosylated hemoglobin than NPW (SMD = 0.62, 95% CI: 0.23, 1.01) while total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides did not display differences between women with and without GDM. There was no significant difference in cord blood telomere length in offspring from women with GDM and NPW (SMD = 0.11, 95% CI: -0.52, 0.30). Cord blood insulin levels (SMD = 0.59, 95% CI: 0.33, 0.85) and birthweight (SMD = 0.59, 95% CI: 0.39, 0.79) were higher in offspring from pregnant women with GDM than in those from NPW. There were no significant differences in maternal and offspring telomere length between pregnancies with and without GDM.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- Universty of Zaragoza Faculty of Medicine, Domingo Miral s/n, 50009, Zaragoza, Spain.
- Health Outcomes and Systematic Analyses Research Unit, Aragón Health Research Institute, San Juan Bosco 13, 50009, Zaragoza, Spain.
| | - María T López-Baena
- Health Outcomes and Systematic Analyses Research Unit, Aragón Health Research Institute, San Juan Bosco 13, 50009, Zaragoza, Spain
| | | | | |
Collapse
|
16
|
Kaneko H, Maezawa Y, Tsukagoshi‐Yamaguchi A, Koshizaka M, Takada‐Watanabe A, Nakamura R, Funayama S, Aono K, Teramoto N, Sawada D, Maeda Y, Minamizuka T, Hayashi A, Ide K, Ide S, Shoji M, Kitamoto T, Takemoto M, Kato H, Yokote K. Sex differences in symptom presentation and their impact on diagnostic accuracy in Werner syndrome. Geriatr Gerontol Int 2024; 24:161-167. [PMID: 38062994 PMCID: PMC11503585 DOI: 10.1111/ggi.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
AIM Whether sex differences exist in hereditary progeroid syndromes remains unclear. In this study, we investigated sex differences in patients with Werner syndrome (WS), a model of human aging, using patient data at the time of diagnosis. METHODS The presence of six cardinal signs in the diagnostic criteria was retrospectively evaluated. RESULTS We found that the percentage of patients with all cardinal signs was higher in males than in females (54.2% vs. 21.2%). By the age of 40 years, 57.1% of male patients with WS presented with all the cardinal signs, whereas none of the female patients developed all of them. In particular, the frequency of having a high-pitched, hoarse voice, a characteristic of WS, was lower in female patients. The positive and negative predictive values for clinical diagnosis were 100% for males and females, indicating the helpfulness of diagnostic criteria regardless of sex. More female patients than male (86.7% vs. 64%) required genetic testing for their diagnosis because their clinical symptoms were insufficient, suggesting the importance of genetic testing for females even if they do not show typical symptoms of WS. Finally, the frequency of abnormal voice was lower in patients with WS harboring the c.3139-1G > C homozygous mutation. CONCLUSION These results indicate, for the first time, that there are sex differences in the phenotypes of hereditary progeroid syndromes. The analysis of this mechanism in this human model of aging may lead to the elucidation of sex differences in the various symptoms of normal human aging. Geriatr Gerontol Int 2024; 24: 161-167.
Collapse
Affiliation(s)
- Hiyori Kaneko
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Yoshiro Maezawa
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Ayano Tsukagoshi‐Yamaguchi
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Masaya Koshizaka
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Aki Takada‐Watanabe
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Rito Nakamura
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Shinichiro Funayama
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Kazuto Aono
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Naoya Teramoto
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Daisuke Sawada
- Department of PediatricsChiba University Graduate School of MedicineChibaJapan
| | - Yukari Maeda
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Takuya Minamizuka
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Aiko Hayashi
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Kana Ide
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Shintaro Ide
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Mayumi Shoji
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Takumi Kitamoto
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Minoru Takemoto
- Department of DiabetesMetabolism and Endocrinology, International University of Health and WelfareChibaJapan
| | - Hisaya Kato
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Koutaro Yokote
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
17
|
Chang Y, Zhou Y, Zhou J, Li W, Cao J, Jing Y, Zhang S, Shen Y, Lin Q, Fan X, Yang H, Dong X, Zhang S, Yi X, Shuai L, Shi L, Liu Z, Yang J, Ma X, Hao J, Chen K, Li MJ, Wang F, Huang D. Unraveling the causal genes and transcriptomic determinants of human telomere length. Nat Commun 2023; 14:8517. [PMID: 38129441 PMCID: PMC10739845 DOI: 10.1038/s41467-023-44355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Telomere length (TL) shortening is a pivotal indicator of biological aging and is associated with many human diseases. The genetic determinates of human TL have been widely investigated, however, most existing studies were conducted based on adult tissues which are heavily influenced by lifetime exposure. Based on the analyses of terminal restriction fragment (TRF) length of telomere, individual genotypes, and gene expressions on 166 healthy placental tissues, we systematically interrogate TL-modulated genes and their potential functions. We discover that the TL in the placenta is comparatively longer than in other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral TL genome-wide association studies (GWASs) on 644,553 individuals identify 20 newly discovered genetic associations and provide increased polygenic determination of human TL. Next, we integrate the powerful TL GWAS with placental expression quantitative trait locus (eQTL) mapping to prioritize 23 likely causal genes, among which 4 are functionally validated, including MMUT, RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and TRF-based TL improve the prediction performance of human TL. This study deepens our understanding of causal genes and transcriptomic determinants of human TL, promoting the mechanistic research on fine-grained TL regulation.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junrui Zhou
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wen Li
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Jiasong Cao
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yaqing Jing
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Zhang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Shen
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Qimei Lin
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Lei Shi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Wang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China.
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China.
| | - Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
18
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Li H, Meyerson M. Neotelomeres and Telomere-Spanning Chromosomal Arm Fusions in Cancer Genomes Revealed by Long-Read Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569101. [PMID: 38077026 PMCID: PMC10705422 DOI: 10.1101/2023.11.30.569101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Alterations in the structure and location of telomeres are key events in cancer genome evolution. However, previous genomic approaches, unable to span long telomeric repeat arrays, could not characterize the nature of these alterations. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeat arrays, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. Analysis of lung adenocarcinoma genome sequences identified somatic neotelomere and telomere-spanning fusion alterations. These results provide a framework for systematic study of telomeric repeat arrays in cancer genomes, that could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Michael K. Slevin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mitchell L. Leibowitz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
19
|
Lis N, Lamnisos D, Bograkou-Tzanetakou A, Hadjimbei E, Tzanetakou IP. Preterm Birth and Its Association with Maternal Diet, and Placental and Neonatal Telomere Length. Nutrients 2023; 15:4975. [PMID: 38068836 PMCID: PMC10708229 DOI: 10.3390/nu15234975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Preterm birth (PTB), a multi-causal syndrome, is one of the global epidemics. Maternal nutrition, but also neonatal and placental telomere length (TL), are among the factors affecting PTB risk. However, the exact relationship between these factors and the PTB outcome, remains obscure. The aim of this review was to investigate the association between PTB, maternal nutrition, and placental-infant TL. Observational studies were sought with the keywords: maternal nutrition, placental TL, newborn, TL, and PTB. No studies were found that included all of the keywords simultaneously, and thus, the keywords were searched in dyads, to reach assumptive conclusions. The findings show that maternal nutrition affects PTB risk, through its influence on maternal TL. On the other hand, maternal TL independently affects PTB risk, and at the same time PTB is a major determinant of offspring TL regulation. The strength of the associations, and the extent of the influence from covariates, remains to be elucidated in future research. Furthermore, the question of whether maternal TL is simply a biomarker of maternal nutritional status and PTB risk, or a causative factor of PTB, to date, remains to be answered.
