1
|
Graham J, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. ACS Synth Biol 2024; 13:3413-3429. [PMID: 39375864 PMCID: PMC11494708 DOI: 10.1021/acssynbio.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Joshua
P. Graham
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yu Zhang
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lifang He
- Department
of Computer Science and Engineering, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | | |
Collapse
|
2
|
Graham JP, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601587. [PMID: 39005295 PMCID: PMC11244939 DOI: 10.1101/2024.07.01.601587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, achieving reliable therapeutic effects with improved safety and efficacy requires informed target gene selection. This depends on a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) that regulate cell phenotype and function. Machine learning models have been previously used for GRN reconstruction using RNA-seq data, but current techniques are limited to single cell types and focus mainly on transcription factors. This restriction overlooks many potential CRISPR target genes, such as those encoding extracellular matrix components, growth factors, and signaling molecules, thus limiting the applicability of these models for CRISPR strategies. To address these limitations, we have developed CRISPR-GEM, a multi-layer perceptron (MLP)-based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts towards a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
3
|
Pant T, Lin CW, Bedrat A, Jia S, Roethle MF, Truchan NA, Ciecko AE, Chen YG, Hessner MJ. Monocytes in type 1 diabetes families exhibit high cytolytic activity and subset abundances that correlate with clinical progression. SCIENCE ADVANCES 2024; 10:eadn2136. [PMID: 38758799 PMCID: PMC11100571 DOI: 10.1126/sciadv.adn2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic β cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional β cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.
Collapse
Affiliation(s)
- Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amina Bedrat
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan A. Truchan
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Felton JL, Redondo MJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Harris-Kawano A, Perez D, Saeed Z, Hoag B, Jain R, Evans-Molina C, DiMeglio LA, Ismail HM, Dabelea D, Johnson RK, Urazbayeva M, Wentworth JM, Griffin KJ, Sims EK. Islet autoantibodies as precision diagnostic tools to characterize heterogeneity in type 1 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:66. [PMID: 38582818 PMCID: PMC10998887 DOI: 10.1038/s43856-024-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arianna Harris-Kawano
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Dianna Perez
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Zeb Saeed
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin Hoag
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rashmi Jain
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, VIC, Australia
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Raugh A, Jing Y, Bettini ML, Bettini M. The amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. Sci Rep 2023; 13:18653. [PMID: 37903947 PMCID: PMC10616065 DOI: 10.1038/s41598-023-45738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yi Jing
- Microbiology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
Raugh A, Jing Y, Bettini ML, Bettini M. The Amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. RESEARCH SQUARE 2023:rs.3.rs-3204139. [PMID: 37577652 PMCID: PMC10418547 DOI: 10.21203/rs.3.rs-3204139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. Whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. We postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin and both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum (ER) stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Yi Jing
- Department of Pediatric Endocrinology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
7
|
Ripple MJ, Huang M, Stephenson ST, Mohammad AF, Tidwell M, Fitzpatrick AM, Kamaleswaran R, Grunwell JR. RNA Sequencing Analysis of CD4 + T Cells Exposed to Airway Fluid From Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2023; 5:e0935. [PMID: 37378084 PMCID: PMC10292738 DOI: 10.1097/cce.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
CD4+ T cells contribute to lung inflammation in acute respiratory distress syndrome. The CD4+ T-cell response in pediatric acute respiratory distress syndrome (PARDS) is unknown. OBJECTIVES To identify differentially expressed genes and networks using a novel transcriptomic reporter assay with donor CD4+ T cells exposed to the airway fluid of intubated children with mild versus severe PARDS. DESIGN In vitro pilot study. SETTING Laboratory-based study using human airway fluid samples admitted to a 36-bed university-affiliated pediatric intensive care unit. PATIENTS/SUBJECTS Seven children with severe PARDS, nine children with mild PARDS, and four intubated children without lung injury as controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We performed bulk RNA sequencing using a transcriptomic reporter assay of CD4+ T cells exposed to airway fluid from intubated children to discover gene networks differentiating severe from mild PARDS. We found that innate immunity pathways, type I (α and β), and type II (γ) interferon response and cytokine/chemokine signaling are downregulated in CD4+ T cells exposed to airway fluid from intubated children with severe PARDS compared with those with mild PARDS. CONCLUSIONS We identified gene networks important to the PARDS airway immune response using bulk RNA sequencing from a novel CD4+ T-cell reporter assay that exposed CD4+ T cells to airway fluid from intubated children with severe and mild PARDS. These pathways will help drive mechanistic investigations into PARDS. Validation of our findings using this transcriptomic reporter assay strategy is needed.
Collapse
Affiliation(s)
- Michael J Ripple
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Susan T Stephenson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ahmad F Mohammad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Mallory Tidwell
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
| | - Anne M Fitzpatrick
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Jocelyn R Grunwell
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Egleston Hospital, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
8
|
Carrera P, Marzinotto I, Bonfanti R, Massimino L, Calzavara S, Favellato Μ, Jofra T, De Giglio V, Bonura C, Stabilini A, Favalli V, Bondesan S, Cicalese MP, Laurenzi A, Caretto A, Frontino G, Rigamonti A, Molinari C, Scavini M, Sandullo F, Zapparoli E, Caridi N, Bonfiglio S, Castorani V, Ungaro F, Petrelli A, Barera G, Aiuti A, Bosi E, Battaglia M, Piemonti L, Lampasona V, Fousteri G. Genetic determinants of type 1 diabetes in individuals with weak evidence of islet autoimmunity at disease onset. Diabetologia 2023; 66:695-708. [PMID: 36692510 DOI: 10.1007/s00125-022-05865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Islet autoantibodies (AAbs) are detected in >90% of individuals with clinically suspected type 1 diabetes at disease onset. A single AAb, sometimes at low titre, is often detected in some individuals, making their diagnosis uncertain. Type 1 diabetes genetic risk scores (GRS) are a useful tool for discriminating polygenic autoimmune type 1 diabetes from other types of diabetes, particularly the monogenic forms, but testing is not routinely performed in the clinic. Here, we used a type 1 diabetes GRS to screen for monogenic diabetes in individuals with weak evidence of autoimmunity, i.e. with a single AAb at disease onset. METHODS In a pilot study, we genetically screened 142 individuals with suspected type 1 diabetes, 42 of whom were AAb-negative, 27 of whom had a single AAb (single AAb-positive) and 73 of whom had multiple AAbs (multiple AAb-positive) at disease onset. Next-generation sequencing (NGS) was performed in 41 AAb-negative participants, 26 single AAb-positive participants and 60 multiple AAb-positive participants using an analysis pipeline of more than 200 diabetes-associated genes. RESULTS The type 1 diabetes GRS was significantly lower in AAb-negative individuals than in those with a single and multiple AAbs. Pathogenetic class 4/5 variants in MODY or monogenic diabetes genes were identified in 15/41 (36.6%) AAb-negative individuals, while class 3 variants of unknown significance were identified in 17/41 (41.5%). Residual C-peptide levels at diagnosis were higher in individuals with mutations compared to those without pathogenetic variants. Class 3 variants of unknown significance were found in 11/26 (42.3%) single AAb-positive individuals, and pathogenetic class 4/5 variants were present in 2/26 (7.7%) single AAb-positive individuals. No pathogenetic class 4/5 variants were identified in multiple AAb-positive individuals, but class 3 variants of unknown significance were identified in 19/60 (31.7%) patients. Several patients across the three groups had more than one class 3 variant. CONCLUSIONS/INTERPRETATION These findings provide insights into the genetic makeup of patients who show weak evidence of autoimmunity at disease onset. Absence of islet AAbs or the presence of a single AAb together with a low type 1 diabetes GRS may be indicative of a monogenic form of diabetes, and use of NGS may improve the accuracy of diagnosis.
