1
|
Derosa G, D’Angelo A, Angelini F, Belli L, Cicero AFG, Da Ros R, De Pergola G, Gaudio GV, Lupi A, Sartore G, Vignati FA, Maffioli P. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2024; 17:14. [PMID: 39796448 PMCID: PMC11723399 DOI: 10.3390/nu17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Dysglycemia is a condition preceding diabetes mellitus. The two situations inherent in this condition are called impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). If one of these situations is found in the patient, after the advice of an appropriate diet and physical activity, the addition of nutraceuticals or supplements can be considered, which can stop or delay the progression to diabetes mellitus over time. The purpose was to compile a systematic review about the use of nutraceuticals for treating diabetes and prediabetes and to offer a valuable resource for colleagues working on this crucial subject, thereby improving patient health. The added value of the paper compared to other reviews is that it was written by experts appointed by five different scientific societies dealing with diabetes, nutrition, and complications.
Collapse
Affiliation(s)
- Giuseppe Derosa
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Aselli, 43/45, 27100 Pavia, Italy
| | - Angela D’Angelo
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Fabrizio Angelini
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Luca Belli
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Arrigo F. G. Cicero
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Roberto Da Ros
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Giovanni De Pergola
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Giovanni V. Gaudio
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Alessandro Lupi
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Giovanni Sartore
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Federico A. Vignati
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Pamela Maffioli
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| |
Collapse
|
2
|
Rust BM, Nielsen FH, Yan L. Dietary Intake of Chromista Oil Alters Hepatic Metabolomic Profile of Mice With Excess Fat Mass. Nutr Metab Insights 2024; 17:11786388241297143. [PMID: 39568657 PMCID: PMC11577470 DOI: 10.1177/11786388241297143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Increasing dietary intake of fish oil is frequently recommended for decreasing the risk for cardiovascular diseases and improving metabolic health. We hypothesised that dietary intake of chromista oil (a marine food product and a rich source of long-chain n-3 polyunsaturated fatty acids) ameliorates metabolic impairments in mice with established excess adiposity. Three-to 4-week-old mice (male) were fed a control (n = 12) or a high-fat diet (HFD, n = 24) for 12 weeks to establish body fat mass. Then, mice on the HFD were assigned to 2 groups (n = 12 each) with 1 continuing being fed the HFD and the other fed the HFD with chromista oil for an additional 12 weeks. Intake of chromista oil did not affect body weight and body adiposity of the mice fed the HFD; mice fed the HFD had significantly more body weight and fat mass than control mice. The flattened daily oscillations of respiratory exchange ratio induced by the HFD were not changed by chromista oil intake. Intake of chromista oil significantly increased plasma concentration of insulin, the calculated value of HOMA-IR, and plasma concentration of adiponectin in the mice fed the HFD. However, blood glucose was unaffected by chromista oil. Transcription of genes encoding circadian rhythm and fatty acid metabolism of the 2 HFD-fed groups were similar. Untargeted metabolomic analysis showed that intake of chromista oil altered the hepatic metabolomic profile with substantial alterations in amino acid metabolism. Findings from this study indicate that dietary intake of chromista oil does not improve glucose homeostasis or alter the diminished metabolic flexibility in mice with excess adiposity induced by the HFD. argeted metabolomic analysis is warranted to investigate the effects of dietary chromista oil, as a source of n-3 poly unsaturated fatty acids, on metabolism in models of obesity.
Collapse
Affiliation(s)
- Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
3
|
Gao Y, Sun YY, Bai D, Wu XX. Mechanism of the components compatibility of Scutellariae Radix and Coptidis Rhizoma on mice with hyperlipidemia by regulating the Cyp4a family. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118263. [PMID: 38677575 DOI: 10.1016/j.jep.2024.118263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (Scutellariae Radix, SR) and Coptis chinensis Franch (Coptidis Rhizoma, CR) is a classic herbal pair used in many Traditional Chinese Medicine formulations in the treatment of hyperlipidemia (HLP). As effective ingredients of the drug pair, the effects and mechanisms of berberine and baicalin in the treatment of HLP in the form of components compatibility are still unclear. AIM OF THE STUDY To explore the mechanism of the components compatibility of SR and CR in the treatment of HLP. MATERIALS AND METHODS The HLP model was established by a high-fat diet. Serum biochemical indexes were detected. Transcriptomics and metabolomics were detected. RT-PCR and Western Blot were used to analyze the effect of RA on the expression of the Cyp4a family during the treatment of HLP. RESULTS Berberine-baicalin (RA) has a good effect in the treatment of HLP. RA can significantly reduce the body weight and liver weight of HLP, reduce the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), and increase the level of high-density lipoprotein (HDL-C). Through transcriptomic analysis, RA significantly reversed the gene expression of Cyp4a10, Cyp4a12 b, Cyp4a31, and Cyp4a32 in cytochrome P450 family 4 subfamily a (Cyp4a) which related to fatty acid degradation in the liver of HLP mice. The results of fatty acid detection showed that RA could significantly regulate heptanoic acid, EPA, adrenic acid, DH-γ-linolenic acid, and DPA in the cecum of HLP mice. The Cyp4a family genes regulated by RA are closely related to a variety of fatty acids regulated by RA. RT-PCR confirmed that RA could regulate Cyp4a mRNA expression in HLP mice. WB also showed that RA can regulate the protein expression level of Cyp4a. CONCLUSION The components compatibility of SR and CR can effectively improve the blood lipid level of HLP mice, its mechanism may be related to regulating Cyp4a gene expression and affecting fatty acid degradation, regulating the level of fatty acid metabolism in the body.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yang-Yang Sun
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Bai
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xia Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Liu Y, Wang L, Li Z, Li L, Chen S, Duan P, Wang X, Qiu Y, Ding X, Su J, Deng Y, Tian Y. DNA Methylation and Subgenome Dominance Reveal the Role of Lipid Metabolism in Jinhu Grouper Heterosis. Int J Mol Sci 2024; 25:9740. [PMID: 39273685 PMCID: PMC11396105 DOI: 10.3390/ijms25179740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Heterosis of growth traits in economic fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Nowadays, a new germplasm of hybrid Jinhu grouper (Epinephelus fuscoguttatus ♀ × E. tukula ♂), abbreviated as EFT, exhibiting paternal-biased growth heterosis, has provided an excellent model for investigating the potential regulatory mechanisms of heterosis. We integrated transcriptome and methylome to unravel the changes of gene expression, epigenetic modification, and subgenome dominance in EFT compared with maternal E. fuscoguttatus. Integration analyses showed that the heterotic hybrids showed lower genomic DNA methylation levels than the purebred parent, and the up-regulated genes were mostly DNA hypomethylation. Furthermore, allele-specific expression (ASE) detected paternal subgenome dominance-regulated paternal-biased heterosis, and paternal bias differentially expressed genes (DEGs) were wholly up-regulated in the muscle. Multi-omics results highlighted the role of lipid metabolism, particularly "Fatty acid synthesis", "EPA biosynthesis", and "Signaling lipids", in EFT heterosis formation. Coherently, our studies have proved that the eicosapentaenoic acid (EPA) of EFT was greater than that of maternal E. fuscoguttatus (8.46% vs. 7.46%). Finally, we constructed a potential regulatory network for control of the heterosis formation in EFT. Among them, fasn, pparg, dgat1, igf1, pomca, fgf8a, and fgfr4 were identified as key genes. Our results provide new and valuable clues for understanding paternal-biased growth heterosis in EFT, taking a significant step towards the molecular basis of heterosis.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Shuai Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinzhi Su
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuan Deng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| |
Collapse
|
5
|
Moore E, Patanwala I, Jafari A, Davies IG, Kirwan RP, Newson L, Mazidi M, Lane KE. A systematic review and meta-analysis of randomized controlled trials to evaluate plant-based omega-3 polyunsaturated fatty acids in nonalcoholic fatty liver disease patient biomarkers and parameters. Nutr Rev 2024; 82:143-165. [PMID: 37290426 PMCID: PMC10777680 DOI: 10.1093/nutrit/nuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is prevalent in 25-30% of British and European populations, representing a potential global public health crisis. Marine omega-3 (n-3) polyunsaturated fatty acids offer well-evidenced benefits to NAFLD biomarkers; however, the effect of plant-based n-3 has not been evaluated with a systematic review and meta-analysis. OBJECTIVE The review aimed to systematically evaluate the effect of plant-based n-3 supplementation on NAFLD surrogate biomarkers and parameters. DATA SOURCES Medline (EBSCO), PubMed, CINAHL (EBSCO), Cochrane Central Register of Controlled Trials, the International Clinical Trials Registry Platform, and Google Scholar databases were searched to identify randomized controlled trials published between January 1970 and March 2022 evaluating the impact of plant-based n-3 interventions on diagnosed NAFLD. The review followed the PRISMA checklist and is PROSPERO registered (CRD42021251980). DATA EXTRACTION A random-effects model and generic inverse variance methods synthesized quantitative data, followed by a leave-one-out method for sensitivity analysis. We identified 986 articles; after the application of selection criteria, six studies remained with 362 patients with NAFLD. RESULTS The meta-analysis showed that plant-based n-3 fatty acid supplementation significantly reduced alanine aminotransferase (ALT) (mean difference: 8.04 IU/L; 95% confidence interval: 14.70, 1.38; I2 = 48.61%) and plasma/serum triglycerides (44.51 mg/dL; 95% confidence interval: -76.93, -12.08; I2 = 69.93%), alongside body-composition markers in patients with NAFLD (P < 0.05). CONCLUSION Plant-based n-3 fatty acid supplementation improves ALT enzyme biomarkers, triglycerides, body mass index, waist circumference, and weight loss when combined with lifestyle interventions to increase physical activity and a calorie-controlled diet. Further research is needed to identify the most effective plant-based n-3 sources in larger numbers of patients with NAFLD over longer study durations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021251980.