Collapse
Affiliation(s)
- Nikoletta Lis
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
- Maternity Clinic, Cork University Maternity Hospital, T12 YE02 Cork, Ireland
| | - Demetris Lamnisos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus; (N.L.); (D.L.)
| | | | - Elena Hadjimbei
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Irene P. Tzanetakou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
20
|
Prasad A, Lin J, Jelliffe-Pawlowski L, Coleman-Phox K, Rand L, Wojcicki JM. Sub-optimal maternal gestational gain is associated with shorter leukocyte telomere length at birth in a predominantly Latinx cohort of newborns. Matern Health Neonatol Perinatol 2023; 9:14. [PMID: 37919818 PMCID: PMC10623801 DOI: 10.1186/s40748-023-00167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE To assess in utero exposures associated with leukocyte telomere length (LTL) at birth and maternal LTL in a primarily Latinx birth cohort. STUDY DESIGN Mothers and newborns were recruited postnatally before 24 h of life. Newborn LTL was collected via heelstick at birth and maternal LTL was collected postnatally. LTL was determined by quantitative PCR. Using a longitudinal design, we evaluated associations between neonatal and maternal LTL and appropriate maternal gestational gain as indicated by the American College of Obstetrics and Gynecology (ACOG). RESULT Mean infant LTL was 2.02 ± 0.30 T/S (n = 386) and maternal LTL was 1.54 ± 0.26 T/S (n = 58). Independent risk factors for shorter LTL at birth included longer gestational duration (Coeff:-0.03, 95%CI: -0.05-0.01;p < 0.01) and maternal gestational weight gain below ACOG recommendations (Coeff:-0.10, 95%CI: -0.18 - -0.02; p = 0.01). CONCLUSION Gestational weight gain below ACOG recommendations may adversely impact neonatal health in Latinx infants as indicated by shorter LTL at birth.
Collapse
Affiliation(s)
- Apurva Prasad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Francisco, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Laura Jelliffe-Pawlowski
- Preterm Birth Initiative, University of California, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Kimberley Coleman-Phox
- Department of Obstetrics, Gynecology and Reproductive Health Sciences, University of California, San Francisco, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology and Reproductive Health Sciences, University of California, San Francisco, USA
| | - Janet M Wojcicki
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Francisco, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.
| |
Collapse
|
21
|
Naudé PJW, Stein DJ, Lin J, Zar HJ. Investigating the association of prenatal psychological adversities with mother and child telomere length and neurodevelopment. J Affect Disord 2023; 340:675-685. [PMID: 37591348 DOI: 10.1016/j.jad.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Exposure to prenatal maternal psychological adversities can negatively affect the offspring's developing brain. Shortened telomere length (TL) has been implicated as a mechanism for the transgenerational effects of maternal psychological adversities on offspring. This study aimed to determine associations between prenatal psychological stressors and distress with maternal and early life TL, and associations between maternal, newborn and child TL with neurodevelopmental outcomes at 2 years of age. METHODS Follow-up TL was measured in a subgroup of African mothers (n = 138) and their newborns (n = 142) and children (n = 96) at 2-years in the Drakenstein Child Health Study. Prenatal symptoms of depression, distress, intimate partner violence, posttraumatic stress-disorder and childhood trauma were measured at 27 weeks gestation. Neurodevelopment was assessed at 2 years using the Bayley Scales of Infant and Toddler Development III. TLs were measured in whole bloods from mothers and their children at 2-years, and cord bloods in newborns. RESULTS Maternal prenatal stressors and distress were not significantly associated with TL in mothers or their children at birth or at 2-years. Furthermore, maternal psychological measures were not associated with early-life attrition of TL. Longer TL in children at 2-years was associated (p = 0.04) with higher motor functioning. LIMITATIONS Limited numbers of participants and single time-point psychological measures. CONCLUSIONS This study is the first to provide information on the association of early life TL with prenatal psychological adversities and neurodevelopmental outcomes in a population of low-income African mothers and their children.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| | - Jue Lin
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SA-MRC Unit on Child and Adolescent Health, University of Cape Town, South Africa
| |
Collapse
|
22
|
Devrajani T, Abid S, Shaikh H, Shaikh I, Devrajani DB, Memon SM, Waryah AM, Ujjan ID, Syed BM. Relationship between aging and control of metabolic syndrome with telomere shortening: a cross-sectional study. Sci Rep 2023; 13:17878. [PMID: 37857729 PMCID: PMC10587132 DOI: 10.1038/s41598-023-44715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Aging is considered one of the major risk factors for several human disorders. The telomere plays a crucial role in regulating cellular responsiveness to stress and growth stimuli as well as maintaining the integrity of the Deoxyribonucleic Acid (DNA), and aging leads to the progressive decline in the telomere length (TL) due to continuous cell division. The aim of this study was to determine the relationship between TL and advancing age and the impact of metabolic syndrome (MetS) on TL. Firstly, we determined the association of advancing age and TL, by measuring telomere length (T/S ratio) in healthy volunteers (n = 90). The TL was compared between normal population and patients with metabolic syndrome (n = 298). The age matched controlled and uncontrolled MetS patients (n = 149) were also compared for their TL T/S ratio. The TL showed negative correlation with advancing age, whereas the significant change was observed at the cut-offs of 40 and 70 years defining 40 with longer TL and 70 as shorter TL. The longest T/S ratio at 2.46 was measured at the age range of 1 year in healthy volunteers, while elderly population showed considerably shorter TL. The patients older than 60 years with poor or uncontrolled MetS had shorter TL, as compared to the controlled MetS. In conclusion our findings suggest that TL was negatively correlated with advancing age. Uncontrolled metabolic syndrome appeared to have worsening effects on TL. Telomere length appears to have potential to be used a parameter to determine age. However, further large scale studies are recommended to make firm guidelines.
Collapse
Affiliation(s)
- Tarachand Devrajani
- Clinical Research Division, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Shariq Abid
- Clinical Research Division, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hina Shaikh
- Department of Molecular Biology and Genetics, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Iram Shaikh
- Department of Molecular Biology and Genetics, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Durshana Bai Devrajani
- Department of Molecular Biology and Genetics, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Sikander Munir Memon
- Clinical Research Division, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Muhammad Waryah
- Department of Molecular Biology and Genetics, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Binafsha Manzoor Syed
- Clinical Research Division, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan.
| |
Collapse
|
23
|
Mayer SE, Guan J, Lin J, Hamlat E, Parker JE, Brownell K, Price C, Mujahid M, Tomiyama AJ, Slavich GM, Laraia BA, Epel ES. Intergenerational effects of maternal lifetime stressor exposure on offspring telomere length in Black and White women. Psychol Med 2023; 53:6171-6182. [PMID: 36457292 PMCID: PMC10235210 DOI: 10.1017/s0033291722003397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Although maternal stressor exposure has been associated with shorter telomere length (TL) in offspring, this literature is based largely on White samples. Furthermore, timing of maternal stressors has rarely been examined. Here, we examined how maternal stressors occurring during adolescence, pregnancy, and across the lifespan related to child TL in Black and White mothers. METHOD Mothers (112 Black; 110 White; Mage = 39) and their youngest offspring (n = 222; Mage = 8) were part of a larger prospective cohort study, wherein mothers reported their stressors during adolescence (assessed twice during adolescence for the past year), pregnancy (assessed in midlife for most recent pregnancy), and across their lifespan (assessed in midlife). Mother and child provided saliva for TL measurement. Multiple linear regression models examined the interaction of maternal stressor exposure and race in relation to child TL, controlling for maternal TL and child gender and age. Race-stratified analyses were also conducted. RESULTS Neither maternal adolescence nor lifespan stressors interacted with race in relation to child TL. In contrast, greater maternal pregnancy stressors were associated with shorter child TL, but this effect was present for children of White but not Black mothers. Moreover, this effect was significant for financial but not social pregnancy stressors. Race-stratified models revealed that greater financial pregnancy stressors predicted shorter telomeres in offspring of White, but not Black mothers. CONCLUSIONS Race and maternal stressors interact and are related to biological aging across generations, but these effects are specific to certain races, stressors, and exposure time periods.