Collapse
Affiliation(s)
- Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, Milan, Italy
- Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Bonfanti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele Hospital, Milan, Italy
| | - Silvia Calzavara
- Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Tatiana Jofra
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Clara Bonura
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Favalli
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Simone Bondesan
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Laurenzi
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Amelia Caretto
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Frontino
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Rigamonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Molinari
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Sandullo
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Caridi
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele Hospital, Milan, Italy
| | | | - Graziano Barera
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Fondazione Telethon, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
9
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
10
|
Cabrera SM, Coren AT, Pant T, Ciecko AE, Jia S, Roethle MF, Simpson PM, Atkinson SN, Salzman NH, Chen YG, Hessner MJ. Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Sci Rep 2022; 12:3306. [PMID: 35228584 PMCID: PMC8885673 DOI: 10.1038/s41598-022-07203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.
Collapse
|
11
|
Sargin P, Roethle MF, Jia S, Pant T, Ciecko AE, Atkinson SN, Salzman NH, Teng RJ, Chen YG, Cabrera SM, Hessner MJ. Lactiplantibacillus plantarum 299v supplementation modulates β-cell ER stress and antioxidative defense pathways and prevents type 1 diabetes in gluten-free BioBreeding rats. Gut Microbes 2022; 14:2136467. [PMID: 36261888 PMCID: PMC9586621 DOI: 10.1080/19490976.2022.2136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in β-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.
Collapse
Affiliation(s)
- Pinar Sargin
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Gastroenterology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne M. Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Deng L, Shi Y, Liu P, Wu S, Lv Y, Xu H, Chen X. GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomed Pharmacother 2021; 141:111896. [PMID: 34246956 DOI: 10.1016/j.biopha.2021.111896] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza in humans is often accompanied by gastroenteritis-like symptoms. GeGen QinLian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries and has the effect of restoring intestinal flora. Studies have also reported that GQD were used to treat patients with influenza. However, whether regulating the intestinal flora is one of the ways GQD treats influenza has not been confirmed. In present research, we conducted a systemic pharmacological study, and the results showed that GQD may acts through multiple targets and pathways. In influenza-infected mice, GQD treatment reduced mortality and lung inflammation. Most importantly, the mortality and lung inflammation were also reduced in influenza-infected mice that have undergone fecal microbiota transplantation (FMT) from GQD (FMT-GQD) treated mice. GQD treatment or FMT-GQD treatment restores the intestinal flora, resulting in an increase in Akkermansia_muciniphila, Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in Escherichia_coli. FMT-GQD treatment inhibited the NOD/RIP2/NF-κB signaling pathway in the intestine and affected the expression of downstream related inflammatory cytokines in mesenteric lymph nodes (mLNs) and serum. In addition, FMT-GQD treatment showed systemic protection by restraining the inflammatory differentiation of CD4+ T cells. In conclusion, our study shows that GQD can affect systemic immunity, at least in part, through the intestinal flora, thereby protect the mice against influenza virus infectious pneumonia.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Hofeld BC, Puppala VK, Tyagi S, Ahn KW, Anger A, Jia S, Salzman NH, Hessner MJ, Widlansky ME. Lactobacillus plantarum 299v probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation. Sci Rep 2021; 11:3972. [PMID: 33597583 PMCID: PMC7889883 DOI: 10.1038/s41598-021-83252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Recent trials demonstrate that systemic anti-inflammatory therapy reduces cardiovascular events in coronary artery disease (CAD) patients. We recently demonstrated Lactobacillus plantarum 299v (Lp299v) supplementation improved vascular endothelial function in men with stable CAD. Whether this favorable effect is in part due to anti-inflammatory action remains unknown. Testing this hypothesis, we exposed plasma obtained before and after Lp299v supplementation from these subjects to a healthy donor's PBMCs and measured differences in the PBMC transciptome, performed gene ontological analyses, and compared Lp299v-induced transcriptome changes with changes in vascular function. Daily alcohol users (DAUs) (n = 4) had a significantly different response to Lp299v and were separated from the main analyses. Non-DAUs- (n = 15) showed improved brachial flow-mediated dilation (FMD) and reduced circulating IL-8, IL-12, and leptin. 997 genes were significantly changed. I.I.com decreased (1.01 ± 0.74 vs. 0.22 ± 0.51; P < 0.0001), indicating strong anti-inflammatory effects. Pathway analyses revealed downregulation of IL-1β, interferon-stimulated pathways, and toll-like receptor signaling, and an increase in regulator T-cell (Treg) activity. Reductions in GBP1, JAK2, and TRAIL expression correlated with improved FMD. In non-DAU men with stable CAD, post-Lp299v supplementation plasma induced anti-inflammatory transcriptome changes in human PBMCs that could benefit CAD patients. Future studies should delineate changes in circulating metabolites responsible for these effects.
Collapse
Affiliation(s)
- Benjamin C Hofeld
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Venkata K Puppala
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kwang Woo Ahn
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Anger
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H Salzman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Cardiovascular Medicine, Professor of Medicine and Pharmacology, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
14
|
Bassin EJ, Piganelli JD, Little SR. Auto-antigen and Immunomodulatory Agent-Based Approaches for Antigen-Specific Tolerance in NOD Mice. Curr Diab Rep 2021; 21:9. [PMID: 33547977 DOI: 10.1007/s11892-021-01376-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.
Collapse
Affiliation(s)
- Ethan J Bassin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jon D Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, 6125 Rangos Research Center, Pittsburgh, PA, 15224, USA.
| | - Steven R Little
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Nelson AJ, Stephenson DJ, Bone RN, Cardona CL, Park MA, Tusing YG, Lei X, Kokotos G, Graves CL, Mathews CE, Kramer J, Hessner MJ, Chalfant CE, Ramanadham S. Lipid mediators and biomarkers associated with type 1 diabetes development. JCI Insight 2020; 5:138034. [PMID: 32814707 PMCID: PMC7455134 DOI: 10.1172/jci.insight.138034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) is a consequence of autoimmune β cell destruction, but the role of lipids in this process is unknown. We previously reported that activation of Ca2+-independent phospholipase A2β (iPLA2β) modulates polarization of macrophages (MΦ). Hydrolysis of the sn-2 substituent of glycerophospholipids by iPLA2β can lead to the generation of oxidized lipids (eicosanoids), pro- and antiinflammatory, which can initiate and amplify immune responses triggering β cell death. As MΦ are early triggers of immune responses in islets, we examined the impact of iPLA2β-derived lipids (iDLs) in spontaneous-T1D prone nonobese diabetic mice (NOD), in the context of MΦ production and plasma abundances of eicosanoids and sphingolipids. We find that (a) MΦNOD exhibit a proinflammatory lipid landscape during the prediabetic phase; (b) early inhibition or genetic reduction of iPLA2β reduces production of select proinflammatory lipids, promotes antiinflammatory MΦ phenotype, and reduces T1D incidence; (c) such lipid changes are reflected in NOD plasma during the prediabetic phase and at T1D onset; and (d) importantly, similar lipid signatures are evidenced in plasma of human subjects at high risk for developing T1D. These findings suggest that iDLs contribute to T1D onset and identify select lipids that could be targeted for therapeutics and, in conjunction with autoantibodies, serve as early biomarkers of pre-T1D.