Collapse
Affiliation(s)
- Ella Moore
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ian G Davies
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Richard P Kirwan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lisa Newson
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Katie E Lane
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
6
|
Lewis JI, Lind MV, Møller G, Hansen T, Pedersen H, Christensen MMB, Laursen JC, Nielsen S, Ottendahl CB, Larsen CVL, Stark KD, Bjerregaard P, Jørgensen ME, Lauritzen L. The effect of traditional diet on glucose homoeostasis in carriers and non-carriers of a common TBC1D4 variant in Greenlandic Inuit: a randomised crossover study. Br J Nutr 2023; 130:1871-1884. [PMID: 37129117 PMCID: PMC10632723 DOI: 10.1017/s000711452300106x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Consumption of traditional foods is decreasing amid a lifestyle transition in Greenland as incidence of type 2 diabetes (T2D) increases. In homozygous carriers of a TBC1D4 variant, conferring postprandial insulin resistance, the risk of T2D is markedly higher. We investigated the effects of traditional marine diets on glucose homoeostasis and cardio-metabolic health in Greenlandic Inuit carriers and non-carriers of the variant in a randomised crossover study consisting of two 4-week dietary interventions: Traditional (marine-based, low-carbohydrate) and Western (high in imported meats and carbohydrates). Oral glucose tolerance test (OGTT, 2-h), 14-d continuous glucose and cardio-metabolic markers were assessed to investigate the effect of diet and genotype. Compared with the Western diet, the Traditional diet reduced mean and maximum daily blood glucose by 0·17 mmol/l (95 % CI 0·05, 0·29; P = 0·006) and 0·26 mmol/l (95 % CI 0·06, 0·46; P = 0·010), respectively, with dose-dependency. Furthermore, it gave rise to a weight loss of 0·5 kg (95 % CI; 0·09, 0·90; P = 0·016) relative to the Western diet and 4 % (95 % CI 1, 9; P = 0·018) lower LDL:HDL-cholesterol, which after adjustment for weight loss appeared to be driven by HDL elevation (0·09 mmol/l (0·03, 0·15), P = 0·006). A diet-gene interaction was indicated on insulin sensitivity in the OGTT (p = 0·093), which reflected a non-significant increase of 1·4 (-0·6, 3·5) mmol/l in carrier 2-h glucose. A Traditional diet marginally improved daily glycaemic control and plasma lipid profile compared with a Westernised diet in Greenlandic Inuit. Possible adverse effects on glucose tolerance in carriers of the TBC1D4 variant warrant further studies.
Collapse
Affiliation(s)
- Jack Ivor Lewis
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Grith Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Sara Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ken D. Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- SDU, Copenhagen, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Ilisimatusarfik, The University of Greenland, Nuuk, Greenland
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Medak KD, McKie GL, Peppler WT, Shamshoum H, Dibe HA, Mutch DM, Josse AR, Wright DC. Liver triacylglycerol accumulation but not postprandial lipemia is reduced by a skim milk powder diet in male rats. Nutr Res 2023; 119:65-75. [PMID: 37757641 DOI: 10.1016/j.nutres.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Increases in postprandial lipids are linked to the development of cardiometabolic and fatty liver disease. Prior work has suggested that dairy possesses beneficial cardiometabolic effects and thus the aim of the current investigation was to test the hypotheses that the habitual consumption of dairy, in the form of skim milk powder (SMP), would protect against increases in circulating lipids and liver lipid accumulation following an oral fat challenge in rats. Male rats were fed either a semipurified low-fat control diet with casein or a diet with an equivalent amount of protein (∼13% kcal) provided through skim milk powder (SMP) for 6 weeks (n = 40/group). Rats were then given an oral gavage of palm oil (5 mL/kg body weight) or an equivalent volume of water, and serum and liver were harvested 90 minutes or 4 hours after. Rats fed the SMP diet gained less weight than controls but there were no differences in glucose tolerance between groups. The fat gavage increased serum lipids in both diet groups, whereas there was a main effect of the fat challenge to increase, and the SMP diet, to decrease liver triacylglycerol accumulation. The percentage of saturated and monounsaturated fatty acids and the protein content/activity of lipogenic enzymes were reduced in livers from SMP-fed rats, whereas the percentage of polyunsaturated fatty acids was increased. In summary, we provide evidence that SMP consumption, although not protecting against postprandial lipemia, markedly attenuates triacylglycerol accumulation and the relative amount of saturated and monounsaturated fatty acids in the liver.
Collapse
Affiliation(s)
- Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada.
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Hana A Dibe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Andrea R Josse
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada; School of Kinesiology, University of British Columbia, Vancouver British Columbia, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver British Columbia, Canada.
| |
Collapse
|
9
|
Soukka J, Polari L, Kalliomäki M, Saros L, Laajala TD, Vahlberg T, Toivola DM, Laitinen K. The Effect of a Fish Oil and/or Probiotic Intervention from Early Pregnancy Onwards on Colostrum Immune Mediators: A Randomized, Placebo-Controlled, Double-Blinded Clinical Trial in Overweight/Obese Mothers. Mol Nutr Food Res 2023; 67:e2200446. [PMID: 37326413 DOI: 10.1002/mnfr.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/23/2023] [Indexed: 06/17/2023]
Abstract
SCOPE Modifying the composition of colostrum by external factors may provide opportunities to improve the infant's health. Here, we evaluated how fish oil and/or probiotics supplementation modify concentrations of colostrum immune mediators and their associations with perinatal clinical factors on mothers with overweight/obesity. METHODS AND RESULTS Pregnant women were randomized in a double-blind manner into four intervention groups, and the supplements were consumed daily from early pregnancy onwards. Colostrum samples were collected from 187 mothers, and 16 immune mediators were measured using bead-based immunoassays. Interventions modified colostrum composition; the fish oil+probiotics group had higher concentrations of IL-12p70 than probiotics+placebo and higher FMS-like tyrosine kinase 3 ligand (FLT-3L) than fish oil+placebo and probiotics+placebo (one-way analysis of variance, post-hoc Tukey's test). Although the fish oil+probiotics group had higher levels of IFNα2 compared to the fish oil+placebo group, these differences were not statistically significant after correction for multiple testing. Multivariate linear model revealed significant associations between several immune mediators and the perinatal use of medication. CONCLUSION Fish oil/probiotics intervention exerted a minor effect on concentrations of colostrum immune mediators. However, medication during the perinatal period modulated the immune mediators. These changes in colostrum's composition may contribute to immune system development in the infant.
Collapse
Affiliation(s)
- Jenni Soukka
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, Turku, FI-20520, Finland
| | - Lauri Polari
- Department of Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520, Finland
- InFLAMES Research Flagship Center, Turku, FI-20520, Finland
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, Turku, FI-20521, Finland
- Department of Pediatrics, Turku University Hospital, Turku, FI-20521, Finland
| | - Lotta Saros
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, FI-20520, Finland
| | - Teemu D Laajala
- Biomathematics Research Group, Fican West Cancer Centre, University of Turku, Turku, FI-20500, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, FI-20014, Finland
| | - Tero Vahlberg
- Institute of Clinical Medicine, Biostatistics, University of Turku, Turku, FI-20014, Finland
| | - Diana M Toivola
- Department of Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520, Finland
- InFLAMES Research Flagship Center, Turku, FI-20520, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, FI-20520, Finland
- Functional Foods Forum, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
10
|
Laupsa-Borge J, Grytten E, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study. Front Nutr 2023; 10:1020678. [PMID: 37404855 PMCID: PMC10315503 DOI: 10.3389/fnut.2023.1020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Background Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration https://clinicaltrials.gov/, identifier [NCT02647333].
Collapse
Affiliation(s)
- Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N. Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
11
|
Saros L, Vahlberg T, Koivuniemi E, Houttu N, Niinikoski H, Tertti K, Laitinen K. Fish Oil And/Or Probiotics Intervention in Overweight/Obese Pregnant Women and Overweight Risk in 24-Month-Old Children. J Pediatr Gastroenterol Nutr 2023; 76:218-226. [PMID: 36705702 PMCID: PMC9848211 DOI: 10.1097/mpg.0000000000003659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To evaluate whether a fish oil and/or probiotics intervention in pregnant women with overweight or obesity would influence the tendency of their 24-month-old children to become overweight and alter their body fat percentage. METHODS Women (n = 439) were double-blindly randomized into 4 intervention groups: fish oil+placebo, probiotics+placebo, probiotics+fish oil, and placebo+placebo (fish oil: 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid, probiotics: Lacticaseibacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). The intervention lasted from early pregnancy until 6 months postpartum. Children's (n = 330) growth data (height, weight, head circumference), a secondary outcome of the trial, were evaluated at birth, 3, 6, 12, and 24 months of age and compared to Finnish growth charts. Body fat percentage was measured with air displacement plethysmography (24 months). Logistic regression and general linear models were used to analyze the data. RESULTS Probiotics+placebo [weight-for-height% adj. Odds ratio (OR) = 0.36, 95% confidence interval (CI) = 0.14-0.95] and probiotics+fish oil [weight-for-age standard deviation score (SD-score) adj. OR = 0.22, 95% CI = 0.07-0.71] associated with lower overweight odds in 24-month-old children compared to placebo+placebo. Results remained essentially the same, when probiotics' main effect (combined probiotics+placebo and probiotics+fish oil) was estimated; that is, lower overweight odds (weight-for-height% adj. OR = 0.48, 95% CI = 0.25-0.95 and weight-for-age SD-score adj. OR = 0.42, 95% CI = 0.20-0.88) compared to non-probiotics. No fish oil main effect (combined fish oil+placebo and probiotics+fish oil) was seen. The intervention did not influence body fat percentage. CONCLUSIONS The administration of probiotics solely and in combination with fish oil during pregnancy to women with overweight or obesity lowered the overweight odds of their 24-month-old children.