Collapse
Affiliation(s)
- Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
| | - Joanna Guan
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elissa Hamlat
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
| | - Jordan E. Parker
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Kristy Brownell
- School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Candice Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Mahasin Mujahid
- School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - A. Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - Barbara A. Laraia
- School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elissa S. Epel
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
| |
Collapse
|
24
|
Toljić B, Milašin J, De Luka SR, Dragović G, Jevtović D, Maslać A, Ristić-Djurović JL, Trbovich AM. HIV-Infected Patients as a Model of Aging. Microbiol Spectr 2023; 11:e0053223. [PMID: 37093018 PMCID: PMC10269491 DOI: 10.1128/spectrum.00532-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
We appraised the relationship between the biological and the chronological age and estimated the rate of biological aging in HIV-infected patients. Two independent biomarkers, the relative telomere length and iron metabolism parameters, were analyzed in younger (<35) and older (>50) HIV-infected and uninfected patients (control group). In our control group, telomeres of younger patients were significantly longer than telomeres of older ones. However, in HIV-infected participants, the difference in the length of telomeres was lost. By combining the length of telomeres with serum iron, ferritin, and transferrin iron-binding capacity, a new formula for determination of the aging process was developed. The life expectancy of the healthy population was related to their biological age, and HIV-infected patients were biologically older. The effect of antiretroviral HIV drug therapies varied with respect to the biological aging process. IMPORTANCE This article is focused on the dynamics of human aging. Moreover, its interdisciplinary approach is applicable to various systems that are aging.
Collapse
Affiliation(s)
- Boško Toljić
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milašin
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
25
|
Meesters M, Van Eetvelde M, Martens DS, Nawrot TS, Dewulf M, Govaere J, Opsomer G. Prenatal environment impacts telomere length in newborn dairy heifers. Sci Rep 2023; 13:4672. [PMID: 36949104 PMCID: PMC10033676 DOI: 10.1038/s41598-023-31943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Telomere length is associated with longevity and survival in multiple species. In human population-based studies, multiple prenatal factors have been described to be associated with a newborn's telomere length. In the present study, we measured relative leukocyte telomere length in 210 Holstein Friesian heifers, within the first ten days of life. The dam's age, parity, and milk production parameters, as well as environmental factors during gestation were assessed for their potential effect on telomere length. We found that for both primi- and multiparous dams, the telomere length was 1.16% shorter for each day increase in the calf's age at sampling (P = 0.017). The dam's age at parturition (P = 0.045), and the median temperature-humidity index (THI) during the third trimester of gestation (P = 0.006) were also negatively associated with the calves' TL. Investigating multiparous dams separately, only the calf's age at sampling was significantly and negatively associated with the calves' TL (P = 0.025). Results of the present study support the hypothesis that in cattle, early life telomere length is influenced by prenatal factors. Furthermore, the results suggest that selecting heifers born in winter out of young dams might contribute to increased longevity in dairy cattle.
Collapse
Affiliation(s)
- Maya Meesters
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Research Unit Environment and Health, Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Mogi M, Liu S, Watanabe R, Imai M, Yano A, Ikegawa Y, Kato H. Perspectives on frailty as a total life-course disease with consideration of the fetal environment. Geriatr Gerontol Int 2023; 23:263-269. [PMID: 36855031 DOI: 10.1111/ggi.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Frailty attracts research as it represents a significant target for intervention to extend the healthy life span. An unanswered question in this field is the time point during the life-course at which an individual becomes predisposed to frailty. Here, we propose that frailty has a fetal origin and should be regarded as part of the spectrum of the developmental origins of health and disease. The developmental origins of health and disease theory originated from findings linking the fetal environment to lifestyle-related disorders such as hypertension and diabetes. Coincidentally, a recent trend in frailty research also centers on vascular dysfunction and metabolic alterations as the causality of lifestyle-related disorders such as sarcopenia and dementia. Here, we explore the relationship between fetal programming, frailty-related disorders (sarcopenia and dementia), and other age-related diseases mainly based on reports on intrauterine growth restriction. We propose a "total" life-course approach to combat frailty. With this viewpoint, not only physicians and gerontologists but also obstetricians and pediatricians should team up to overcome age-related diseases in the elderly. Geriatr Gerontol Int 2023; ••: ••-••.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan
| | - Shuang Liu
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan
| | - Ryusuke Watanabe
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan.,Department of Pediatrics, Graduate School of Medicine, Ehime University, Tohon, Japan
| | - Matome Imai
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan.,Department of Obstetrics and Gynecology, Ehime University, Graduate School of Medicine, Tohon, Japan
| | - Akiko Yano
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan.,Department of Obstetrics and Gynecology, Ehime University, Graduate School of Medicine, Tohon, Japan
| | - Yasuhito Ikegawa
- Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Japan.,Department of Ophthalmology, Ehime University, Graduate School of Medicine, Tohon, Japan
| | - Hidemasa Kato
- Department of Developmental Biology and Functional Genomics, Ehime University, Graduate School of Medicine, Tohon, Japan
| |
Collapse
|
27
|
Fattet AJ, Chaillot M, Koscinski I. Telomere Length, a New Biomarker of Male (in)Fertility? A Systematic Review of the Literature. Genes (Basel) 2023; 14:425. [PMID: 36833352 PMCID: PMC9957201 DOI: 10.3390/genes14020425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Male factors are suspected in around half cases of infertility, of which up to 40% are diagnosed as idiopathic. In the context of a continuously increased resort to ART and increased decline of semen parameters, it is of greatest interest to evaluate an additional potential biomarker of sperm quality. According to PRISMA guidelines, this systematic review of the literature selected studies evaluating telomere length in sperm and/or in leukocytes as a potential male fertility biomarker. Twenty-two publications (3168 participants) were included in this review of experimental evidence. For each study, authors determined if there was a correlation between telomere length and semen parameters or fertility outcomes. Of the 13 studies concerning sperm telomere length (STL) and semen parameters, ten found an association between short STL and altered parameters. Concerning the impact of STL on ART results, the data are conflicting. However, eight of the 13 included studies about fertility found significantly longer sperm telomeres in fertile men than in infertile men. In leukocytes, the seven studies reported conflicting findings. Shorter sperm telomeres appear to be associated with altered semen parameters or male infertility. Telomere length may be considered as a new molecular marker of spermatogenesis and sperm quality, and thus is related to male fertility potential. However, additional studies are needed to define the place of the STL in the assessment of individual fertility.