Collapse
Affiliation(s)
- Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Robert N Bone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher L Cardona
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Margaret A Park
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Christina L Graves
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Joanna Kramer
- Max McGee Research Center for Juvenile Diabetes, Department of Pediatrics at Medical College of Wisconsin and Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Martin J Hessner
- Max McGee Research Center for Juvenile Diabetes, Department of Pediatrics at Medical College of Wisconsin and Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, USA.,Research Service, James A. Haley Veterans Hospital, Tampa, Florida, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and.,Comprehensive Diabetes Center, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
16
|
Rodrigues KB, Dufort MJ, Llibre A, Speake C, Rahman MJ, Bondet V, Quiel J, Linsley PS, Greenbaum CJ, Duffy D, Tarbell KV. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 2020; 63:1576-1587. [PMID: 32500289 PMCID: PMC10091865 DOI: 10.1007/s00125-020-05179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.
Collapse
Affiliation(s)
- Kameron B Rodrigues
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Pathology Department, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alba Llibre
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Cate Speake
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Vincent Bondet
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Juan Quiel
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France.
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
- Amgen Discovery Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Syed F, Tersey SA, Turatsinze JV, Felton JL, Kang NJ, Nelson JB, Sims EK, Defrance M, Bizet M, Fuks F, Cnop M, Bugliani M, Marchetti P, Ziegler AG, Bonifacio E, Webb-Robertson BJ, Balamurugan AN, Evans-Molina C, Eizirik DL, Mather KJ, Arslanian S, Mirmira RG. Circulating unmethylated CHTOP and INS DNA fragments provide evidence of possible islet cell death in youth with obesity and diabetes. Clin Epigenetics 2020; 12:116. [PMID: 32736653 PMCID: PMC7393900 DOI: 10.1186/s13148-020-00906-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Identification of islet β cell death prior to the onset of type 1 diabetes (T1D) or type 2 diabetes (T2D) might allow for interventions to protect β cells and reduce diabetes risk. Circulating unmethylated DNA fragments arising from the human INS gene have been proposed as biomarkers of β cell death, but this gene alone may not be sufficiently specific to report β cell death. RESULTS To identify new candidate genes whose CpG sites may show greater specificity for β cells, we performed unbiased DNA methylation analysis using the Infinium HumanMethylation 450 array on 64 human islet preparations and 27 non-islet human tissues. For verification of array results, bisulfite DNA sequencing of human β cells and 11 non-β cell tissues was performed on 5 of the top 10 CpG sites that were found to be differentially methylated. We identified the CHTOP gene as a candidate whose CpGs show a greater frequency of unmethylation in human islets. A digital PCR strategy was used to determine the methylation pattern of CHTOP and INS CpG sites in primary human tissues. Although both INS and CHTOP contained unmethylated CpG sites in non-islet tissues, they occurred in a non-overlapping pattern. Based on Naïve Bayes classifier analysis, the two genes together report 100% specificity for islet damage. Digital PCR was then performed on cell-free DNA from serum from human subjects. Compared to healthy controls (N = 10), differentially methylated CHTOP and INS levels were higher in youth with new onset T1D (N = 43) and, unexpectedly, in healthy autoantibody-negative youth who have first-degree relatives with T1D (N = 23). When tested in lean (N = 32) and obese (N = 118) youth, increased levels of unmethylated INS and CHTOP were observed in obese individuals. CONCLUSION Our data suggest that concurrent measurement of circulating unmethylated INS and CHTOP has the potential to detect islet death in youth at risk for both T1D and T2D. Our data also support the use of multiple parameters to increase the confidence of detecting islet damage in individuals at risk for developing diabetes.
Collapse
Affiliation(s)
- Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, 900 E. 57th Street, KCBD-8130, Chicago, IL, 60637, USA
| | | | - Jamie L Felton
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Jiyun Kang
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jennifer B Nelson
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, 900 E. 57th Street, KCBD-8130, Chicago, IL, 60637, USA
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mathieu Defrance
- Laboratory for Cancer Epigenetics, Faculty of Medicine, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Martin Bizet
- Laboratory for Cancer Epigenetics, Faculty of Medicine, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Francois Fuks
- Laboratory for Cancer Epigenetics, Faculty of Medicine, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology (ULB Erasmus Hospital), Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | - Appakalai N Balamurugan
- Department of Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Kieren J Mather
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Silva Arslanian
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, 900 E. 57th Street, KCBD-8130, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
Speake C, Skinner SO, Berel D, Whalen E, Dufort MJ, Young WC, Odegard JM, Pesenacker AM, Gorus FK, James EA, Levings MK, Linsley PS, Akirav EM, Pugliese A, Hessner MJ, Nepom GT, Gottardo R, Long SA. A composite immune signature parallels disease progression across T1D subjects. JCI Insight 2019; 4:126917. [PMID: 31671072 PMCID: PMC6962023 DOI: 10.1172/jci.insight.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Samuel O. Skinner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Dror Berel
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Whalen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew J. Dufort
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William Chad Young
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M. Odegard
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anne M. Pesenacker
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Frans K. Gorus
- Diabetes Research Center, Medical School and University Hospital (UZ Brussel), Brussels Free University Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Megan K. Levings
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Eitan M. Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York, USA
- Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Immune Tolerance Network, Bethesda, Maryland, USA
| | - Raphael Gottardo
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
19
|
Hao W, Bahnson HT, Speake C, Cerosaletti K, Greenbaum CJ. In-vivo assessment of T cell kinetics in individuals at risk for type 1 diabetes. Clin Exp Immunol 2019; 199:50-55. [PMID: 31557315 DOI: 10.1111/cei.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 11/28/2022] Open
Abstract
We previously assessed the kinetics of T cell turnover in vivo by labeling cells with 2 H-H2 O over 42 days in individuals with type 1 diabetes (T1D) and demonstrated an increased turnover of CD4 memory T cells. We have now tested T cell turnover in individuals at risk for T1D using a 3-4-day labeling protocol with 2 H-glucose. We studied 30 relatives with T1D with and without autoantibodies, and 10 healthy controls. Peripheral blood mononuclear cells (PBMC) were flow-sorted into T cell subsets of interest; 2 H-DNA enrichment was measured by mass spectrometry and in-vivo turnover was calculated as maximum fractional enrichment of deuterated adenosine (Fmax ). Among CD4+ cells, Fmax was highest in regulatory T cells (Treg ), followed by effector and central memory T cells and lowest in naive cells. Similarly, CD8+ central and effector memory T cells had a higher turnover than CD8+ terminally differentiated effector memory T cells (TEMRA) and CD8+ -naive T cells. Relatives as a group showed significantly increased Treg turnover by Fmax compared to controls (1·733 ± 0·6784% versus 1·062 ± 0·3787%, P = 0·004), suggesting pre-existing immune dysfunction within families with T1D. However, there was no significant difference in Fmax between groups according to autoantibody or glucose tolerance status. Repeat testing in 20 subjects 1 year later demonstrated relatively higher within-subject compared to between-subject variability for the measurement of Fmax in various T cell subsets. The short labeling protocol with 2 H-glucose should be applied in the context of a clinical trial in which the therapy is expected to have large effects on T cell turnover.