Collapse
Affiliation(s)
- Lotta Saros
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- the Institute of Clinical Medicine and Biostatistics, University of Turku, Turku, Finland
| | - Ella Koivuniemi
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Noora Houttu
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Harri Niinikoski
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- the Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Kristiina Tertti
- the Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kirsi Laitinen
- From the Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, Yin X, Xu Q. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 2023; 14:1161521. [PMID: 37152942 PMCID: PMC10161731 DOI: 10.3389/fendo.2023.1161521] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The prevalence of obesity and diabetes mellitus (DM) has been consistently increasing worldwide. Sharing powerful genetic and environmental features in their pathogenesis, obesity amplifies the impact of genetic susceptibility and environmental factors on DM. The ectopic expansion of adipose tissue and excessive accumulation of certain nutrients and metabolites sabotage the metabolic balance via insulin resistance, dysfunctional autophagy, and microbiome-gut-brain axis, further exacerbating the dysregulation of immunometabolism through low-grade systemic inflammation, leading to an accelerated loss of functional β-cells and gradual elevation of blood glucose. Given these intricate connections, most available treatments of obesity and type 2 DM (T2DM) have a mutual effect on each other. For example, anti-obesity drugs can be anti-diabetic to some extent, and some anti-diabetic medicines, in contrast, have been shown to increase body weight, such as insulin. Meanwhile, surgical procedures, especially bariatric surgery, are more effective for both obesity and T2DM. Besides guaranteeing the availability and accessibility of all the available diagnostic and therapeutic tools, more clinical and experimental investigations on the pathogenesis of these two diseases are warranted to improve the efficacy and safety of the available and newly developed treatments.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiantong Liu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qiang Xu,
| |
Collapse
|
13
|
Xu YJ, Wang WJ, Zhang QY, Yang MN, Zhang L, He H, Dong Y, Ouyang F, Gao Y, Zhang J, Zheng T, Luo ZC. Docosahexaenoic acid supplementation in gestational diabetes mellitus and neonatal metabolic health biomarkers. Front Nutr 2023; 10:1089131. [PMID: 37020805 PMCID: PMC10069675 DOI: 10.3389/fnut.2023.1089131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023] Open
Abstract
Background and objective Gestational diabetes mellitus (GDM) "programs" an elevated risk of metabolic dysfunctional disorders in the offspring, and has been associated with elevated leptin and decreased adiponectin levels in cord blood. We sought to assess whether docosahexaenoic acid (DHA) supplementation in GDM affects neonatal metabolic health biomarkers especially leptin and adiponectin. Methods In a randomized controlled trial, singleton pregnant women with de novo diagnosis of GDM at 24-28 weeks of gestation were randomized to dietary supplementation of 500 mg DHA per day (intervention, n = 30) until delivery or standard care (control, n = 38). The primary outcomes were cord blood leptin and total adiponectin concentrations. Secondary outcomes included high-molecular-weight (HMW) adiponectin and insulin-like growth factor-1 (IGF-1) concentrations in cord blood, maternal glycemic control post-intervention and birth weight (z score). In parallel, 38 euglycemic pregnant women were recruited for comparisons of cord blood biomarkers. Results There were no significant differences in cord serum leptin, total and HMW adiponectin and IGF-1 concentrations between DHA supplementation and control groups (all p > 0.05). Maternal fasting and 2-h postprandial blood glucose levels at 12-16 weeks post-intervention were similar between the two groups. The newborns in the DHA group had higher birth weight z scores (p = 0.02). Cord blood total and HMW adiponectin concentrations were significantly lower in GDM vs. euglycemic pregnancies. Conclusion Docosahexaenoic acid supplementation at 500 mg/day in GDM women did not affect neonatal metabolic biomarkers including leptin, adiponectin and IGF-1. The results are reassuring in light of the absence of influence on neonatal adipokines (leptin and adiponectin), and potential benefits to fetal growth and development. Clinical Trial Registration Clinicaltrials.gov, NCT03569501.
Collapse
Affiliation(s)
- Ya-Jie Xu
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prosserman Centre for Population Health Research, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Wen-Juan Wang
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Clinical Skills Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Qiu-Yi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Nan Yang
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Hua He
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yu Dong
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhang
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Tao Zheng
- Department Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhong-Cheng Luo,
| | - Zhong-Cheng Luo
- Department of Pediatrics, Xinhua Hospital, Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prosserman Centre for Population Health Research, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- *Correspondence: Zhong-Cheng Luo,
| |
Collapse
|
14
|
Shaikh SR, Virk R, Van Dyke TE. Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Adv Nutr 2022; 13:2316-2328. [PMID: 35709423 PMCID: PMC9776734 DOI: 10.1093/advances/nmac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth
Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of
Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Stiefvatter L, Frick K, Lehnert K, Vetter W, Montoya-Arroyo A, Frank J, Schmid-Staiger U, Bischoff SC. Potentially Beneficial Effects on Healthy Aging by Supplementation of the EPA-Rich Microalgae Phaeodactylum tricornutum or Its Supernatant-A Randomized Controlled Pilot Trial in Elderly Individuals. Mar Drugs 2022; 20:716. [PMID: 36421994 PMCID: PMC9694444 DOI: 10.3390/md20110716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 07/29/2023] Open
Abstract
Dietary supplements that promote healthy aging are mostly warranted in an aging society. Because of age-related risks, anti-inflammatory and anti-oxidative agents such as microalgae are potential candidates for intervention. In a randomized controlled trial, we tested Phaeodactylum tricornutum (PT), a microalgae rich in eicosapentaenoic acid (EPA), carotenoids, vitamins, and β-glucans, cultured in bioreactors. In this pilot trial, 19 healthy elderly received supplements for two weeks based on either the whole PT (A), the β-1,3-glucan-rich PT supernatant (SupB), the combination thereof (A+SupB), or a Comparator product (Comp). The primary outcome variable plasma interleukin-6 was reduced after treatment with A+SupB compared to the Comp group (p = 0.04). The mobility parameters 5 s sit-to-stand test (p = 0.04 in the A group) and by trend gait speed (p = 0.08 in the A+SupB diet) were improved compared to Comp. No treatment effects were observed for fatty acids, compared to Comp but omega-6 to -3 fatty acid ratio (p = 0.006) and arachidonic acid/EPA ratio (p = 0.006) were reduced within group A+SupB. Further, the SupB study product reduced faecal zonulin (p = 0.03) compared to the Comp. The data revealed an anti-inflammatory and potentially anti-oxidative effect of particular PT preparations, suggesting that they might be suitable for effects in healthy elderly.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany
| | - Konstantin Frick
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany
| | - Stephan C. Bischoff
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany
| |
Collapse
|
16
|
Diet, Exercise, and the Metabolic Syndrome: Enrollment of the Mitochondrial Machinery. Nutrients 2022; 14:nu14214519. [DOI: 10.3390/nu14214519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS), a cluster of metabolic risk factors, ranging from abdominal obesity, dyslipidaemia, hypertension, type 2 diabetes and non-alcoholic fatty liver disease [...]
Collapse
|
17
|
Lu L, Li X, Lv L, Xu Y, Wu B, Huang C. Associations between omega-3 fatty acids and insulin resistance and body composition in women with polycystic ovary syndrome. Front Nutr 2022; 9:1016943. [PMID: 36276838 PMCID: PMC9581053 DOI: 10.3389/fnut.2022.1016943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is strongly associated with abdominal obesity and insulin resistance and effective approaches to nutrition (e.g., omega-3 fatty acids intake) might improve the cardiometabolic risk profile. This study aimed to examine the associations of dietary and serum omega-3 fatty acids with insulin resistance (IR) and body composition among PCOS patients. Methods A total of 185 patients with PCOS were included in our analysis. Dietary information was collected through face-to-face interviews using a 102-item food frequency questionnaire (FFQ). Serum omega-3 fatty acid levels were measured with the gas chromatography method. Body composition was measured by both dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance (BIA) methods. The multivariable linear regression model was applied to analyze the associations of dietary and serum omega-3 fatty acids with the levels of Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and body composition parameters among PCOS patients. Results Our results indicated that the dietary long-chain omega-3 polyunsaturated fatty acids (PUFA) intakes were negatively associated with HOMA-IR (β = -0.089, P = 0.040), fat mass (β = -0.022, P = 0.047), and body fat percentage (β = -0.026, P = 0.032). For serum biomarkers, higher total omega-3 PUFAs levels (β = -0.158, P = 0.021) and long-chain omega-3 PUFAs levels (β = -0.187, P < 0.001), particularly eicosapentaenoic acid (EPA) (β = -164, P = 0.011) and docosahexaenoic acid (DHA) (β = -0.158, P = 0.001) were also associated with decreased HOMA-IR. In addition, generally, dietary and serum long-chain omega-3 PUFA levels, DPA, and DHA levels were both positively associated with muscle mass measured by DXA; whereas serum total, long-chain and individual omega-3 PUFA levels (e.g., DPA, EPA, and DHA) were all negatively associated with fat mass and body fat percentage. These findings were further confirmed by the findings for body composition measured by the BIA method. Conclusion Higher levels of dietary and serum omega-3 PUFAs, particularly long-chain omega PUFAs (DPA and DHA), might have beneficial effects on metabolic parameters and body composition among PCOS patients.