Collapse
Affiliation(s)
- Anne-Julie Fattet
- Centre d’AMP Majorelle-Atoutbio, 95 Rue Ambroise Paré, 54000 Nancy, France
| | - Maxime Chaillot
- Service de Médecine et Biologie du Développement et de la Reproduction, 38 Boulevard Jean Monnet, 44000 Nantes, France
- Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Isabelle Koscinski
- Inserm U1256, Nutrition Genetics Environmental Risks Exposure (NGERE), Université de Lorraine, 54000 Nancy, France
- Centre d’AMP Hôpital Saint Joseph, 26 Bd de Louvain, 13008 Marseille, France
| |
Collapse
|
28
|
Zong ZQ, Chen SW, Wu Y, Gui SY, Zhang XJ, Hu CY. Ambient air pollution exposure and telomere length: a systematic review and meta-analysis. Public Health 2023; 215:42-55. [PMID: 36642039 DOI: 10.1016/j.puhe.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to provide evidence of the associations between pre- and post-birth and adulthood air pollution exposure with telomere length. STUDY DESIGN The databases of PubMed, Embase, and Web of Science were searched up to June 1st, 2022 in order to include relevant observational studies and perform a systematic review and meta-analysis. METHODS The random-effects meta-analysis was grouped by air pollutant and exposure window (pre- and post-birth and adulthood) to evaluate the summary effect estimate. Cochran's Q and I2 statistics were used to evaluate the heterogeneity among the included studies. The quality of individual studies was evaluated using the national toxicology program/office of health assessment and translation risk of bias rating tool. RESULTS We identified 18 studies, covering 8506 children and 2263 adults from multiple countries. We found moderate evidence that particulate matter less than 2.5 μm (PM2.5) exposure during the entire pregnancy (-0.043, 95% CI: -0.067, -0.018), nitrogen dioxide (NO2) exposure during the first trimester (-0.016, 95% confidence interval [CI]: -0.027, -0.005), long-term adulthood PM2.5 exposure were associated with shortening telomere length. Mild to high between-study heterogeneity was observed for the most tested air pollutant-telomere length combinations in different exposure windows. CONCLUSIONS This systematic review and meta-analysis provides the evidence which strongly supports that prenatal PM2.5 and NO2 exposures were related to reduced telomere length, while prenatal sulfur dioxide (SO2) and carbon monoxide (CO) exposures, childhood PM2.5, particulate matter less than 10 μm (PM10), NO2 exposures and short-term adulthood PM2.5 and PM10 exposures were not associated with telomere length. Further high-quality studies are needed to elaborate our suggestive associations.
Collapse
Affiliation(s)
- Z-Q Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-W Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Y Wu
- Oncology Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Integrated Traditional and Western Medicine Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-Y Gui
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - X-J Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - C-Y Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
29
|
Khalil D, Giurgescu C, Misra DP, Templin T, Jenuwine E, Drury SS. Psychosocial Factors and Telomere Length Among Parents and Infants of Immigrant Arab American Families. Biol Res Nurs 2023; 25:137-149. [PMID: 36036284 PMCID: PMC10331091 DOI: 10.1177/10998004221124145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Immigrant Arab American families face multiple stressors related to migration and resettlement. Telomere length (TL) is an established biomarker of aging and psychosocial stress. No published studies have concurrently examined the association between maternal and paternal psychosocial factors and infants' TL. The purpose of this study was to: (1) compare mother, father, and infant TLs; (2) explore the association of maternal and paternal psychosocial factors (acculturative stress and depressive symptoms) with maternal and paternal TL; and (3) explore the association of maternal and paternal psychosocial factors with infants' TL among Arab American immigrants. Method: Using a cross-sectional exploratory design, a sample of 52 immigrant Arab American mother-father-infant triads were recruited from community centers. Data were collected in a single home visit when the infant was 6-24 months old. Each parent completed the study questionnaires addressing their psychosocial factors (acculturative stress, and depressive symptoms), then parents and infants provided buccal cell for TL measurement. Results: Maternal TL was positively correlated to infants' TL (r = .31, p = .04) and significantly shorter (p < .001). Paternal TL was not correlated with infant TL but was significantly shorter than infant's TL (p < .001). Maternal depression was significantly correlated with mothers' TL (r = .4, p = .007). Higher levels of maternal depressive symptoms were significantly associated with shorter infant TL when controlling for background characteristics. Conclusions: Our pilot study is the first study to examine maternal and paternal psychosocial factors related to migration and infants' TL. More research is needed to advance our understanding of the effects of immigration on the intergenerational transfer of stress and trauma.
Collapse
Affiliation(s)
- Dalia Khalil
- College of Nursing, Wayne State University, Detroit, MI, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central Florida, Orlando, FL, USA
| | - Dawn P. Misra
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Thomas Templin
- College of Nursing, Wayne State University, Detroit, MI, USA
| | | | - Stacy S. Drury
- The Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
30
|
Qureshi F, Aris IM, Rifas-Shiman SL, Perng W, Oken E, Rich-Edwards J, Cardenas A, Baccarelli AA, Enlow MB, Belfort MB, Tiemeier H. Associations of cord blood leukocyte telomere length with adiposity growth from infancy to adolescence. Pediatr Obes 2023; 18:e12977. [PMID: 36085441 PMCID: PMC9772131 DOI: 10.1111/ijpo.12977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Leukocyte telomere length (LTL) may be a biomarker for chronic disease susceptibility, but no work has tested this hypothesis directly. Our study investigated associations of LTL at birth with markers of adiposity growth that are linked with cardiometabolic health later in life. METHODS Participants were 375 children in Project Viva (48% female, 71% White). Body mass index (BMI) trajectories from birth to 18 years were tracked using repeated measures of BMI collected in physical examinations and via medical records, then used to predict age (months) and magnitude (kg/m2 ) of BMI peak and rebound. LTL was measured from cord blood via duplex quantitative PCR. A binary variable indicating LTL shorter than the reference population average was the primary exposure. RESULTS LTL was unrelated to BMI at peak or rebound, but associations were apparent with the timing of BMI growth milestones. Short LTL was related to a later age of peak for females (β = 0.99, 95% CI = 0.16, 1.82; psex interaction = 0.015) and an earlier age of rebound for both males and females (βcombined = -5.26, 95% CI = -9.44, -1.08). CONCLUSION LTL at birth may be an early biomarker of altered adiposity growth. Newborn telomere biology may shed new insight into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Farah Qureshi
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Wei Perng
- Department of Epidemiology, Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Janet Rich-Edwards
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, California, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Tang P, He W, Shao Y, Liu B, Huang H, Liang J, Liao Q, Tang Y, Mo M, Zhou Y, Li H, Huang D, Liu S, Zeng X, Qiu X. Associations between prenatal multiple plasma metal exposure and newborn telomere length: Effect modification by maternal age and infant sex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120451. [PMID: 36270567 DOI: 10.1016/j.envpol.2022.120451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to metals during pregnancy may affect maternal and infant health. However, studies on the combined effects of metals on the telomere length (TL) of newborns are limited. A prospective cohort study was conducted among 1313 mother-newborn pairs in the Guangxi Zhuang Birth Cohort. The concentrations of metals in maternal plasma during the first trimester were measured using inductively coupled plasma-mass spectrometry. We explored the associations between nine plasma metals and newborn TL using generalized linear models (GLMs), principal component analysis (PCA), quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR). The GLMs revealed the inverse association between plasma arsenic (percent change, -5.56%; 95% CI: -7.69%, -3.38%) and barium concentrations (-9.84%; 95% CI: -13.81%, -5.68%) and newborn TL. Lead levels were related to significant decreases in newborn TL only in females. The PCA revealed a negative association between the PC3 and newborn TL (-4.52%; 95% CI: -6.34%, -2.68%). In the BKMR, the joint effect of metals was negatively associated with newborn TL. Qgcomp indicated that each one-tertile increase in metal mixture levels was associated with shorter newborn TL (-9.39%; 95% CI: -14.32%, -4.18%). The single and joint effects of multiple metals were more pronounced among pregnant women carrying female fetuses and among pregnant women <28 years of age. The finding suggests that prenatal exposure to arsenic, barium, antimony, and lead and mixed metals may shorten newborn TLs. The relationship between metal exposures and newborn TL may exhibit heterogeneities according to infant sex and maternal age.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wanting He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Zhou
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
32
|
Martinez D, Lavebratt C, Millischer V, de Jesus R. de Paula V, Pires T, Michelon L, Camilo C, Esteban N, Pereira A, Schalling M, Vallada H. Shorter telomere length and suicidal ideation in familial bipolar disorder. PLoS One 2022; 17:e0275999. [PMID: 36469522 PMCID: PMC9721487 DOI: 10.1371/journal.pone.0275999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bipolar Disorder (BD) has recently been related to a process of accelerated aging, with shortened leukocyte telomere length (LTL) in this population. It has also been observed that the suicide rate in BD patients is higher than in the general population, and more recently the telomere length variation has been described as shorter in suicide completers compared with control subjects. Objectives The aim of the present study was to investigate if there is an association between LTL and BD in families where two or more members have BD including clinical symptomatology variables, along with suicide behavior. Methods Telomere length and single copy gene ratio (T/S ratio) was measured using quantitative polymerase chain reaction in a sample of 143 relatives from 22 families, of which 60 had BD. The statistical analysis was performed with a polygenic mixed model. Results LTL was associated with suicidal ideation (p = 0.02) as that there is an interaction between suicidal ideation and course of the disorder (p = 0.02). The estimated heritability for LTL in these families was 0.68. In addition, covariates that relate to severity of disease, i.e. suicidal ideation and course of the disorder, showed an association with shorter LTL in BD patients. No difference in LTL between BD patients and healthy relatives was observed. Conclusion LTL are shorter in subjects with familial BD suggesting that stress related sub-phenotypes possibly accelerate the process of cellular aging and correlate with disease severity and suicidal ideation.