Collapse
Affiliation(s)
- W Hao
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - H T Bahnson
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - C Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - K Cerosaletti
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - C J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
20
|
Zhang X, Pan A, Jia S, Ideozu JE, Woods K, Murkowski K, Hessner MJ, Simpson PM, Levy H. Cystic Fibrosis Plasma Blunts the Immune Response to Bacterial Infection. Am J Respir Cell Mol Biol 2019; 61:301-311. [PMID: 30848661 PMCID: PMC6839930 DOI: 10.1165/rcmb.2018-0114oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the gene encoding the CF transmembrane conductance regulator. It remains unclear whether the abnormal immune response in CF involves extrinsic signals released from the external or internal environment. We sought to characterize the peripheral immune signatures in CF and its association with clinical phenotypes. Healthy peripheral blood mononuclear cells (PBMCs) were cultured with plasma from CF probands (CFPs) or healthy control subjects (HCs) followed by nCounter gene and microRNA (miRNA) profiling. A discovery cohort of 12 CFPs and 12 HCs and a validation cohort of 103 CFPs and 31 HCs (our previous microarray data [GSE71799]) were analyzed to characterize the composition of cultured immune cells and establish a miRNA‒mRNA network. Cell compositions and miRNA profiles were associated with clinical characteristics of the cohorts. Significantly differentially expressed genes and abundance of myeloid cells were downregulated in PMBCs after culture with CF plasma (P < 0.05). Top-ranked miRNAs that increased in response to CF plasma (adjusted P < 0.05) included miR-155 and miR-146a, which target many immune-related genes, such as IL-8. Pseudomonas aeruginosa infection was negatively associated with abundance of monocytes and the presence of those regulatory miRNAs. Extrinsic signals in plasma from patients with CF led to monocyte inactivation and miRNA upregulation in PBMCs. An improved understanding of the immune effects of extrinsic factors in CF holds great promise for integrating immunomodulatory cell therapies into current treatment strategies in CF.
Collapse
Affiliation(s)
- Xi Zhang
- Division of Pulmonary Medicine, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Human Molecular Genetics Program, Stanley Manne Children’s Research Institute of Chicago, Chicago, Illinois
| | - Amy Pan
- Children’s Research Institute of the Children’s Hospital of Wisconsin, Wauwatosa, Wisconsin; and
- Division of Quantitative Health Sciences, Department of Pediatrics
| | - Shuang Jia
- Division of Endocrinology, Department of Pediatrics
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, and
| | - Justin E. Ideozu
- Division of Pulmonary Medicine, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Human Molecular Genetics Program, Stanley Manne Children’s Research Institute of Chicago, Chicago, Illinois
| | - Katherine Woods
- Division of Pediatric Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathleen Murkowski
- Division of Pediatric Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Martin J. Hessner
- Children’s Research Institute of the Children’s Hospital of Wisconsin, Wauwatosa, Wisconsin; and
- Division of Endocrinology, Department of Pediatrics
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, and
| | - Pippa M. Simpson
- Children’s Research Institute of the Children’s Hospital of Wisconsin, Wauwatosa, Wisconsin; and
- Division of Quantitative Health Sciences, Department of Pediatrics
| | - Hara Levy
- Division of Pulmonary Medicine, Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Human Molecular Genetics Program, Stanley Manne Children’s Research Institute of Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Dufort MJ, Greenbaum CJ, Speake C, Linsley PS. Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. JCI Insight 2019; 4:125556. [PMID: 30830868 DOI: 10.1172/jci.insight.125556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
The rate of decline in insulin secretion after diagnosis with type 1 diabetes (T1D) varies substantially among individuals and with age at diagnosis, but the mechanism(s) behind this heterogeneity are not well understood. We investigated the loss of pancreatic β cell function in new-onset T1D subjects using unbiased whole blood RNA-seq and verified key findings by targeted cell count measurements. We found that patients who lost insulin secretion more rapidly had immune phenotypes ("immunotypes") characterized by higher levels of B cells and lower levels of neutrophils, especially neutrophils expressing primary granule genes. The B cell and neutrophil immunotypes showed strong age dependence, with B cell levels in particular predicting rate of progression in young subjects only. This age relationship suggested that therapy targeting B cells in T1D would be most effective in young subjects with high pretreatment B cell levels, a prediction which was supported by data from a clinical trial of rituximab in new-onset subjects. These findings demonstrate a link between age-related immunotypes and disease outcome in new-onset T1D. Furthermore, our data suggest that greater success could be achieved by targeted use of immunomodulatory therapy in specific T1D populations defined by age and immune characteristics.
Collapse
Affiliation(s)
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
22
|
Tsai S, McOlash L, Jia S, Zhang J, Simpson P, Kaldunski ML, Aldakkak M, Grewal J, Palen K, Dwinell MB, Johnson BD, Mackinnon A, Hessner MJ, Gershan JA. A Serum-Induced Transcriptome and Serum Cytokine Signature Obtained at Diagnosis Correlates with the Development of Early Pancreatic Ductal Adenocarcinoma Metastasis. Cancer Epidemiol Biomarkers Prev 2018; 28:680-689. [PMID: 30530849 DOI: 10.1158/1055-9965.epi-18-0813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite the accessibility of blood, identification of systemic biomarkers associated with cancer progression has been especially challenging. The aim of this study was to determine a difference in baseline serum immune signatures in patients that experienced early pancreatic ductal adenocarcinoma (PDAC) metastasis compared with patients that did not. We hypothesized that immune mediators would differ in the baseline serum of these patient cohorts. To test this hypothesis, novel approaches of systemic immune analysis were performed. METHODS A serum-induced transcriptional assay was used to identify transcriptome signatures. To enable an understanding of the transcriptome data in a global sense, a transcriptome index was calculated for each patient taking into consideration the relationship of up- and downregulated transcripts. For each patient, serum cytokine concentrations were also analyzed globally as a cytokine index (CI). RESULTS A transcriptome signature of innate type I IFN inflammation was identified in patients that experienced early metastatic progression. Patients without early metastatic progression had a baseline transcriptome signature of TGFβ/IL10-regulated acute inflammation. The transcriptome index was greater in patients with early metastasis. There was a significant difference in the CI in patients with and without early metastatic progression. CONCLUSIONS The association of serum-induced transcriptional signatures with PDAC metastasis is a novel finding. Global assessment of serum cytokine concentrations as a CI is a novel approach to assess systemic cancer immunity. IMPACT These systemic indices can be assessed in combination with tumor markers to further define subsets of PDAC that will provide insight into effective treatment, progression, and outcome.
Collapse
Affiliation(s)
- Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura McOlash
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shuang Jia
- Department of Pediatrics, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jian Zhang
- Department of Pediatrics, Division of Quantitative Health Services, Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pippa Simpson
- Department of Pediatrics, Division of Quantitative Health Services, Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary L Kaldunski
- Department of Pediatrics, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mohammed Aldakkak
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jenny Grewal
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Katie Palen
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon D Johnson
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Martin J Hessner
- Department of Pediatrics, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jill A Gershan
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
23
|
Cabrera SM, Engle S, Kaldunski M, Jia S, Geoffrey R, Simpson P, Szabo A, Speake C, Greenbaum CJ, Chen YG, Hessner MJ. Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. Diabetologia 2018; 61:2356-2370. [PMID: 30167736 PMCID: PMC6182660 DOI: 10.1007/s00125-018-4708-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The study aimed to determine whether discrete subtypes of type 1 diabetes exist, based on immunoregulatory profiles at clinical onset, as this has significant implications for disease treatment and prevention as well as the design and analysis of clinical trials. METHODS Using a plasma-based transcriptional bioassay and a gene-ontology-based scoring algorithm, we examined local participants from the Children's Hospital of Wisconsin and conducted an ancillary analysis of TrialNet CTLA4-Ig trial (TN-09) participants. RESULTS The inflammatory/regulatory balance measured during the post-onset period was highly variable. Notably, a significant inverse relationship was identified between baseline innate inflammatory activity and stimulated C-peptide AUC measured at 3, 6, 12, 18 and 24 months post onset among placebo-treated individuals (p ≤ 0.015). Further, duration of persistent insulin secretion was negatively related to baseline inflammation (p ≤ 0.012) and positively associated with baseline abundance of circulating activated regulatory T cells (CD4+/CD45RA-/FOXP3high; p = 0.016). Based on these findings, data from participants treated with CTLA4-Ig were stratified by inflammatory activity at onset; in this way, we identified pathways and transcripts consistent with inhibition of T cell activation and enhanced immunoregulation. Variance among baseline plasma-induced signatures of TN-09 participants was further examined with weighted gene co-expression network analysis and related to clinical metrics. Four age-independent subgroups were identified that differed in terms of baseline innate inflammatory/regulatory bias, rate of C-peptide decline and response to CTLA4-Ig treatment. CONCLUSIONS/INTERPRETATION These data support the existence of multiple type 1 diabetes subtypes characterised by varying levels of baseline innate inflammation that are associated with the rate of C-peptide decline. DATA AVAILABILITY Gene expression data files are publicly available through the National Center for Biotechnology Information Gene Expression Omnibus (accession number GSE102234).