Collapse
Affiliation(s)
- Ling Lu
- Department of Gynecology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoqin Li
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lin Lv
- Department of Gynecology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yao Xu
- Department of Gynecology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Baohua Wu
- Department of Gynecology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chaolin Huang
- Department of Gynecology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
18
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
19
|
Kamoshita K, Tajima-Shirasaki N, Ishii KA, Shirasaki T, Takayama H, Abuduwaili H, Abuduyimiti T, Oo HK, Yao X, Li Q, Galicia-Medina CM, Kaneko S, Takamura T. Forkhead box protein O1 (FoxO1) knockdown accelerates the eicosapentaenoic acid (EPA)-mediated Selenop downregulation independently of sterol regulatory element-binding protein-1c (SREBP-1c) in H4IIEC3 hepatocytes. Endocr J 2022; 69:907-918. [PMID: 35321982 DOI: 10.1507/endocrj.ej21-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Natsumi Tajima-Shirasaki
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takayoshi Shirasaki
- Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa 920-8641, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa 920-8641, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Tuerdiguli Abuduyimiti
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Xingyu Yao
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Qifang Li
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Cynthia M Galicia-Medina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| |
Collapse
|
20
|
Acute effects of prior dietary fat ingestion on postprandial metabolic responses to protein and carbohydrate co-ingestion in overweight and obese men: A randomised crossover trial. Clin Nutr 2022; 41:1623-1635. [PMID: 35764009 DOI: 10.1016/j.clnu.2022.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity and insulin resistance are associated with an impaired sensitivity to anabolic stimuli such as dietary protein (anabolic resistance). Omega-3 polyunsaturated fatty acids (n-3 PUFA) may be protective against the deleterious effects of saturated fatty acids (SFA) on insulin resistance. However, the contribution of excess fat consumption to anabolic and insulin resistance and the interaction between SFA and n-3 PUFA is not well studied. AIM The primary aim of this study was to investigate the effects of an oral fat pre-load, with or without the partial substitution of SFA with fish oil (FO)-derived n-3 PUFA, on indices of insulin and anabolic sensitivity in response to subsequent dietary protein and carbohydrate (dextrose) co-ingestion. METHODS Eight middle-aged males with overweight or obesity (52.8 ± 2.0 yr, BMI 31.8 ± 1.4 kg·m-2) ingested either an SFA, or isoenergetic SFA and FO emulsion (FO), or water/control (Con), 4 h prior to a bolus of milk protein and dextrose. RESULTS Lipid ingestion (in particular FO) impaired the early postprandial uptake of branched chain amino acids (BCAA) into the skeletal muscle in response to protein and dextrose, and attenuated the peak glycaemic response, but was not accompanied by differences in whole body (Matsuda Index: Con: 4.66 ± 0.89, SFA: 5.10 ± 0.94 and FO: 4.07 ± 0.59) or peripheral (forearm glucose netAUC: Con: 521.7 ± 101.7; SFA: 470.2 ± 125.5 and FO: 495.3 ± 101.6 μmol·min-1·100 g lean mass·min [t = 240-420 min]) insulin sensitivity between visits. Postprandial whole body fat oxidation was affected by visit (P = 0.024) with elevated rates in SFA and FO, relative to Con (1.85 ± 0.55; 2.19 ± 0.21 and 0.65 ± 0.35 kJ·h-1·kg-1 lean body mass, respectively), however muscle uptake of free fatty acids (FFA) was unaffected. CONCLUSION Oral lipid preloads, consisting of SFA and FO, impair the early postprandial BCAA uptake into skeletal muscle, which occurs independent of changes in insulin sensitivity. CLINICAL TRIAL REGISTRY NUMBER ClinicalTrials.gov Identifier NCT03146286.
Collapse
|
21
|
Ashraf GM, Chatzichronis S, Alexiou A, Firdousi G, Kamal MA, Ganash M. Dietary Alterations in Impaired Mitochondrial Dynamics Due to Neurodegeneration. Front Aging Neurosci 2022; 14:893018. [PMID: 35898328 PMCID: PMC9310440 DOI: 10.3389/fnagi.2022.893018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is still an incurable disease with significant social and economic impact globally. Nevertheless, newly FDA-approved drugs and non-pharmacological techniques may offer efficient disease treatments. Furthermore, it is widely accepted that early diagnosis or even prognosis of Alzheimer's disease using advanced computational tools could offer a compelling alternative way of management. In addition, several studies have presented an insight into the role of mitochondrial dynamics in Alzheimer's development. In combination with diverse dietary and obesity-related diseases, mitochondrial bioenergetics may be linked to neurodegeneration. Considering the probabilistic expectations of Alzheimer's disease development or progression due to specific risk factors or biomarkers, we designed a Bayesian model to formulate the impact of diet-induced obesity with an impaired mitochondrial function and altered behavior. The applied probabilities are based on clinical trials globally and are continuously subject to updating and redefinition. The proposed multiparametric model combines various data types based on uniform probabilities. The program simulates all the variables with a uniform distribution in a sample of 1000 patients. First, the program initializes the variable age (30-95) and the four different diet types ("HFO_diet," "Starvation," "HL_diet," "CR") along with the factors that are related to prodromal or mixed AD (ATP, MFN1, MFN2, DRP1, FIS1, Diabetes, Oxidative_Stress, Hypertension, Obesity, Depression, and Physical_activity). Besides the known proteins related to mitochondrial dynamics, our model includes risk factors like Age, Hypertension, Oxidative Stress, Obesity, Depression, and Physical Activity, which are associated with Prodromal Alzheimer's. The outcome is the disease progression probability corresponding to a random individual ID related to diet choices and mitochondrial dynamics parameters. The proposed model and the programming code are adjustable to different parameters and values. The program is coded and executed in Python and is fully and freely available for research purposes and testing the correlation between diet type and Alzheimer's disease progression regarding various risk factors and biomarkers.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stylianos Chatzichronis
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med Austria, Wien, Austria
| | - Gazala Firdousi
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Moosavi D, Vuckovic I, Kunz HE, Lanza IR. A Randomized Trial of ω-3 Fatty Acid Supplementation and Circulating Lipoprotein Subclasses in Healthy Older Adults. J Nutr 2022; 152:1675-1689. [PMID: 35389487 PMCID: PMC9258601 DOI: 10.1093/jn/nxac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Omega-3 (n-3) PUFAs are recognized for triglyceride-lowering effects in people with dyslipidemia, but it remains unclear if n-3-PUFA intake influences lipoprotein profiles in older adults without hypertriglyceridemia. OBJECTIVES The objective was to determine the effect of n-3-PUFA supplementation on plasma lipoprotein subfractions in healthy older men and women in the absence of cardiovascular disease (CVD) or hypertriglyceridemia. This was a secondary analysis and considered exploratory. METHODS Thirty young (20-35 y old) and 54 older (65-85 y old) men and women were enrolled in the study. Fasting plasma samples were collected. After baseline sample collection, 44 older adults were randomly assigned to receive either n-3-PUFA ethyl esters (3.9 g/d) or placebo (corn oil) for 6 mo. Pre- and postintervention plasma samples were used for quantitative lipoprotein subclass analysis using high-resolution proton NMR spectroscopy. RESULTS The number of large, least-dense LDL particles decreased 17%-18% with n-3 PUFAs compared with placebo (<1% change; P < 0.01). The number of small, dense LDL particles increased 26%-44% with n-3 PUFAs compared with placebo (∼11% decrease; P < 0.01). The cholesterol content of large HDL particles increased by 32% with n-3 PUFAs and by 2% in placebo (P < 0.01). The cholesterol content of small HDL particles decreased by 23% with n-3 PUFAs and by 2% in placebo (P < 0.01). CONCLUSIONS Despite increasing abundance of small, dense LDL particles that are associated with CVD risk, n-3 PUFAs reduced total triglycerides, maintained HDL, reduced systolic blood pressure, and shifted the HDL particle distribution toward a favorable cardioprotective profile in healthy older adults without dyslipidemia. This study suggests potential benefits of n-3-PUFA supplementation to lipoprotein profiles in healthy older adults without dyslipidemia, which should be considered when weighing the potential health benefits against the cost and ecological impact of widespread use of n-3-PUFA supplements.This trial was registered at clinicaltrials.gov as NCT03350906.