Collapse
Affiliation(s)
- Daniela Martinez
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Catharina Lavebratt
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vincent Millischer
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa de Jesus R. de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago Pires
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leandro Michelon
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nubia Esteban
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre Pereira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Martin Schalling
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Homero Vallada
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
Boonekamp J, Rodríguez-Muñoz R, Hopwood P, Zuidersma E, Mulder E, Wilson A, Verhulst S, Tregenza T. Telomere length is highly heritable and independent of growth rate manipulated by temperature in field crickets. Mol Ecol 2022; 31:6128-6140. [PMID: 33728719 DOI: 10.1111/mec.15888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/31/2023]
Abstract
Many organisms are capable of growing faster than they do. Restrained growth rate has functionally been explained by negative effects on lifespan of accelerated growth. However, the underlying mechanisms remain elusive. Telomere attrition has been proposed as a causal agent and has been mostly studied in endothermic vertebrates. We established that telomeres exist as chromosomal-ends in a model insect, the field cricket Gryllus campestris, using terminal restriction fragment and Bal 31 methods. Telomeres comprised TTAGGn repeats of 38 kb on average, more than four times longer than the telomeres of human infants. Bal 31 assays confirmed that telomeric repeats were located at the chromosome-ends. We tested whether rapid growth between day 1, day 65, day 85, and day 125 is achieved at the expense of telomere length by comparing nymphs reared at 23°C with their siblings reared at 28°C, which grew three times faster in the initial 65 days. Surprisingly, neither temperature treatment nor age affected average telomere length. Concomitantly, the broad sense heritability of telomere length was remarkably high at ~100%. Despite high heritability, the evolvability (a mean-standardized measure of genetic variance) was low relative to that of body mass. We discuss our findings in the context of telomere evolution. Some important features of vertebrate telomere biology are evident in an insect species dating back to the Triassic. The apparent lack of an effect of growth rate on telomere length is puzzling, suggesting strong telomere length maintenance during the growth phase. Whether such maintenance of telomere length is adaptive remains elusive and requires further study investigating the links with fitness in the wild.
Collapse
Affiliation(s)
- Jelle Boonekamp
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Exeter, UK.,Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Paul Hopwood
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Erica Zuidersma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Alastair Wilson
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Wang C, Gu Y, Zhou J, Zang J, Ling X, Li H, Hu L, Xu B, Zhang B, Qin N, Lv H, Duan W, Jiang Y, He Y, Jiang T, Chen C, Han X, Zhou K, Xu B, Liu X, Tao S, Jiang Y, Du J, Dai J, Diao F, Lu C, Guo X, Huo R, Liu J, Lin Y, Xia Y, Jin G, Ma H, Shen H, Hu Z. Leukocyte telomere length in children born following blastocyst-stage embryo transfer. Nat Med 2022; 28:2646-2653. [PMID: 36522605 DOI: 10.1038/s41591-022-02108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Perinatal and childhood adverse outcomes associated with assisted reproductive technology (ART) has been reported, but it remains unknown whether the initial leukocyte telomere length (LTL), which is an indicator of age-related phenotypes in later life, is affected. Here, we estimated the LTLs of 1,137 individuals from 365 families, including 202 children conceived by ART and 205 children conceived spontaneously from two centers of the China National Birth Cohort, using whole-genome sequencing (WGS) data. One-year-old children conceived by ART had shorter LTLs than those conceived spontaneously (beta, -0.36; P = 1.29 × 10-3) after adjusting for plurality, sex and other potential confounding factors. In particular, blastocyst-stage embryo transfer was associated with shorter LTL (beta, -0.54, P = 2.69 × 10-3) in children conceived by ART. The association was validated in 586 children conceived by ART from five centers using different LTL quantification methods (that is, WGS or qPCR). Blastocyst-stage embryo transfer resulted in shorter telomere lengths in mice at postnatal day 1 (P = 2.10 × 10-4) and mice at 6 months (P = 0.042). In vitro culturing of mice embryos did not result in shorter telomere lengths in the late cleavage stage, but it did suppress telomerase activity in the early blastocyst stage. Our findings demonstrate the need to evaluate the long-term consequences of ART, particularly for aging-related phenotypes, in children conceived by ART.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bei Xu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Zhang
- Center for Reproductive Medicine, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Na Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyu Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.,Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China. .,State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
35
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Martens DS, Sleurs H, Dockx Y, Rasking L, Plusquin M, Nawrot TS. Association of Newborn Telomere Length With Blood Pressure in Childhood. JAMA Netw Open 2022; 5:e2225521. [PMID: 35930283 PMCID: PMC9356312 DOI: 10.1001/jamanetworkopen.2022.25521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPORTANCE Adult telomere length (TL) is a biological marker of aging associated with vascular health. TL at birth is associated with later life TL and may contain early biological information of later life cardiovascular health and disease. OBJECTIVE To evaluate whether newborn TL is associated with early life blood pressure differences in childhood. DESIGN, SETTING, AND PARTICIPANTS This cohort study was part of the ENVIRONAGE (Environmental Influence on Aging in Early Life) study, a birth cohort of Belgian mother-child pairs with recruitment at birth and a median follow-up of 4.5 years conducted between October 2014 and July 2021. Participants included for analysis provided full data for evaluation at follow-up visit. Data analysis was conducted between August and September 2021. MAIN OUTCOMES AND MEASURES Cord blood and placental average relative TL were measured at birth using quantitative polymerase chain reaction (qPCR). Systolic, diastolic, and mean arterial pressure (MAP) were evaluated at follow-up. High childhood blood pressure (standardized for child age, sex, and height) was defined following the 2017 American Academy of Pediatrics guidelines. Multivariable adjusted linear and logistic regression models were used to associate newborn TL and blood pressure indicators in childhood. RESULTS This study included 485 newborn children (52.8% girls) with a mean (SD) age of 4.6 (0.4) years at the follow-up visit. Newborn TL was associated with lower blood pressure in childhood. A 1-IQR increase in cord blood TL was associated with a -1.54 mm Hg (95% CI, -2.36 to -0.72 mm Hg) lower diastolic blood pressure and -1.18 mm Hg (95% CI, -1.89 to -0.46 mm Hg) lower MAP. No association was observed with systolic blood pressure. Furthermore, a 1-IQR increase in cord blood TL was associated with lower odds of having high blood pressure at the age of 4 to 6 years (adjusted OR, 0.72; 95% CI, 0.53 to 0.98). In placenta, a 1-IQR increase in TL was associated with a -0.96 mm Hg (95% CI, -1.72 to -0.21 mm Hg) lower diastolic, -0.88 mm Hg (95% CI, -1.54 to -0.22 mm Hg) lower MAP, and a lower adjusted OR of 0.69 (95% CI, 0.52 to 0.92) for having a high blood pressure in childhood. CONCLUSIONS AND RELEVANCE In this prospective birth cohort study, variation in early life blood pressure at school-age was associated with TL at birth. Cardiovascular health may to some extent be programmed at birth, and these results suggest that TL entails a biological mechanism in this programming.