Collapse
Affiliation(s)
- Susanne M Cabrera
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Samuel Engle
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mary Kaldunski
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuang Jia
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rhonda Geoffrey
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Pippa Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Yi-Guang Chen
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Martin J Hessner
- Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Section of Endocrinology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
24
|
Vecchio F, Lo Buono N, Stabilini A, Nigi L, Dufort MJ, Geyer S, Rancoita PM, Cugnata F, Mandelli A, Valle A, Leete P, Mancarella F, Linsley PS, Krogvold L, Herold KC, Elding Larsson H, Richardson SJ, Morgan NG, Dahl-Jørgensen K, Sebastiani G, Dotta F, Bosi E, Battaglia M. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 2018; 3:122146. [PMID: 30232284 DOI: 10.1172/jci.insight.122146] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D. METHODS Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing. RESULTS Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreas-infiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects. CONCLUSIONS These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality. FUNDING Juvenile Diabetes Research Foundation (JDRF), NIH, Diabetes UK.
Collapse
Affiliation(s)
- Federica Vecchio
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Lo Buono
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Susan Geyer
- University of South Florida, TNCC, Tampa, Florida, USA
| | - Paola Maria Rancoita
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mandelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Valle
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital SUS, Malmo, Sweden
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and the Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
25
|
Rahman MJ, Rodrigues KB, Quiel JA, Liu Y, Bhargava V, Zhao Y, Hotta-Iwamura C, Shih HY, Lau-Kilby AW, Malloy AM, Thoner TW, Tarbell KV. Restoration of the type I IFN-IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice. JCI Insight 2018; 3:97843. [PMID: 29415894 DOI: 10.1172/jci.insight.97843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan A Quiel
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yi Liu
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Philadelphia, Pennsylvania, USA
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Han-Yu Shih
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Annie W Lau-Kilby
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Allison Mw Malloy
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy W Thoner
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Amgen Discovery Research, Inflammation and Oncology, South San Francisco, California, USA
| |
Collapse
|
26
|
Tarbell KV, Egen JG. Breaking self-tolerance during autoimmunity and cancer immunity: Myeloid cells and type I IFN response regulation. J Leukoc Biol 2018; 103:1117-1129. [PMID: 29393979 DOI: 10.1002/jlb.3mir1017-400r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/28/2024] Open
Abstract
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Kristin V Tarbell
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| | - Jackson G Egen
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| |
Collapse
|
27
|
Henschel AM, Cabrera SM, Kaldunski ML, Jia S, Geoffrey R, Roethle MF, Lam V, Chen YG, Wang X, Salzman NH, Hessner MJ. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One 2018; 13:e0190351. [PMID: 29293587 PMCID: PMC5749787 DOI: 10.1371/journal.pone.0190351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.
Collapse
Affiliation(s)
- Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark F. Roethle
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vy Lam
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nita H. Salzman
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
28
|
Vistnes M, Tapia G, Mårild K, Midttun Ø, Ueland PM, Viken MK, Magnus P, Berg JP, Gillespie KM, Skrivarhaug T, Njølstad PR, Joner G, Størdal K, Stene LC. Plasma immunological markers in pregnancy and cord blood: A possible link between macrophage chemo-attractants and risk of childhood type 1 diabetes. Am J Reprod Immunol 2017; 79. [PMID: 29266506 DOI: 10.1111/aji.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Previous studies have suggested that immune perturbations during pregnancy can affect offspring type 1 diabetes (T1D) risk. We aimed to identify immunological markers that could predict offspring T1D or that were linked to T1D risk factors. METHOD OF STUDY We quantified selected circulating immunological markers in mid-pregnancy (interleukin [IL]-1β, IL-1ra, IL-2Rα, IL-2, -4, -5, -6, -10, -12p70, 13, -17A, GM-CSF, IFN-γ, CXCL10, CCL 2, CCL3, CCL4, TNF) and cord blood plasma (neopterin and kynurenine/tryptophan ratio) in a case-control study with 175 mother/child T1D cases (median age 5.8, range 0.7-13.0 years) and 552 controls. RESULTS Pre-pregnancy obesity was positively associated with CCL4, CXCL10, kynurenine/tryptophan ratio and neopterin (P < .01). The established T1D SNPs rs1159465 (near IL2RA) and rs75352297 (near CCR2 and CCR3) were positively associated with IL-2Rα and CCL4, respectively (P < .01). There was a borderline association of CCL4 and offspring T1D risk, independent of maternal obesity and genotype. When grouping the immunological markers, there was a borderline association (P = .05) with M1 phenotype and no association between M2-, Th1-, Th2- or Th17 phenotypes and offspring T1D risk. CONCLUSION Increased mid-pregnancy CCL4 levels showed borderline associations with increased offspring T1D risk, which may indicate a link between environmental factors in pregnancy and offspring T1D risk.
Collapse
Affiliation(s)
- Maria Vistnes
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | - Karl Mårild
- Norwegian Institute of Public Health, Oslo, Norway.,Barbara Davis Center, University of Colorado, Aurora, CO, USA
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Marte K Viken
- Department of Immunology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jens P Berg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen M Gillespie
- Diabetes and Metabolism, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Torild Skrivarhaug
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Geir Joner
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ketil Størdal
- Norwegian Institute of Public Health, Oslo, Norway.,Pediatric Department, Østfold Hospital Trust, Grålum, Norway
| | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
Insel R, Dutta S, Hedrick J. Type 1 Diabetes: Disease Stratification. Biomed Hub 2017; 2:111-126. [PMID: 31988942 PMCID: PMC6945911 DOI: 10.1159/000481131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes, a disorder characterized by immune-mediated loss of functional pancreatic beta cells, is a disease continuum with specific presymptomatic stages with defined risk of progression to symptomatic disease. Prognostic biomarkers have been developed for disease staging and for stratification of subjects that address the heterogeneity in rate of disease progression. Using biomarkers for stratification of subjects at different stages of type 1 diabetes will enable smaller and shorter intervention clinical trials with greater effect size. Addressing the heterogeneity of the disease will allow precision medicine-based approaches to prevention and interception of presymptomatic stages of disease and treatment and cure of symptomatic disease.
Collapse
Affiliation(s)
| | | | - Joseph Hedrick
- Disease Interception Accelerator - T1D, Janssen Research & Development, LLC, Raritan, NJ, USA
| |
Collapse
|
30
|
Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, Lernmark Å, Muller S, Pugliese A, Roep BO, Greenbaum CJ, Peakman M. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 2017; 60:2139-2147. [PMID: 28770323 PMCID: PMC5838353 DOI: 10.1007/s00125-017-4384-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease arising from the destruction of pancreatic insulin-producing beta cells. The disease represents a continuum, progressing sequentially at variable rates through identifiable stages prior to the onset of symptoms, through diagnosis and into the critical periods that follow, culminating in a variable depth of beta cell depletion. The ability to identify the very earliest of these presymptomatic stages has provided a setting in which prevention strategies can be trialled, as well as furnishing an unprecedented opportunity to study disease evolution, including intrinsic and extrinsic initiators and drivers. This niche opportunity is occupied by Type 1 Diabetes TrialNet, an international consortium of clinical trial centres that leads the field in intervention and prevention studies, accompanied by deep longitudinal bio-sampling. In this review, we focus on discoveries arising from this unique bioresource, comprising more than 70,000 samples, and outline the processes and science that have led to new biomarkers and mechanistic insights, as well as identifying new challenges and opportunities. We conclude that via integration of clinical trials and mechanistic studies, drawing in clinicians and scientists and developing partnership with industry, TrialNet embodies an enviable and unique working model for understanding a disease that to date has no cure and for designing new therapeutic approaches.