Collapse
Affiliation(s)
- Darya Moosavi
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Ivan Vuckovic
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Hu SH, He XD, Nie J, Hou JL, Wu J, Liu XY, Wei Y, Tang HR, Sun WX, Zhou SX, Yuan YY, An YP, Yan GQ, Lin Y, Lin PC, Zhao JJ, Ye ML, Zhao JY, Xu W, Zhao SM. Methylene-bridge tryptophan fatty acylation regulates PI3K-AKT signaling and glucose uptake. Cell Rep 2022; 38:110509. [PMID: 35294873 DOI: 10.1016/j.celrep.2022.110509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
Abstract
Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2. DHA-administered mice exhibit altered phosphorylation of proteins in signaling pathways. Methylene bridge-containing DHA/EPA acylate δ1 carbon of tryptophan 448/543 in PDK1 and tryptophan 414 in AKT2 via free radical pathway, recruit both the proteins to the cytoplasmic membrane, and activate PI3K signaling and glucose uptake in a tryptophan acylation-dependent but insulin-independent manner in cultured cells and in mice. DHA/EPA deplete cytosolic PDK1 and AKT2 and induce insulin resistance. Akt2 knockout in mice abrogates DHA/EPA-induced PI3K-AKT signaling. Our results identify PUFA's methylene bridge tryptophan acylation, a protein fatty acylation that regulates cell signaling and may underlie multifaceted effects of methylene-bridge-containing PUFAs.
Collapse
Affiliation(s)
- Song-Hua Hu
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Xia-Di He
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Ji Nie
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jiang Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Xiao-Yan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yun Wei
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Hui-Ru Tang
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Wen-Xing Sun
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Shu-Xian Zhou
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Yan-Peng An
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Guo-Quan Yan
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, P. R. China
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ming-Liang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, Institutes of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, P.R. China; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Medical Epigenetics, and Children's Hospital of Fudan University, Shanghai 200438, P.R. China; Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, P. R. China.
| |
Collapse
|
24
|
Takeshita Y, Teramura C, Kamoshita K, Takayama H, Nakagawa H, Enyama Y, Ishii K, Tanaka T, Goto H, Nakano Y, Osada S, Tanaka Y, Tokuyama K, Takamura T. Effects of eicosapentaenoic acid on serum levels of selenoprotein P and organ-specific insulin sensitivity in humans with dyslipidemia and type 2 diabetes. J Diabetes Investig 2022; 13:532-542. [PMID: 34670012 PMCID: PMC8902388 DOI: 10.1111/jdi.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
AIM Selenoprotein P (SeP, encoded by SELENOP in humans) is a hepatokine that causes insulin resistance in the liver and skeletal muscle. It was found that polyunsaturated fatty acid eicosapentaenoic acid (EPA) downregulates Selenop expression by inactivating SREBP-1c. The present study aimed to examine the effect of EPA for 12 weeks on circulating SeP levels and insulin sensitivity in humans with type 2 diabetes. METHODS A total of 20 participants with dyslipidemia and type 2 diabetes were randomly assigned to an EPA (900 mg, twice daily) group and a control group. The primary endpoint was a change in serum SeP levels. Organ-specific insulin sensitivity in the liver (HGP and %HGP), skeletal muscle (Rd), and adipose tissue (FFA and %FFA) were assessed using a hyperinsulinemic-euglycemic clamp study with stable isotope-labeled glucose infusion. RESULTS Serum SeP levels were not changed in either group at the end of the study. In the EPA group, the changes in SeP levels were positively correlated with the change in serum EPA levels (r = 0.709, P = 0.022). Treatment with EPA significantly enhanced %FFA but not %HGP and Rd. The change in serum EPA levels was significantly positively correlated with the change in %HGP, and negatively correlated with changes in Rd. CONCLUSIONS The change in serum EPA levels was positively correlated with serum SeP levels, hepatic insulin sensitivity, and negatively with skeletal muscle insulin sensitivity in humans with type 2 diabetes. The EPA-induced enhancement of hepatic insulin sensitivity might be associated with a mechanism independent of serum SeP levels.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Chisato Teramura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kyoko Kamoshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hiroaki Takayama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hiromi Nakagawa
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yasufumi Enyama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kiyo‐Aki Ishii
- Department of Integrative Medicine for LongevityKanazawa University Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takeo Tanaka
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Hisanori Goto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yujiro Nakano
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Sachie Osada
- Department of Hospital PharmacyKanazawa University HospitalKanazawaJapan
| | - Yoshiaki Tanaka
- International Institute for Integrative Sleep MedicineUniversity of TsukubaIbarakiJapan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep MedicineUniversity of TsukubaIbarakiJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
25
|
Barnes CN, Wallace CW, Jacobowitz BS, Fordahl SC. Reduced phasic dopamine release and slowed dopamine uptake occur in the nucleus accumbens after a diet high in saturated but not unsaturated fat. Nutr Neurosci 2022; 25:33-45. [PMID: 31914869 PMCID: PMC7343597 DOI: 10.1080/1028415x.2019.1707421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-fat diets are linked with obesity and changes in dopamine neurotransmission. Mounting evidence shows that saturated fat impacts dopamine neurons and their terminal fields, but little is known about the effect a diet high in unsaturated fat has on the dopamine system. This study sought to determine whether fat type, saturated vs. unsaturated, differentially affected body weight, blood glucose regulation, locomotor behavior, and control of dopamine release and uptake at dopamine neuron terminals in the nucleus accumbens (NAc). C57BL/6 mice were fed a control diet or a nutrient-matched diet high in saturated fat (SF), unsaturated flaxseed oil (Flax) or a blend of the two fats. After 6-weeks, mice from each high-fat diet group gained significantly more weight than Controls, but the group fed Flax gained less weight than the SF group and had fasting blood glucose levels similar to Controls. Ex-vivo fast scan cyclic voltammetry revealed the SF group also had significantly slower synaptic dopamine clearance and a reduced capacity for phasic dopamine release in the nucleus accumbens (NAc), but the Flax and Blend groups resembled Controls. These data show that different types of dietary fat have substantially different effects on metabolic phenotype and influence how dopamine terminals in the NAc regulate dopamine neurotransmission. Our data also suggests that a diet high in unsaturated fat may preserve normal metabolic and behavioral parameters as well as dopamine signaling in the NAc.
Collapse
Affiliation(s)
| | | | | | - Steve C Fordahl
- Corresponding Author: Steve C. Fordahl, Ph.D., Department of Nutrition, UNC Greensboro, 319 College Ave.; 338 Stone Bldg., Greensboro, NC 27402, Tel: 336.334.5313, Fax: 336.334.4129,
| |
Collapse
|
26
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
27
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Zhang Y, He L, Chen X, Shentu P, Xu Y, Jiao J. Omega-3 polyunsaturated fatty acids promote SNAREs mediated GLUT4 vesicle docking and fusion. J Nutr Biochem 2021; 101:108912. [PMID: 34801692 DOI: 10.1016/j.jnutbio.2021.108912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Glucose homeostasis imbalance and insulin resistance (IR) are major contributors to the incidence of type 2 diabetes. Omega-3 polyunsaturated fatty acids (PUFAs) are key ingredients for maintaining cellular functions and improving insulin sensitivity. However, how omega-3 PUFAs modulate the dynamic process of glucose transport at the cellular level remains unclear. Here we unraveled eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may regulate the glucose transporter 4 (GLUT4) vesicle trafficking in both normal and IR adipocytes. Both omega-3 PUFAs significantly increase glucose consumption within a range of 10-32% in the basal state. Furthermore, both EPA (200 μM) and DHA (100 μM) may significantly promote the serine/threonine protein kinase (Akt) phosphorylation by 70% and 40% in the physiological state of adipocytes, respectively. Both omega-3 PUFAs significantly advanced the Akt phosphorylation in a dose-dependent way and showed a ∼2-fold increase at the dose of 200 μM in the IR pathological state. However, they could not up-regulate the expression of GLUT4 and insulin-regulated aminopeptidase protein. We further revealed that both omega-3 PUFAs dynamically promote insulin-stimulated GLUT4 vesicle translocation and soluble N-ethylmaleimide-sensitive factor attachment protein receptor mediated vesicle docking and fusion to the plasma membrane via specifically modulating the expression of vesicle-associated membrane protein 2. Understanding the mechanisms by which omega-3 PUFAs modulate cellular metabolism and IR in peripheral tissues may provide novel insights into the potential impact of omega-3 PUFAs on the metabolic function and the management of IR.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Shentu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Impact of combined consumption of fish oil and probiotics on the serum metabolome in pregnant women with overweight or obesity. EBioMedicine 2021; 73:103655. [PMID: 34740110 PMCID: PMC8577343 DOI: 10.1016/j.ebiom.2021.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND If a pregnant woman is overweight, this can evoke metabolic alterations that may have health consequences for both mother and child. METHODS Pregnant women with overweight/obesity (n = 358) received fish oil+placebo, probiotics+placebo, fish oil+probiotics or placebo+placebo from early pregnancy onwards. The serum metabolome was analysed from fasting samples with a targeted NMR-approach in early and late pregnancy. GDM was diagnosed by OGTT. FINDINGS The intervention changed the metabolic profile of the women, but the effect was influenced by their GDM status. In women without GDM, the changes in nine lipids (FDR<0.05) in the fish oil+placebo-group differed when compared to the placebo+placebo-group. The combination of fish oil and probiotics induced changes in more metabolites, 46 of the lipid metabolites differed in women without GDM when compared to placebo+placebo-group; these included reduced increases in the concentrations and lipid constituents of VLDL-particles and less pronounced alterations in the ratios of various lipids in several lipoproteins. In women with GDM, no differences were detected in the changes of any metabolites due to any of the interventions when compared to the placebo+placebo-group (FDR<0.05). INTERPRETATION Fish oil and particularly the combination of fish oil and probiotics modified serum lipids in pregnant women with overweight or obesity, while no such effects were seen with probiotics alone. The effects were most evident in the lipid contents of VLDL and LDL only in women without GDM. FUNDING State Research Funding for university-level health research in the Turku University Hospital Expert Responsibility Area, Academy of Finland, the Diabetes Research Foundation, the Juho Vainio Foundation, Janssen Research & Development, LLC.