Collapse
Affiliation(s)
- Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Research Unit Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Cigan SS, Meredith JJ, Kelley AC, Yang T, Langer EK, Hooten AJ, Lane JA, Cole BR, Krailo M, Frazier AL, Pankratz N, Poynter JN. Predicted leukocyte telomere length and risk of germ cell tumours. Br J Cancer 2022; 127:301-312. [PMID: 35368045 PMCID: PMC9296514 DOI: 10.1038/s41416-022-01798-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Genetically predicted leukocyte telomere length (LTL) has been evaluated in several studies of childhood and adult cancer. We test whether genetically predicted longer LTL is associated with germ cell tumours (GCT) in children and adults. METHODS Paediatric GCT samples were obtained from a Children's Oncology Group study and state biobank programs in California and Michigan (N = 1413 cases, 1220 biological parents and 1022 unrelated controls). Replication analysis included 396 adult testicular GCTs (TGCT) and 1589 matched controls from the UK Biobank. Mendelian randomisation was used to look at the association between genetically predicted LTL and GCTs and TERT variants were evaluated within GCT subgroups. RESULTS We identified significant associations between TERT variants reported in previous adult TGCT GWAS in paediatric GCT: TERT/rs2736100-C (OR = 0.82; P = 0.0003), TERT/rs2853677-G (OR = 0.80; P = 0.001), and TERT/rs7705526-A (OR = 0.81; P = 0.003). We also extended these findings to females and tumours outside the testes. In contrast, we did not observe strong evidence for an association between genetically predicted LTL by other variants and GCT risk in children or adults. CONCLUSION While TERT is a known susceptibility locus for GCT, our results suggest that LTL predicted by other variants is not strongly associated with risk in either children or adults.
Collapse
Affiliation(s)
- Shannon S Cigan
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - John J Meredith
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ava C Kelley
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tianzhong Yang
- Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erica K Langer
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony J Hooten
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John A Lane
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin R Cole
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark Krailo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
| | - Nathan Pankratz
- Division of Computational Biology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny N Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
38
|
Lansdorp PM. Sex differences in telomere length, lifespan, and embryonic dyskerin levels. Aging Cell 2022; 21:e13614. [PMID: 35441417 PMCID: PMC9124296 DOI: 10.1111/acel.13614] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/20/2022] [Accepted: 04/03/2022] [Indexed: 01/22/2023] Open
Abstract
Telomerase levels in most human cells are insufficient to prevent loss of telomeric DNA with each replication cycle. The resulting “Hayflick” limit may have allowed lifespan to increase by suppressing the development of tumors early in life be it at the expense of compromised cellular responses late in life. At any given age, the average telomere length in leukocytes shows considerably variation between individuals with females having, on average, longer telomeres than males. Sex differences in average telomere length are already present at birth and correspond to reported differences in the average life expectancy between the sexes. Levels of telomerase RNA and dyskerin, encoded by DKC1, are known to limit telomerase activity in embryonic stem cells. X‐linked DKC1 is expressed from both alleles in female embryo cells and higher levels of dyskerin and telomerase could elongate telomeres prior to embryo implantation. The hypothesis that embryonic telomerase levels set the stage for the sex differences in telomere length and lifespan deserves further study.
Collapse
Affiliation(s)
- Peter M. Lansdorp
- Terry Fox Laboratory BC Cancer Agency Vancouver BC Canada
- Department of Medical Genetics University of British Columbia Vancouver BC Canada
| |
Collapse
|
39
|
Aviv A. The telomere tumult: meaning and metrics in population studies. THE LANCET. HEALTHY LONGEVITY 2022; 3:e308-e309. [PMID: 35910300 PMCID: PMC9337717 DOI: 10.1016/s2666-7568(22)00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
40
|
Bountziouka V, Musicha C, Allara E, Kaptoge S, Wang Q, Angelantonio ED, Butterworth AS, Thompson JR, Danesh JN, Wood AM, Nelson CP, Codd V, Samani NJ. Modifiable traits, healthy behaviours, and leukocyte telomere length: a population-based study in UK Biobank. THE LANCET. HEALTHY LONGEVITY 2022; 3:e321-e331. [PMID: 35685390 PMCID: PMC9068584 DOI: 10.1016/s2666-7568(22)00072-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Telomere length is associated with risk of several age-related diseases and cancers. We aimed to investigate the extent to which telomere length might be modifiable through lifestyle and behaviour, and whether such modification has any clinical consequences. Methods In this population-based study, we included participants from UK Biobank who had leukocyte telomere length (LTL) measurement, ethnicity, and white blood cell count data. We investigated associations of LTL with 117 potentially modifiable traits, as well as two indices of healthy behaviours incorporating between them smoking, physical activity, diet, maintenance of a healthy bodyweight, and alcohol intake, using both available and imputed data. To help interpretation, associations were summarised as the number of equivalent years of age-related change in LTL by dividing the trait β coefficients with the age β coefficient. We used mendelian randomisation to test causality of selected associations. We investigated whether the associations of LTL with 22 diseases were modified by the number of healthy behaviours and the extent to which the associations of more healthy behaviours with greater life expectancy and lower risk of coronary artery disease might be mediated through LTL. Findings 422 797 participants were available for the analysis (227 620 [53·8%] were women and 400 036 [94·6%] were White). 71 traits showed significant (p<4·27 × 10-4) associations with LTL but most were modest, equivalent to less than 1 year of age-related change in LTL. In multivariable analyses of 17 traits with stronger associations (equivalent to ≥2 years of age-related change in LTL), oily fish intake, educational attainment, and general health status retained a significant association of this magnitude, with walking pace and current smoking being additionally significant at this level of association in the imputed models. Mendelian randomisation analysis suggested that educational attainment and smoking behaviour causally affect LTL. Both indices of healthy behaviour were positively and linearly associated with LTL, with those with the most healthy behaviours having longer LTL equivalent to about 3·5 years of age-related change in LTL than those with the least heathy behaviours (p<0·001). However, healthy behaviours explained less than 0·2% of the total variation in LTL and did not significantly modify the association of LTL with risk of any of the diseases studied. Neither the association of more healthy behaviours on greater life expectancy or lower risk of coronary artery disease were substantially mediated through LTL. Interpretation Although several potentially modifiable traits and healthy behaviours have a quantifiable association with LTL, at least some of which are likely to be causal, these effects are not of a sufficient magnitude to substantially alter the association between LTL and various diseases or life expectancy. Attempts to change telomere length through lifestyle or behavioural changes might not confer substantial clinical benefit. Funding UK Medical Research Council, UK Biotechnology and Biological Sciences Research Council, and British Heart Foundation.