Collapse
Affiliation(s)
- Manuela Battaglia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Susan M Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas W H Kay
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Åke Lernmark
- Lund University/CRC, Department of Clinical Sciences, Skane University Hospital, Malmö, Sweden
| | - Sarah Muller
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine University of Miami, Miami, FL, USA
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, UK.
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
31
|
Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The Importance of Dendritic Cells in Maintaining Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 198:2223-2231. [PMID: 28264998 DOI: 10.4049/jimmunol.1601629] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022]
Abstract
Immune tolerance is necessary to prevent the immune system from reacting against self, and thus to avoid the development of autoimmune diseases. In this review, we discuss key findings that position dendritic cells (DCs) as critical modulators of both thymic and peripheral immune tolerance. Although DCs are important for inducing both immunity and tolerance, increased autoimmunity associated with decreased DCs suggests their nonredundant role in tolerance induction. DC-mediated T cell immune tolerance is an active process that is influenced by genetic variants, environmental signals, as well as the nature of the specific DC subset presenting Ag to T cells. Answering the many open questions with regard to the role of DCs in immune tolerance could lead to the development of novel therapies for the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tae Jin Yun
- Laboratory of Cellular Physiology and Immunology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada; and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
32
|
Saxena A, Yagita H, Donner TW, Hamad ARA. Expansion of FasL-Expressing CD5 + B Cells in Type 1 Diabetes Patients. Front Immunol 2017; 8:402. [PMID: 28439273 PMCID: PMC5383713 DOI: 10.3389/fimmu.2017.00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Fas ligand drives insulitis in the non-obese diabetic mouse model of type 1 diabetes (T1D) and negatively regulates IL-10-producing (IL-10pos) CD5+ B cells in pancreata. Relevance of these phenomena to the human disease is poorly understood. Here, using splenocytes from T1D, autoantibody (Ab+), and non-diabetic (ND) human subjects, we show that a subpopulation of CD5+ B cells that is characterized by expression of FasL (FasLhiCD5+) was significantly elevated in T1D subjects, many of whom had significantly reduced frequency of IL-10posCD5+ B cells compared to Ab+ subjects. The majority of FasLhiCD5+ B cells did not produce cytokines and were more highly resistant to activation-induced cell death than their IL-10posCD5+ counterparts. These results associate expansion of FasL-expressing CD5+ B cells with T1D and lay the groundwork for future mechanistic studies to understand specific role in disease pathogenesis.
Collapse
Affiliation(s)
- Ankit Saxena
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Thomas W Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdel Rahim A Hamad
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, Mortensen HB, Pociot F. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 2017; 60:354-363. [PMID: 27866223 DOI: 10.1007/s00125-016-4156-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control in this subgroup were further validated in the remaining cohort (n = 83). Statistical analysis of miRNA prediction for disease progression was performed by multiple linear regression analysis adjusted for age and sex. RESULTS In the discovery analysis, six miRNAs (hsa-miR-24-3p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-197-3p, hsa-miR-301a-3p and hsa-miR-375) at 3 months correlated with residual beta cell function 6-12 months after diagnosis. Stimulated C-peptide at 12 months was predicted by hsa-miR-197-3p at 3 months (p = 0.034). A doubling of this miRNA level corresponded to a sixfold higher stimulated C-peptide level. In addition, a doubling of hsa-miR-24-3p and hsa-miR-146a-5p levels at 3 months corresponded to a 4.2% (p < 0.014) and 3.5% (p < 0.022) lower IDAA1c value at 12 months. Analysis of the remaining cohort confirmed the initial finding for hsa-miR-197-3p (p = 0.018). The target genes for the six miRNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Nasim Samandari
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Aashiq H Mirza
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Philip Hougaard
- Department of Statistics, University of Southern Denmark, Odense, Denmark
| | - Siri Fredheim
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Investigation of coordination and order in transcription regulation of innate and adaptive immunity genes in type 1 diabetes. BMC Med Genomics 2017; 10:7. [PMID: 28143555 PMCID: PMC5282641 DOI: 10.1186/s12920-017-0243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/25/2017] [Indexed: 01/19/2023] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease and extensive evidence has indicated a critical role of both the innate and the adaptive arms of immune system in disease development. To date most clinical trials of immunomodulation therapies failed to show efficacy. A number of gene expression studies of T1D have been carried out. However, a systems analysis of the expression variations of the innate and adaptive immunity gene sets, or their co-expression network structures in cohorts at different disease states or of different disease risks, is not available till now. Methods We utilized data from a large gene expression study that included transcription profiles of control peripheral blood mononuclear cells (PBMC) exposed to plasma of 148 human subjects from four cohorts that included unrelated healthy controls (uHC), recent onset T1D patients (RO-T1D), and healthy siblings of probands that possess high (HRS, High Risk Sibling) or low (LRS, Low Risk Sibling) risk HLA haplotypes. Both weighted and non-weighted co-expression networks were constructed in each cohort separately, and edge weight distribution and the activation of known protein complexes were examined. The co-expression networks of the innate and adaptive immunity genes were further examined in more detail through a number of network measures that included network density, Shannon entropy, h-index, and the scaling exponent γ of degree distribution. Pathway analysis was carried out using CoGA, a tool for detecting significant network structural changes of a gene set. Results Weighted network edge distribution revealed a globally weakened co-expression network induced by the RO-T1D cohort as compared to that by the uHC, suggesting a broad spectrum loss of transcriptional coordination. The two healthy T1D family cohorts (HRS and LRS) induced more active but heterogeneous transcription coordination globally, and among both the innate and the adaptive immunity genes, than the uHC. This finding is consistent with our previous report of these cohorts sharing a heightened innate inflammatory state. The spike-in of IL-1RA to RO-T1D sera improved co-expression network strength of both the innate and the adaptive immunity genes, and enabled a global order recovery in transcription regulation that resulted in significantly increased number of activated protein complexes. Many of the top pathways that showed significant difference in co-expression network structures and order between RO-T1D and uHC have strong links to T1D. Conclusions Network level analysis of the innate and adaptive immunity genes, and the whole genome, revealed striking cohort-dependent differences in co-expression network structural measures, suggesting their potential in cohort classification and disease-relevant pathway identification. The results demonstrated the advantages of systems analysis in defining molecular signatures as well as in predicting targets in future research. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0243-8) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
36
|
Lin B, Ciecko AE, MacKinney E, Serreze DV, Chen YG. Congenic mapping identifies a novel Idd9 subregion regulating type 1 diabetes in NOD mice. Immunogenetics 2016; 69:193-198. [PMID: 27796442 DOI: 10.1007/s00251-016-0957-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) results from complex interactions between genetic and environmental factors. The nonobese diabetic (NOD) mouse develops spontaneous T1D and has been used extensively to study the genetic control of this disease. T1D is suppressed in NOD mice congenic for the C57BL/10 (B10)-derived Idd9 resistance region on chromosome 4. Previous studies conducted by other investigators have identified four subregions (Idd9.1, Idd9.2, Idd9.3, and Idd9.4) where B10-derived genes suppress T1D development in NOD mice. We independently generated and characterized six congenic strains containing B10-derived intervals that partially overlap with the Idd9.1 and Idd9.4 regions. T1D incidence studies have revealed a new B10-derived resistance region proximal to Idd9.1. Our results also indicated that a B10-derived gene(s) within the Idd9.4 region suppressed the diabetogenic activity of CD4 T cells and promoted CD103 expression on regulatory T cells indicative of an activated phenotype. In addition, we suggest the presence of a B10-derived susceptibility gene(s) in the Idd9.1/Idd9.4 region. These results provide additional information to improve our understanding of the complex genetic control by the Idd9 region.