Collapse
|
30
|
Yeo D, Zhang T, Liu T, Zhang Y, Kang C, Ji LL. Protective Effects of Extra Virgin Olive Oil and Exercise Training on Rat Skeletal Muscle against High-fat Diet Feeding. J Nutr Biochem 2021; 100:108902. [PMID: 34748920 DOI: 10.1016/j.jnutbio.2021.108902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
A diet high in saturated fat leads to skeletal muscle deteriorations including insulin resistance, mitochondrial dysfunction and muscle fiber atrophy. Consumption of long-chain polyunsaturated fatty acids and exercise have shown promise in ameliorating high-fat diet (HFD)-induced oxidative stress and inflammation. However, the impact of extra virgin olive oil (EVOO) on mitochondrial homeostasis in muscle is largely unknown. This study aimed to investigate whether 12 weeks of EVOO feeding alone and in conjunction with endurance training could protect against metabolic and mitochondrial dysfunction rat muscle with HFD. Female Sprague-Dawley rats were divided into 4 groups fed a control diet (C), HFD, EVOO diet, and EVOO diet with training (EVOO+T). Mitochondrial enzyme activity and protein content decreased with HFD compared to C, but were restored with EVOO and EVOO+T. EVOO+T elevated muscle cytochrome c and PGC-1α levels. HFD increased muscle proteolytic markers and protein ubiquitination, whereas these effects were not seen in EVOO and EVOO+T. HFD suppressed mitochondrial fusion protein level while increasing fission protein levels, but were restored with EVOO and EVOO+T. Mitophagy marker PINK1 content decreased with HFD, but was unchanged in EVOO and EVOO+T. EVOO+T upregulated autophagy markers, along with decreased phosphorylated/dephosphorylated FoxO3 ratio. Antioxidants enzyme levels were upregulated by EVOO and EVOO+T, and EVOO+T reduced HFD-induced lipid peroxidation. In conclusion, HFD impaired muscle oxidative capacity, promoted protein ubiquitination and mitochondrial fission, and upregulated autophagy markers. Replacement of HFD with EVOO corrected the observed adverse effects, while exercise training in conjunction with EVOO provided additional protection to the muscle.
Collapse
Affiliation(s)
- Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Tianou Zhang
- Laboratory of Exercise and Sports Nutrition, Department of Kinesiology, The University of Texas at San Antonio, TX 78249, USA
| | - Tao Liu
- College of Physical Education, Jimei University, Xiamen 361021 China
| | - Yuzi Zhang
- The University of Texas Health Science Center at Houston, School of Public Health, Austin Campus, Austin, TX 78701 USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon 22212, South Korea
| | - Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Barham A, Mohammad B, Hasoun L, Awwad S, Mosleh I, Aljaberi A, Abu-Samak M. The combination of omega-3 fatty acids with high doses of vitamin D3 elevate A1c levels: A randomized Clinical Trial in people with vitamin D deficiency. Int J Clin Pract 2021; 75:e14779. [PMID: 34482574 DOI: 10.1111/ijcp.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This randomised clinical trial (RCT) was created to assess the influence of 1,25-dihydroxyvitamin D (VD3 ), omega-3 fatty acids (n-3FA) and their combination (D+) on glycated haemoglobin (A1c) levels in Jordanian peoples with vitamin D deficiency (VDD). PARTICIPANTS AND METHODS This RCT was designed to examine the follow-up (2 months) effect of either 50 000 IU VD3 , 300 mg n-3FA, or the combination of the two supplements on glycated Haemoglobin (A1c) levels in 146 Jordanian women and men with VDD, aged from 25 to 55 years. The eligible participants were randomised into four groups: Control (C); VD3 supplementation (50 000 IU of VD3 was taken weekly) (D3 ); n-3FA supplementation (300 mg of omega-3FA was taken daily) (n-3FA); VD3 and omega-3 supplementation group (D+) with the same protocol as the previous two groups. RESULTS The combination therapy (n-3FA plus VD3) for 8 weeks significantly increased A1c levels (5.79 ± 0.34 vs 5.41 ± 0.33, P < .001). Tukey test for post hoc comparisons of A1c at follow-up showed that the A1c mean levels were remarkably higher in the D+ study group comparing to the control group (5.78 vs 5.38). CONCLUSION The intervention of n-3FA alone or in combination with high doses of VD3 may lead to negative effects on glycaemic control or accelerate the insulin resistance's development in susceptible people for diabetes mellitus (type 2).
Collapse
Affiliation(s)
- Abeer Barham
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Beisan Mohammad
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Shady Awwad
- Department of Pharmaceutical Chemistry & Pharmacognosy, Applied Science Private University, Amman, Jordan
| | - Ibrahim Mosleh
- Department of Clinical Laboratory Sciences, University of Jordan, Amman, Jordan
| | - Ahmad Aljaberi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan
| | - Mahmoud Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
32
|
Slieker RC, Donnelly LA, Fitipaldi H, Bouland GA, Giordano GN, Åkerlund M, Gerl MJ, Ahlqvist E, Ali A, Dragan I, Elders P, Festa A, Hansen MK, van der Heijden AA, Mansour Aly D, Kim M, Kuznetsov D, Mehl F, Klose C, Simons K, Pavo I, Pullen TJ, Suvitaival T, Wretlind A, Rossing P, Lyssenko V, Legido Quigley C, Groop L, Thorens B, Franks PW, Ibberson M, Rutter GA, Beulens JWJ, 't Hart LM, Pearson ER. Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study. Diabetes 2021; 70:2683-2693. [PMID: 34376475 PMCID: PMC8564413 DOI: 10.2337/db20-1281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/01/2021] [Indexed: 11/23/2022]
Abstract
Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity, investigators of a previous study clustered people with diabetes according to five diabetes subtypes. The aim of the current study is to investigate the etiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic (N = 12,828), metabolomic (N = 2,945), lipidomic (N = 2,593), and proteomic (N = 1,170) data were obtained in plasma. For each data type, each cluster was compared with the other four clusters as the reference. The insulin-resistant cluster showed the most distinct molecular signature, with higher branched-chain amino acid, diacylglycerol, and triacylglycerol levels and aberrant protein levels in plasma were enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher levels of cytokines. The mild diabetes cluster with high HDL showed the most beneficial molecular profile with effects opposite of those seen in the insulin-resistant cluster. This study shows that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Louise A Donnelly
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Hugo Fitipaldi
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Gerard A Bouland
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Mikael Åkerlund
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | | | - Emma Ahlqvist
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Ashfaq Ali
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Iulian Dragan
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra Elders
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Andreas Festa
- Eli Lilly Regional Operations GmbH, Vienna, Austria
- 1st Medical Department, LK Stockerau, Niederösterreich, Austria
| | - Michael K Hansen
- Cardiovascular and Metabolic Disease Research, Janssen Research & Development, Spring House, PA
| | - Amber A van der Heijden
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Dina Mansour Aly
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicines, King's College London, London, U.K
| | - Dmitry Kuznetsov
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Vienna, Austria
| | - Timothy J Pullen
- Department of Diabetes, Guy's Campus, King's College London, London, U.K
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Cristina Legido Quigley
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Cardiovascular and Metabolic Disease Research, Janssen Research & Development, Spring House, PA
| | - Leif Groop
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
- Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guy A Rutter
- Department of Diabetes, Guy's Campus, King's College London, London, U.K
- Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, U.K.
| |
Collapse
|
33
|
Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients: the Aldo-DHF randomized controlled trial. Clin Res Cardiol 2021; 111:308-321. [PMID: 34453204 PMCID: PMC8873063 DOI: 10.1007/s00392-021-01925-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Objectives To evaluate associations of omega-3 fatty acid (O3-FA) blood levels with cardiometabolic risk markers, functional capacity and cardiac function/morphology in patients with heart failure with preserved ejection fraction (HFpEF). Background O3-FA have been linked to reduced risk for HF and associated phenotypic traits in experimental/clinical studies. Methods This is a cross-sectional analysis of data from the Aldo-DHF-RCT. From 422 patients, the omega-3-index (O3I = EPA + DHA) was analyzed at baseline in n = 404 using the HS-Omega-3-Index® methodology. Patient characteristics were; 67 ± 8 years, 53% female, NYHA II/III (87/13%), ejection fraction ≥ 50%, E/e′ 7.1 ± 1.5; median NT-proBNP 158 ng/L (IQR 82–298). Pearson’s correlation coefficient and multiple linear regression analyses, using sex and age as covariates, were used to describe associations of the O3I with metabolic phenotype, functional capacity, echocardiographic markers for LVDF, and neurohumoral activation at baseline/12 months. Results The O3I was below (< 8%), within (8–11%), and higher (> 11%) than the target range in 374 (93%), 29 (7%), and 1 (0.2%) patients, respectively. Mean O3I was 5.7 ± 1.7%. The O3I was inversely associated with HbA1c (r = − 0.139, p = 0.006), triglycerides-to-HDL-C ratio (r = − 0.12, p = 0.017), triglycerides (r = − 0.117, p = 0.02), non-HDL-C (r = − 0.101, p = 0.044), body-mass-index (r = − 0.149, p = 0.003), waist circumference (r = − 0.121, p = 0.015), waist-to-height ratio (r = − 0.141, p = 0.005), and positively associated with submaximal aerobic capacity (r = 0.113, p = 0.023) and LVEF (r = 0.211, p < 0.001) at baseline. Higher O3I at baseline was predictive of submaximal aerobic capacity (β = 15.614, p < 0,001), maximal aerobic capacity (β = 0.399, p = 0.005) and LVEF (β = 0.698, p = 0.007) at 12 months. Conclusions Higher O3I was associated with a more favorable cardiometabolic risk profile and predictive of higher submaximal/maximal aerobic capacity and lower BMI/truncal adiposity in HFpEF patients. Graphic abstract Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients. Higher O3I was associated with a more favorable cardiometabolic risk profile and aerobic capacity (left) but did not correlate with echocardiographic markers for left ventricular diastolic function or neurohumoral activation (right). An O3I-driven intervention trial might be warranted to answer the question whether O3-FA in therapeutic doses (with the target O3I 8–11%) impact on echocardiographic markers for left ventricular diastolic function and neurohumoral activation in patients with HFpEF. This figure contains modified images from Servier Medical Art (https://smart.servier.com) licensed by a Creative Commons Attribution 3.0 Unported License. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-021-01925-9.