Collapse
Affiliation(s)
- Vasiliki Bountziouka
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Crispin Musicha
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Elias Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Qingning Wang
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, University of Cambridge, Cambridge, UK
| | - John R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - John N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, National Institute for Health Research Blood Transplant Research Unit in Donor Health and Genomics, and British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, University of Cambridge, Cambridge, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
41
|
Howell MP, Jones CW, Herman CA, Mayne CV, Fernandez C, Theall KP, Esteves KC, Drury SS. Impact of prenatal tobacco smoking on infant telomere length trajectory and ADHD symptoms at 18 months: a longitudinal cohort study. BMC Med 2022; 20:153. [PMID: 35477473 PMCID: PMC9047258 DOI: 10.1186/s12916-022-02340-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prenatal maternal tobacco smoking is a predictor of child attention-deficit/hyperactivity disorder (ADHD) and is associated with offspring telomere length (TL). In this study, we examine the relationship between maternal prenatal smoking, infant TL, and maternal report of early childhood symptoms of ADHD. METHODS One-hundred and eighty-one mother-infant dyads were followed prospectively for the infant's first 18 months of life. Prenatal smoking was assessed from maternal report and medical records. TL was measured from infant buccal swab DNA obtained across the first 18 months of life. ADHD symptoms were obtained from maternal report on the Child Behavior Check List. Multiple regression models tested the relation between prenatal smoking and both ADHD symptoms and infant TL. Additional analyses tested whether the change in infant TL influenced the relation between prenatal smoking and ADHD symptoms. RESULTS Sixteen percent of mothers reported prenatal smoking. Infant TL at 4, 12, and 18 months of age were correlated. Consistent with previous cross-sectional studies linking shorter offspring TL to maternal prenatal smoking, maternal prenatal smoking predicted greater telomere shortening from four to 18 months of infant age (β = - 5.797, 95% CI [-10.207, -1.386]; p = 0.010). Maternal depression was positively associated with both prenatal smoking (odds ratio (OR): 4.614, 95% CI [1.733, 12.282]; p = 0.002) and child ADHD symptoms (β = 4.713, 95% CI [2.073, 7.354]; p = 0.0006). To prevent confounding, analyses examined the relation between TL, ADHD symptoms, and prenatal smoking only in non-depressed mothers. In non-depressed mothers, infant TL attrition across the first 18 months moderated the relation between smoking and child ADHD. CONCLUSIONS The findings extend previous studies linking prenatal smoking to shorter infant TL by providing data demonstrating the effect on TL trajectory. The relation between prenatal smoking and early infant ADHD symptoms was moderated by the change in TL. The findings provide novel initial evidence suggesting that TL dynamics are one mechanistic pathway influencing the relation between maternal prenatal smoking and ADHD.
Collapse
Affiliation(s)
- Meghan P Howell
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Christopher W Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cade A Herman
- Tufts University School of Medicine, Boston, MA, USA
| | - Celia V Mayne
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Camilo Fernandez
- Department of Orthopedic Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA.,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Katherine P Theall
- Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Kyle C Esteves
- Clinical Neuroscience Research Center, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA
| | - Stacy S Drury
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA. .,Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, 1430 Tulane Avenue, #8526, New Orleans, Louisiana, 70112, USA.
| |
Collapse
|
42
|
Anderson JJ, Susser E, Arbeev KG, Yashin AI, Levy D, Verhulst S, Aviv A. Telomere-length dependent T-cell clonal expansion: A model linking ageing to COVID-19 T-cell lymphopenia and mortality. EBioMedicine 2022; 78:103978. [PMID: 35367774 PMCID: PMC8970968 DOI: 10.1016/j.ebiom.2022.103978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Severe COVID-19 T-cell lymphopenia is more common among older adults and entails poor prognosis. Offsetting the decline in T-cell count during COVID-19 demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. METHODS We developed a model of TL-dependent T-cell clonal expansion capacity with age and virtually examined the relation of T-cell clonal expansion with COVID-19 mortality in the general population. FINDINGS The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity rapidly declines by more than 90% over the next ten years. The collapse in the T-cell clonal expansion capacity coincides with the steep increase in COVID-19 mortality with age. INTERPRETATION Short HCTL might increase vulnerability of many older adults, and some younger individuals with inherently short HCTL, to COVID-19 T-cell lymphopenia and severe disease. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- James J. Anderson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA,Corresponding author.
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA,New York State Psychiatric Institute, New York, NY 10032, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 27705, USA,The Framingham Heart Study, Framingham, MA 01702, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherland
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
43
|
Yilmaz S, Sanapala C, Schiaffino MK, Schumacher JR, Wallington SF, McKoy JM, Canin B, Tang W, Tucker-Seeley RD, Simmons J, Gilmore N. Social Justice and Equity: Why Older Adults With Cancer Belong-A Life Course Perspective. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35649203 PMCID: PMC11070065 DOI: 10.1200/edbk_349825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The population of older adults with cancer in the United States is rapidly increasing, which will have a substantial impact on the oncology and public health workforces across the cancer continuum, from prevention to end of life. Unfortunately, inequities in existing social structures that cause increased psychosocial stressors have led to disparities in the incidence of cancer and the morbidity and mortality of cancer for individuals from marginalized backgrounds. It is imperative that older adults, especially those from historically marginalized backgrounds, be adequately represented in all stages of cancer research to address health inequities. Continued efforts and progress toward achieving social justice and health equity require a deeper commitment to and better understanding of the impact of social determinants of health within the cancer domain. Undoubtedly, a more holistic and integrated view that extends beyond the biologic and genetic factors of health must be adopted for health entities to recognize the critical role of environmental, behavioral, and social determinants in cancer health disparities. Against this backdrop, this paper uses a life course approach to present a multifactorial framework for understanding and addressing cancer disparities in an effort to advance social justice and health equity for racially and ethnically diverse older adults.
Collapse
Affiliation(s)
- Sule Yilmaz
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Chandrika Sanapala
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | | | - Jessica R Schumacher
- Wisconsin Surgical Outcomes Research Program, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Sherrie F Wallington
- The George Washington School of Nursing & Milken Institute School of Public Health, Washington, DC
| | - June M McKoy
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | | | - Weizhou Tang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Reginald D Tucker-Seeley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- ZERO-The End of Prostate Cancer, Alexandria, VA
| | - John Simmons
- Cancer and Aging Research Group, City of Hope, CA
- Ethnic Health Institute, Center for Community Engagement, Samuel Merritt University, Oakland, CA
| | - Nikesha Gilmore
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
44
|
Raftopoulou C, Paltoglou G, Charmandari E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022; 14:nu14061244. [PMID: 35334902 PMCID: PMC8949519 DOI: 10.3390/nu14061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Objective: Telomere length (TL) is a robust marker of biological aging, and increased telomere attrition is noted in adults with obesity. The primary objective of this systematic review was to summarize current knowledge on the effects of childhood obesity in TL. The secondary objective was to assess the effect of weight management interventions in TL. Methods: The following databases were searched: PubMed, Scopus, Web of Science and Heal-link.gr from inception to September 2021. The search was performed using the following combinations of terms: “telomer*” [All Fields] AND (“length” [All Fields] OR “lengths” [All Fields]) AND “obes*” [All Fields] AND (“child*” [All Fields] OR “adolescen*” [All Fields]). Results: A total of 16 original articles were included in this systematic review. Eleven of them were cross-sectional and five were lifestyle interventions. Conclusions: There was a tendency towards a negative association between childhood obesity and TL. Life-style interventions in children have been associated with increased TL peripherally, indicating a possible association of the redistribution of younger cells in the periphery with the favorable effect of these interventions. Further prospective studies with larger sample sizes that employ other markers of cell aging would potentially elucidate this important mechanistic relation.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
45
|
Goumy C, Veronese L, Stamm R, Domas Q, Hadjab K, Gallot D, Laurichesse H, Delabaere A, Gouas L, Salaun G, Richard C, Vago P, Tchirkov A. Reduced telomere length in amniocytes: an early biomarker of abnormal fetal development? Hum Mol Genet 2022; 31:2669-2677. [PMID: 35244708 DOI: 10.1093/hmg/ddac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Telomeres protect chromosome ends and control cell division and senescence. During organogenesis, telomeres need to be long enough to ensure the cell proliferation necessary at this stage of development. Previous studies have shown that telomere shortening is associated with growth retardation and congenital malformations. However, these studies were performed in newborns or postnatally, and data on telomere length (TL) during the prenatal period are still very limited. We measured TL using quantitative PCR in amniotic fluid (AF) and chorionic villi (CV) samples from 69 control fetuses with normal ultrasound (52 AF and 17 CV) and 213 fetuses (165 AF and 48 CV) with intrauterine growth retardation (IUGR) or congenital malformations diagnosed by ultrasound. The samples were collected by amniocentesis at the gestational age of 25.0 ± 5.4 weeks and by CV biopsy at 18.1 ± 6.3 weeks. In neither sample type was TL influenced by gestational age or fetal sex. In AF, a comparison of abnormal versus normal fetuses showed a significant telomere shortening in cases of IUGR (reduction of 34%, P < 10-6), single (29%, P < 10-6) and multiple (44%, P < 10-6) malformations. Similar TL shortening was also observed in CV from abnormal fetuses but to a lesser extent (25%, P = 0.0002; 18%, P = 0.016; 20%, P = 0.004, respectively). Telomere shortening was more pronounced in cases of multiple congenital anomalies than in fetuses with a single malformation, suggesting a correlation between TL and the severity of fetal phenotype. Thus, TL measurement in fetal samples during pregnancy could provide a novel predictive marker of pathological development.