Collapse
Affiliation(s)
- Bixuan Lin
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Erin MacKinney
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | | | - Yi-Guang Chen
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
37
|
Seelig E, Timper K, Falconnier C, Stoeckli R, Bilz S, Oram R, McDonald TJ, Donath MY. Interleukin-1 antagonism in type 1 diabetes of long duration. DIABETES & METABOLISM 2016; 42:453-456. [PMID: 27720360 DOI: 10.1016/j.diabet.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Affiliation(s)
- E Seelig
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
| | - K Timper
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - C Falconnier
- Division of Endocrinology, Diabetology and Metabolism, Medical University Clinic, Kantonsspital Baselland, Liestal, Switzerland
| | - R Stoeckli
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - S Bilz
- Clinic for Endocrinology, Diabetes, Bone Disease and Metabolism, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - R Oram
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, UK
| | - T J McDonald
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, UK
| | - M Y Donath
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
38
|
Pociot F, Kaur S, Nielsen LB. Effects of the genome on immune regulation in type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:37-42. [PMID: 27411435 DOI: 10.1111/pedi.12336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022] Open
Abstract
Type 1 diabetes (T1DM) is a complex disease, arising through the interaction of an incompletely defined combination of genetic susceptibility and environmental factors. It is well accepted that T1DM results from selective immune-mediated destruction of the insulin-producing β cells in the islets of langerhans. Genetic studies of T1DM have identified several regions of susceptibility and identified major networks and pathways contributing to risk. In this study, we have taken advantages of the Immunochip fine-mapping genotyping data to address different aspects of immune regulation in relation to T1DM. First, we confirm that dense single nucleotide polymorphism (SNP) genotyping of the major histocompatibility complex/human leukocyte antigen (MHC/HLA) region capture the complex genetic contribution of this region to disease risk. Furthermore, it is shown that Immunochip genotyping can translate into a limited number of DRB1 and DQB1 amino acid residues that account for most of the HLA-risk. Second, we use the Immunochip data to look for functional significance by correlation to circulating levels of chemokines and demonstrate that genetic variation at chromosome 2, 3, and 6 correlates with circulating CCL2 and CCL4 in recent onset T1DM patients. Finally, we report that genetic variants predict autoantibody positivity in T1DM cases.
Collapse
Affiliation(s)
- Flemming Pociot
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
39
|
Hamel Y, Mauvais FX, Pham HP, Kratzer R, Marchi C, Barilleau É, Waeckel-Enée E, Arnoux JB, Hartemann A, Cordier C, Mégret J, Rocha B, de Lonlay P, Beltrand J, Six A, Robert JJ, van Endert P. A unique CD8(+) T lymphocyte signature in pediatric type 1 diabetes. J Autoimmun 2016; 73:54-63. [PMID: 27318739 DOI: 10.1016/j.jaut.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
Human type 1 diabetes results from a destructive auto-reactive immune response in which CD8(+) T lymphocytes play a critical role. Given the intense ongoing efforts to develop immune intervention to prevent and/or cure the disease, biomarkers suitable for prediction of disease risk and progress, as well as for monitoring of immunotherapy are required. We undertook separate multi-parameter analyses of single naïve and activated/memory CD8(+) T lymphocytes from pediatric and adult patients, with the objective of identifying cellular profiles associated with onset of type 1 diabetes. We observe global perturbations in gene and protein expression and in the abundance of T cell populations characterizing pediatric but not adult patients, relative to age-matched healthy individuals. Pediatric diabetes is associated with a unique population of CD8(+) T lymphocytes co-expressing effector (perforin, granzyme B) and regulatory (transforming growth factor β, interleukin-10 receptor) molecules. This population persists after metabolic normalization and is especially abundant in children with high titers of auto-antibodies to glutamic acid decarboxylase and with elevated HbA1c values. These findings highlight striking differences between pediatric and adult type 1 diabetes, indicate prolonged large-scale perturbations in the CD8(+) T cell compartment in the former, and suggest that CD8(+)CD45RA(-) T cells co-expressing effector and regulatory factors are of interest as biomarkers in pediatric type 1 diabetes.
Collapse
Affiliation(s)
- Yamina Hamel
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - François-Xavier Mauvais
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Hang-Phuong Pham
- Sorbonne Universités, UPMC Université Paris 6, 75015 Paris, France; Institut National de la Sante et de la Recherche Médicale, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Roland Kratzer
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Christophe Marchi
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Émilie Barilleau
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Emmanuelle Waeckel-Enée
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Jean-Baptiste Arnoux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre de référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Agnès Hartemann
- Université Pierre & Marie Curie, IHU ICAN, 75013 Paris, France; Service de Diabétologie, Hôpital de la Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Corinne Cordier
- Institut National de la Sante et de la Recherche Médicale, US24, 75015 Paris, France; Centre National de la Recherche Scientifique, UMS3633, 75015 Paris, France
| | - Jerome Mégret
- Institut National de la Sante et de la Recherche Médicale, US24, 75015 Paris, France; Centre National de la Recherche Scientifique, UMS3633, 75015 Paris, France
| | - Benedita Rocha
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Pascale de Lonlay
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre de référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut Imagine, Institut National de la Sante et de la Recherche Médicale, Unité 1163, 75015 Paris, France
| | - Jacques Beltrand
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Adrien Six
- Sorbonne Universités, UPMC Université Paris 6, 75015 Paris, France; Institut National de la Sante et de la Recherche Médicale, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Jean-Jacques Robert
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France.
| |
Collapse
|
40
|
Riquelme Medina I, Lubovac-Pilav Z. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes. PLoS One 2016; 11:e0156006. [PMID: 27257970 PMCID: PMC4892488 DOI: 10.1371/journal.pone.0156006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D.
Collapse
Affiliation(s)
| | - Zelmina Lubovac-Pilav
- Bioinformatics research group, School of Biosciences, University of Skövde, Skövde, Sweden
- * E-mail:
| |
Collapse
|
41
|
Abstract
Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.
Collapse
Affiliation(s)
- Anne Op de Beeck
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
- Welbio, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| |
Collapse
|
42
|
Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, Mandrup-Poulsen T, Hessner MJ. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 2016; 46:1030-46. [PMID: 26692253 PMCID: PMC4828314 DOI: 10.1002/eji.201546005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/10/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023]
Abstract
It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xujing Wang
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carla J. Greenbaum
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
43
|
Cabrera SM, Chen YG, Hagopian WA, Hessner MJ. Blood-based signatures in type 1 diabetes. Diabetologia 2016; 59:414-25. [PMID: 26699650 PMCID: PMC4744128 DOI: 10.1007/s00125-015-3843-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus is one of the most common chronic diseases in childhood. It develops through autoimmune destruction of the pancreatic beta cells and results in lifelong dependence on exogenous insulin. The pathogenesis of type 1 diabetes involves a complex interplay of genetic and environmental factors and has historically been attributed to aberrant adaptive immunity; however, there is increasing evidence for a role of innate inflammation. Over the past decade new methodologies for the analysis of nucleic acid and protein signals have been applied to type 1 diabetes. These studies are providing a new understanding of type 1 diabetes pathogenesis and have the potential to inform the development of new biomarkers for predicting diabetes onset and monitoring therapeutic interventions. In this review we will focus on blood-based signatures in type 1 diabetes, with special attention to both direct transcriptomic analyses of whole blood and immunocyte subsets, as well as plasma/serum-induced transcriptional signatures. Attention will also be given to proteomics, microRNA assays and markers of beta cell death. We will also discuss the results of blood-based profiling in type 1 diabetes within the context of the genetic and environmental factors implicated in the natural history of autoimmune diabetes.