Collapse
|
34
|
Al Rijjal D, Liu Y, Lai M, Song Y, Danaei Z, Wu A, Mohan H, Wei L, Schopfer FJ, Dai FF, Wheeler MB. Vascepa protects against high-fat diet-induced glucose intolerance, insulin resistance, and impaired β-cell function. iScience 2021; 24:102909. [PMID: 34458694 PMCID: PMC8379293 DOI: 10.1016/j.isci.2021.102909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Omega-3 fatty acid prescription drugs, Vascepa (≥96% eicosapentaenoic acid [EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl ester) are known therapeutic regimens to treat hypertriglyceridemia. However, their impact on glucose homeostasis, progression to type 2 diabetes, and pancreatic beta cell function are not well understood. In the present study, mice were treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell function, reduced liver triglycerides with enhanced expression of hepatic fatty acid oxidation genes, and altered microbiota composition. Vascepa has protective effects on diet-induced insulin resistance and glucose intolerance in mice.
Collapse
Affiliation(s)
- Dana Al Rijjal
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Ying Liu
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| | - Mi Lai
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| | - Youchen Song
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Zahra Danaei
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Anne Wu
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Haneesha Mohan
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Feihan F. Dai
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, 1 King's College Circle, Medical Science Building Rm#3352, Toronto, ON, M5S 1A8, Canada
- Division of Advanced Diagnostics, Metabolism, Toronto General Research Institute, ON, Canada
| |
Collapse
|
35
|
O'Mahoney LL, Churm R, Stavropoulos-Kalinoglou A, Ajjan RA, Orsi NM, Mappa G, Price OJ, Campbell MD. Associations Between Erythrocyte Membrane Fatty Acid Compositions and Biomarkers of Vascular Health in Adults With Type 1 Diabetes With and Without Insulin Resistance: A Cross-Sectional Analysis. Can J Diabetes 2021; 46:111-117. [PMID: 34353737 DOI: 10.1016/j.jcjd.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to assess the relationship between specific erythrocyte fatty acid levels and vascular health in type 1 diabetes (T1D) with and without insulin resistance (IR). METHODS We analyzed baseline pretreatment data in a subset of 23 patients with T1D from a previously published randomized controlled trial consisting of comprehensive erythrocyte-derived fatty acid profiles and a panel of inflammation-associated endothelial markers. Estimated glucose disposal rate was used to identify and categorize patients with IR. We utilized principal component analysis (PCA) to cluster vascular biomarkers to compute a single "vascular signal" and utilized univariate linear regression models to investigate the association with IR and fatty acid profiles. RESULTS Subjects with IR displayed significantly higher levels of linoleic acid (p=0.001), lower levels of eicosapentaenoic acid (EPA) (p<0.001), lower levels of omega-3 polyunsaturated fatty acid (n-3PUFA) (p<0.006) and an increased omega-6 (n-6)PUFA:n-3PUFA ratio (p=0.001). IR was associated with significantly higher linoleic acid levels, total n-6PUFA and an increased ratio of n-6PUFA:n-3PUFA, and negatively associated with arachidonic acid and EPA levels, total saturated fatty acid and total n-3PUFA. The PCA-derived vascular biomarker cluster was positively associated with linoleic acid and n-6PUFA:n-3PUFA ratio, and inversely associated with EPA. CONCLUSIONS Specific erythrocyte membrane fatty acid compositions are associated with impaired vascular health and IR in adults with T1D. These findings suggest that IR and risk of associated complications may be influenced by specific fatty acid profiles, and thus potentially modified by the selective targeting of dietary fatty acids.
Collapse
Affiliation(s)
- Lauren L O'Mahoney
- Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, United Kingdom; Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom.
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| | | | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Nicolas M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Georgia Mappa
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Oliver J Price
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Matthew D Campbell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China; Institute of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| |
Collapse
|
36
|
Finotti M, Romano M, Auricchio P, Scopelliti M, Brizzolari M, Grossi U, Piccino M, Benvenuti S, Morana G, Cillo U, Zanus G. Target Therapies for NASH/NAFLD: From the Molecular Aspect to the Pharmacological and Surgical Alternatives. J Pers Med 2021; 11:499. [PMID: 34199535 PMCID: PMC8229090 DOI: 10.3390/jpm11060499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease represents an increasing cause of chronic hepatic disease in recent years. This condition usually arises in patients with multiple comorbidities, the so-called metabolic syndrome. The therapeutic options are multiple, ranging from lifestyle modifications, pharmacological options, to liver transplantation in selected cases. The choice of the most beneficial one and their interactions can be challenging. It is mandatory to stratify the patients according to the severity of their disease to tailor the available treatments. In our contribution, we review the most recent pharmacological target therapies, the role of bariatric surgery, and the impact of liver transplantation on the NAFLD outcome.
Collapse
Affiliation(s)
- Michele Finotti
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Maurizio Romano
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Pasquale Auricchio
- Hepatobiliary Surgery and Liver Transplantation Unit, DISCOG, University of Padua, 35121 Padua, Italy; (P.A.); (U.C.)
| | - Michele Scopelliti
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Marco Brizzolari
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Ugo Grossi
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Marco Piccino
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| | - Stefano Benvenuti
- Gastroenterology Unit (IV), Cà Foncello Regional Hospital, 31100 Treviso, Italy;
| | - Giovanni Morana
- Division of Radiology, Treviso Regional Hospital, 31100 Treviso, Italy;
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, DISCOG, University of Padua, 35121 Padua, Italy; (P.A.); (U.C.)
| | - Giacomo Zanus
- 4th Surgery Unit, Regional Hospital Treviso, DISCOG, University of Padua, 31100 Padua, Italy; (M.R.); (M.S.); (M.B.); (U.G.); (M.P.); (G.Z.)
| |
Collapse
|
37
|
Black MN, Wilkinson JA, Webb EK, Kamal M, Bahniwal R, McGlory C, Phillips SM, Devries MC. Two weeks of single-leg immobilization alters intramyocellular lipid storage characteristics in healthy, young women. J Appl Physiol (1985) 2021; 130:1247-1258. [PMID: 33630674 DOI: 10.1152/japplphysiol.00878.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle disuse rapidly induces insulin resistance (IR). Despite a relationship between intramyocellular lipid (IMCL) content and IR, during muscle-disuse IR develops before IMCL accumulation, suggesting that IMCL are not related to disuse-induced IR. However, recent studies show that it is not total IMCL content, but IMCL size and location that are related to IR. Changes in these IMCL parameters may occur prior to increases in IMCL content, thus contributing to disuse-induced IR. Omega-3 fatty acids may mitigate the effects of disuse on IR by preventing a decline in insulin signaling proteins. Twenty women (age 22 ± 3 yr) received either 5 g·day-1 omega-3 fatty acid or isoenergetic sunflower oil for 4 wk prior to, throughout 2 wk of single-leg immobilization, and during 2 wk of recovery. Changes in IMCL characteristics and insulin signaling proteins were examined in vastus lateralis samples taken before supplementation and immobilization, and following immobilization and recovery. Omega-3 supplementation had no effect. IMCL area density decreased in the subsarcolemmal region during immobilization and recovery (-19% and -56%, respectively, P = 0.009). IMCL size increased in the central intermyofibrillar region during immobilization (43%, P = 0.007), returning to baseline during recovery. PLIN5 and AKT increased during immobilization (87%, P = 0.002; 30%, P = 0.007, respectively). PLIN 5 remained elevated and AKT increased further (15%) during recovery. IRS1, AS160, and GLUT4 decreased during immobilization (-35%, P = 0.001; -44%, P = 0.03; -56%, P = 0.02, respectively), returning to baseline during recovery. Immobilization alters IMCL storage characteristics while negatively affecting unstimulated insulin signaling protein content in young women.NEW & NOTEWORTHY We report that the subcellular storage location of IMCL is altered by limb immobilization, highlighting the need to evaluate IMCL storage location when assessing the effects of disuse on IMCL content. We also found that AKT content increased during immobilization in our female population, contrary to studies in males finding that AKT decreases during disuse, highlighting that men and women may respond differently to disuse and the necessity to include women in all research.