Collapse
Affiliation(s)
- Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont Ferrand
| | - Lauren Veronese
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,EA7453 CHELTER « Clonal Heterogeneity, Leukemic environment, Therapy resistance of chronic leukemias », Université Clermont Auvergne, Clermont Ferrand
| | - Rodrigue Stamm
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Quentin Domas
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Kamil Hadjab
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Denis Gallot
- Unité de Médecine Fœtale, CHU Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Hélène Laurichesse
- Unité de Médecine Fœtale, CHU Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Amélie Delabaere
- Unité de Médecine Fœtale, CHU Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Laetitia Gouas
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont Ferrand
| | - Gaelle Salaun
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont Ferrand
| | - Céline Richard
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France
| | - Philippe Vago
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont Ferrand
| | - Andrei Tchirkov
- Cytogénétique Médicale, CHU Clermont-Ferrand, Clermont-Ferrand, CHU Estaing, F-63000, France.,EA7453 CHELTER « Clonal Heterogeneity, Leukemic environment, Therapy resistance of chronic leukemias », Université Clermont Auvergne, Clermont Ferrand
| |
Collapse
|
46
|
Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. iScience 2022; 25:103875. [PMID: 35243237 PMCID: PMC8858993 DOI: 10.1016/j.isci.2022.103875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
47
|
Ngwa NE, Matsha TE, Lombard C, Levitt N, Sobngwi E, Kengne AP, Peer N. Cardiometabolic profile and leukocyte telomere length in a Black South African population. Sci Rep 2022; 12:3323. [PMID: 35228641 PMCID: PMC8885820 DOI: 10.1038/s41598-022-07328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSeveral studies have reported a possible association between leucocyte telomere length (LTL) and cardio-metabolic diseases (CMDs). However, studies investigating such association are lacking in South Africa despite having a very high prevalence of CMDs. We investigated the association between LTL and CMD risk profile in a black South African population. This was a cross-sectional study with participants > 21 years of age and residing in five townships in Cape Town. CMD markers were compared between men and women and across quartiles of LTL. Linear and logistic regressions relate increasing quartile and Log10LTL with CMD risk profile, with appropriate adjustment. Among 676-participants, diabetes, obesity and hypertension prevalence were 11.5%, 23.1% and 47.5%. Waist-circumference, hip-circumference and highly sensitive c-reactive protein values were significantly higher in women (all p < 0.001), while HDL-C (p = 0.023), creatinine (p = 0.005) and gamma glutamyl transferase (p < 0.001) values were higher in men. In age, sex and BMI adjusted linear regression model, Log10 of LTL was associated with low HDL-C (beta = 0.221; p = 0.041) while logistic regression showed a significant association between Log10LTL and prevalent dyslipidaemia characterised by high LDL-C. In this population, the relationship between LTL and CMD is weak given its association with only HDL-C and LDL-C.
Collapse
|
48
|
Lansdorp PM. Telomeres, aging, and cancer: the big picture. Blood 2022; 139:813-821. [PMID: 35142846 PMCID: PMC8832478 DOI: 10.1182/blood.2021014299] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The role of telomeres in human health and disease is yet to be fully understood. The limitations of mouse models for the study of human telomere biology and difficulties in accurately measuring the length of telomere repeats in chromosomes and cells have diverted attention from many important and relevant observations. The goal of this perspective is to summarize some of these observations and to discuss the antagonistic role of telomere loss in aging and cancer in the context of developmental biology, cell turnover, and evolution. It is proposed that both damage to DNA and replicative loss of telomeric DNA contribute to aging in humans, with the differences in leukocyte telomere length between humans being linked to the risk of developing specific diseases. These ideas are captured in the Telomere Erosion in Disposable Soma theory of aging proposed herein.
Collapse
Affiliation(s)
- Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Chen L, Tan KML, Gong M, Chong MFF, Tan KH, Chong YS, Meaney MJ, Gluckman PD, Eriksson JG, Karnani N. Variability in newborn telomere length is explained by inheritance and intrauterine environment. BMC Med 2022; 20:20. [PMID: 35073935 PMCID: PMC8787951 DOI: 10.1186/s12916-021-02217-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus. METHODS Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26-28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied. RESULTS Longer maternal TL (β = 0.14, P = 1.99E-05) and higher paternal age (β = 0.10, P = 3.73E-03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: Pmeta = 5.95E-08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother's TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL. CONCLUSIONS Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors. TRIAL REGISTRATION ClinicalTrials.gov , NCT01174875. Registered on 1 July 2010.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.
| | | | - Min Gong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore. .,Bioinformatics Institute, A*STAR, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
50
|
Stout-Oswald SA, Glynn LM, Bisoffi M, Demers CH, Davis EP. Prenatal exposure to maternal psychological distress and telomere length in childhood. Dev Psychobiol 2022; 64:e22238. [PMID: 35050506 DOI: 10.1002/dev.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 09/02/2023]
Abstract
Telomere length (TL) is a biological marker of cellular aging, and shorter TL in adulthood is associated with increased morbidity and mortality risk. It is likely that these differences in TL are established long before adulthood, and there is growing evidence that TL can reflect prenatal experiences. Although maternal prenatal distress predicts newborn TL, it is unknown whether the relation between prenatal exposure to maternal distress and child TL persists through childhood. The purpose of the current longitudinal, prospective study is to examine the relation between prenatal exposure to maternal distress (perceived stress, depressive symptoms, pregnancy-related anxiety) and TL in childhood. Participants included 102 children (54 girls) and their mothers. Mothers' distress was assessed five times during pregnancy, at 12 weeks postpartum, and at the time of child telomere measurement between 6 and 16 years of age. Maternal distress during pregnancy predicted shorter offspring TL in childhood, even after accounting for postnatal exposure to maternal distress and other covariates. These findings indicate that maternal mental health predicts offspring TL biology later in childhood than previously observed. This study bolsters claims that telomere biology is subject to fetal programming and highlights the importance of supporting maternal mental health during pregnancy.
Collapse
Affiliation(s)
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California, USA
| | - Marco Bisoffi
- Department of Psychology, Chapman University, Orange, California, USA
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- School of Pharmacy, Chapman University, Orange, California, USA
| | - Catherine H Demers
- Department of Psychology, University of Denver, Denver, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado, USA
- Department of Pediatrics, University of California, Irvine, Irvine, California, USA
| |
Collapse
|