Collapse
Affiliation(s)
- Susanne M Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA.
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
44
|
Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proc Natl Acad Sci U S A 2016; 113:1895-900. [PMID: 26831066 DOI: 10.1073/pnas.1525520113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1-dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications.
Collapse
|
45
|
Gurram B, Salzman NH, Kaldunski ML, Jia S, Li BUK, Stephens M, Sood MR, Hessner MJ. Plasma-induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment-naive paediatric inflammatory bowel disease. Clin Exp Immunol 2016; 184:36-49. [PMID: 26660358 DOI: 10.1111/cei.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
The inflammatory state associated with Crohn's disease (CD) and ulcerative colitis (UC) remains incompletely defined. To understand more clearly the extracellular milieu associated with inflammatory bowel disease (IBD), we employed a bioassay whereby plasma of treatment naive paediatric IBD patients (n = 22 CD, n = 15 UC) and unrelated healthy controls (uHC, n = 10) were used to induce transcriptional responses in a healthy leucocyte population. After culture, gene expression was measured comprehensively with microarrays and analysed. Relative to uHC, plasma of CD and UC patients induced distinct responses consisting, respectively, of 985 and 895 regulated transcripts [|log2 ratio| ≥ 0·5 (1·4-fold); false discovery rates (FDR) ≤ 0·01]. The CD:uHC and UC:uHC signatures shared a non-random, commonly regulated, intersection of 656 transcripts (χ(2) = P < 0·001) and were highly correlative [Pearson's correlation coefficient = 0·96, 95% confidence interval (CI) = 0.96, 0.97]. Despite sharing common genetic susceptibility loci, the IBD signature correlated negatively with that driven by plasma of type 1 diabetes (T1D) patients (Pearson's correlation coefficient = -0·51). Ontological analyses revealed the presence of an immunoregulatory plasma milieu in IBD, as transcripts for cytokines/chemokines, receptors and signalling molecules consistent with immune activation were under-expressed relative to uHC and T1D plasma. Multiplex enzyme-linked immunosorbent assay (ELISA) and receptor blockade studies confirmed transforming growth factor (TGF)-β and interleukin (IL)-10 as contributors to the IBD signature. Analysis of CD patient signatures detected a subset of transcripts associated with responsiveness to 6-mercaptopurine treatment. Through plasma-induced signature analysis, we have defined a unique, partially TGF-β/IL-10-dependent immunoregulatory signature associated with IBD that may prove useful in predicting therapeutic responsiveness.
Collapse
Affiliation(s)
- B Gurram
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI
| | - N H Salzman
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI
| | - M L Kaldunski
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI.,The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| | - S Jia
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI.,The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| | - B U K Li
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI
| | - M Stephens
- Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - M R Sood
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI
| | - M J Hessner
- Department of Pediatrics, the Medical College of Wisconsin, Milwaukee, WI.,The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI
| |
Collapse
|
46
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
47
|
Cabrera SM, Henschel AM, Hessner MJ. Innate inflammation in type 1 diabetes. Transl Res 2016; 167:214-27. [PMID: 25980926 PMCID: PMC4626442 DOI: 10.1016/j.trsl.2015.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyperpermeability, or viral exposures. Special focus is put on the temporal measurement of plasma-induced transcriptional signatures of recent-onset T1D patients and their siblings as well as in the biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
48
|
Battaglia M, Nigi L, Dotta F. Towards an Earlier and Timely Diagnosis of Type 1 Diabetes: Is it Time to Change Criteria to Define Disease Onset? Curr Diab Rep 2015; 15:115. [PMID: 26468153 DOI: 10.1007/s11892-015-0690-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is the immune-mediated form of diabetes requiring insulin treatment and affecting both children and adults. The incidence of T1D is increasing dramatically and has doubled in the past 2 decades. In the recent years, significant knowledge on the disease natural history has been gained and, nowadays, diabetes-related autoantibodies make T1D a predictable disease. Despite this great advance in the field of T1D, we still use diagnostic criteria defined by the American Diabetes Association (ADA) in 1997. In other autoimmune endocrine disorders (e.g., Hashimoto's thyroiditis and Addison's disease), that share several features with T1D, diagnosis is made early in the presence of circulating autoantibodies together with subclinical thyroid/adrenal functional impairment and treatments are often provided in the absence of a frank clinical glandular insufficiency. With this review, we propose to anticipate diagnosis also in T1D at the stage in which subjects have circulating multiple islet autoantibodies, are dysglycemic but are still insulin independent. We believe that anticipating T1D diagnosis can lead to better disease management and prevention of secondary complications but can also provide the possibility to perform earlier and likely more effective interventions for a disease that to date has proven controllable but still incurable.
Collapse
Affiliation(s)
- Manuela Battaglia
- Diabetes Research Institute IRCCS San Raffaele, San Raffaele Scientific Institute, Milan, Italy.
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, 53100, Italy
- Fondazione Umberto Di Mario ONLUS, c/o Toscana Life Sciences, Siena, 53100, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, 53100, Italy
- Fondazione Umberto Di Mario ONLUS, c/o Toscana Life Sciences, Siena, 53100, Italy
| |
Collapse
|
49
|
Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38:1964-74. [PMID: 26404926 PMCID: PMC5321245 DOI: 10.2337/dc15-1419] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insights from prospective, longitudinal studies of individuals at risk for developing type 1 diabetes have demonstrated that the disease is a continuum that progresses sequentially at variable but predictable rates through distinct identifiable stages prior to the onset of symptoms. Stage 1 is defined as the presence of β-cell autoimmunity as evidenced by the presence of two or more islet autoantibodies with normoglycemia and is presymptomatic, stage 2 as the presence of β-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as onset of symptomatic disease. Adoption of this staging classification provides a standardized taxonomy for type 1 diabetes and will aid the development of therapies and the design of clinical trials to prevent symptomatic disease, promote precision medicine, and provide a framework for an optimized benefit/risk ratio that will impact regulatory approval, reimbursement, and adoption of interventions in the early stages of type 1 diabetes to prevent symptomatic disease.
Collapse
Affiliation(s)
| | | | - Mark A Atkinson
- UF Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Dana Dabelea
- Colorado School of Public Health, University of Colorado, Denver, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Kevan C Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Jeffrey P Krischer
- Department of Pediatrics, Pediatric Epidemiology Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Jay M Sosenko
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to discuss the evidence suggesting that our definition of type 1 diabetes (T1D) needs to change to incorporate new data about risk of disease and how we should intervene in this wider spectrum of disease. RECENT FINDINGS Autoantibodies can predict the development of T1D within defined periods of time. Other biomarkers are being developed that may further characterize stages of disease, as well as help define new pathways for treatment to prevent the development of hyperglycemia and full-blown diabetes. SUMMARY We have entered a new age in which prevention of disease is now possible based on changing the definition of diabetes to one that incorporates immunological markers that bring with them high risk. Further advances in our knowledge will continue to refine our ability to predict and hopefully eventually prevent T1D.
Collapse
Affiliation(s)
- Peter A Gottlieb
- Pediatrics and Medicine, Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|