Collapse
Affiliation(s)
- Merryl N Black
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Erin K Webb
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michael Kamal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Ravninder Bahniwal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Chris McGlory
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michaela C Devries
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
38
|
Russo GL, Siani A, Fogliano V, Geleijnse JM, Giacco R, Giampaoli S, Iacoviello L, Kromhout D, Lionetti L, Naska A, Pellegrini N, Riccardi G, Sofi F, Vitale M, Strazzullo P. The Mediterranean diet from past to future: Key concepts from the second "Ancel Keys" International Seminar. Nutr Metab Cardiovasc Dis 2021; 31:717-732. [PMID: 33558092 DOI: 10.1016/j.numecd.2020.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
The year 2020 celebrated the tenth anniversary of the recognition of the Mediterranean Diet as Intangible Cultural Heritage of Humanity by the UNESCO Intergovernmental Committee. This event represented a milestone in the history of nutrition, as the Mediterranean diet was the first traditional food practice to receive such award. Since then, a lot has been discussed not only on the beneficial aspects of the Mediterranean diet, but also on its complex role as a lifestyle model that includes a set of skills, knowledge and intercultural dialogue. This process ended up with the recognition in 2019 of Mediterranean diet as a possibly universal model of healthy diet from the EAT-Lancet Commission. These concepts were widely debated at the 2019 "Ancel Keys" International Seminar, held in Ascea (Italy) (for more information see: www.mediterraneandietseminar.org) with the aim to stimulate interest and awareness of a young group of participants on the current problems inherent to the effective implementation of the Mediterranean diet. The present article collects the contributions of several lecturers at the Seminar on key issues such as methodological and experimental approach, sustainability, molecular aspects in disease prevention, future exploitation, without neglecting a historical view of the Seven Countries Study. From the Seminar conclusions emerged a still vibrant and modern role of Mediterranean diet. The years to come will see national and international efforts to reduce the barriers that limit adherence to Mediterranean diet in order to plan for multi-factorial and targeted interventions that would guide our populations to a sustainable healthy living.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Vincenzo Fogliano
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rosalba Giacco
- Institute of Food Sciences, National Research Council, Avellino, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Simona Giampaoli
- Former director of the Department of Cardiovascular, Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daan Kromhout
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lillà Lionetti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (Salerno), Italy
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Nicoletta Pellegrini
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
39
|
Xu L, Cai J, Gao T, Ma A. Shellfish consumption and health: A comprehensive review of human studies and recommendations for enhanced public policy. Crit Rev Food Sci Nutr 2021; 62:4656-4668. [PMID: 33527847 DOI: 10.1080/10408398.2021.1878098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Shellfish, including various species of mollusks (e.g., clams, oysters, and mussels) and crustaceans (e.g., shrimp and crab), have been a cornerstone of healthy dietary recommendations. However, beyond providing basic nutrition needs, their health-promoting effects have been suggested to include inflammation reduction and prevention of various chronic non-communicable diseases. Currently, studies on the association between shellfish consumption and health outcomes have reported conflicting results. The present comprehensive review summarized the latest studies on shellfish consumption and synthesized the available evidence on the potential health benefits or risks of shellfish consumption. The findings demonstrated that shellfish consumption may increase the risk of hyperuricemia and gout but may not increase the risk of type 2 diabetes, cardiovascular diseases, and thyroid cancer. Adequate evidence is lacking on the association between shellfish consumption and the risk of colorectal cancer, pancreatic cancer, oral cancer, endometriosis, hip fracture, cognitive function, wheeze, eczema and food allergy. Raw shellfish consumption may cause gastroenteritis and other diseases infected by bacteria or viruses. This review thus provides consumers and other relevant stakeholders with the latest evidence-based information on the potential benefits and risks of shellfish consumption.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Jing Cai
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Tianlin Gao
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| |
Collapse
|
40
|
Amirani E, Asemi Z, Asbaghi O, Milajerdi A, Reiner Ž, Mansournia MA, Hallajzadeh J, Moazzami B, Chaichian S. The effects of omega-3 fatty acids supplementation on metabolic status in pregnant women: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2021; 19:1685-1699. [PMID: 33520859 DOI: 10.1007/s40200-020-00558-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Background and objective Data regarding the effects of omega-3 polyunsaturated fatty acids (PUFA) supplementation on metabolic status of pregnant women are limited. This systematic review and meta-analysis were done based on randomized controlled trials (RCTs) dealing with the effects of omega-3 PUFA supplementation on glycemic control, lipoproteins, inflammation and oxidative stress in pregnant women. Methods Following databases were searched for eligible studies published from inception to until 2019: MEDLINE, EMBASE, Web of Science, PubMed, Scopus, Cochrane Library, and Google scholar. Studies that evaluated the effect of omega-3 PUFA supplementation on parameters of glycemic control, lipoproteins, inflammation and oxidative stress in pregnant women were found by using the key MeSH. A study quality assessment was performed using the Cochrane Collaboration risk of bias tool and heterogeneity between studies was statistically computed using Cochrane's Q test and I-square (I2). Data were pooled using a random-effects model and weighted mean difference (WMD) was considered as the overall effect size. Results No significant effects of omega-3 PUFA supplementation on FPG, insulin, insulin resistance, total cholesterol, triglycerides, LDL-cholesterol, total cholesterol/HDL-cholesterol, interleukin 6 (IL-6), IL-8, and malondialdehyde were found. However, omega-3 PUFA significantly increased serum concentrations of HDL-cholesterol (WMD: 3.10; 95% CI: 0.18, 6.03) and reduced C-reactive protein (WMD: -1.85; 95% CI: -2.61, -1.09). Conclusion Based on the results of this meta-analysis omega-3 PUFA supplementation during pregnancy has a significant beneficial effect on HDL-cholesterol, and C-reactive protein.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Asbaghi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Mokkala K, Paulin N, Houttu N, Koivuniemi E, Pellonperä O, Khan S, Pietilä S, Tertti K, Elo LL, Laitinen K. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut 2021; 70:309-318. [PMID: 32839200 DOI: 10.1136/gutjnl-2020-321643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Gut microbiota and diet are known to contribute to human metabolism. We investigated whether the metagenomic gut microbiota composition and function changes over pregnancy are related to gestational diabetes mellitus (GDM) and can be modified by dietary supplements, fish oil and/or probiotics. DESIGN The gut microbiota of 270 overweight/obese women participating in a mother-infant clinical study were analysed with metagenomics approach in early (mean gestational weeks 13.9) and late (gestational weeks 35.2) pregnancy. GDM was diagnosed with a 2 hour 75 g oral glucose tolerance test. RESULTS Unlike women with GDM, women without GDM manifested changes in relative abundance of bacterial species over the pregnancy, particularly those receiving the fish oil + probiotics combination. The specific bacterial species or function did not predict the onset of GDM nor did it differ according to GDM status, except for the higher abundance of Ruminococcus obeum in late pregnancy in the combination group in women with GDM compared with women without GDM. In the combination group, weak decreases over the pregnancy were observed in basic bacterial housekeeping functions. CONCLUSIONS The specific gut microbiota species do not contribute to GDM in overweight/obese women. Nevertheless, the GDM status may disturb maternal gut microbiota flexibility and thus limit the capacity of women with GDM to respond to diet, as evidenced by alterations in gut microbiota observed only in women without GDM. These findings may be important when considering the metabolic complications during pregnancy, but further studies with larger populations are called for to verify the findings.
Collapse
Affiliation(s)
- Kati Mokkala
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Niklas Paulin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Ella Koivuniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Outi Pellonperä
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kristiina Tertti
- Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Siriguleng S, Koike T, Natsume Y, Jiang H, Mu L, Oshida Y. Eicosapentaenoic acid enhances skeletal muscle hypertrophy without altering the protein anabolic signaling pathway. Physiol Res 2021; 70:55-65. [PMID: 33453714 DOI: 10.33549/physiolres.934534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to examine the effect of eicosapentaenoic acid (EPA) on skeletal muscle hypertrophy induced by muscle overload and the associated intracellular signaling pathways. Male C57BL/6J mice were randomly assigned to oral treatment with either EPA or corn oil for 6 weeks. After 4 weeks of treatment, the gastrocnemius muscle of the right hindlimb was surgically removed to overload the plantaris and soleus muscles for 1 or 2 weeks. We examined the effect of EPA on the signaling pathway associated with protein synthesis using the soleus muscles. According to our analysis of the compensatory muscle growth, EPA administration enhanced hypertrophy of the soleus muscle but not hypertrophy of the plantaris muscle. Nevertheless, EPA administration did not enhance the expression or phosphorylation of Akt, mechanistic target of rapamycin (mTOR), or S6 kinase (S6K) in the soleus muscle. In conclusion, EPA enhances skeletal muscle hypertrophy, which can be independent of changes in the AKT-mTOR-S6K pathway.
Collapse
Affiliation(s)
- S Siriguleng
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
44
|
Vellido-Perez J, Ochando-Pulido J, Brito-de la Fuente E, Martinez-Ferez A. Novel emulsions–based technological approaches for the protection of omega–3 polyunsaturated fatty acids against oxidation processes – A comprehensive review. FOOD STRUCTURE-NETHERLANDS 2021. [DOI: 10.1016/j.foostr.2021.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
ω-3PUFA supplementation ameliorates adipose tissue inflammation and insulin-stimulated glucose disposal in subjects with obesity: a potential role for apolipoprotein E. Int J Obes (Lond) 2021; 45:1331-1341. [PMID: 33753887 PMCID: PMC8159741 DOI: 10.1038/s41366-021-00801-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long chain omega-3 polyunsaturated fatty acids (ω-3PUFA) supplementation in animal models of diet-induced obesity has consistently shown to improve insulin sensitivity. The same is not always reported in human studies with insulin resistant (IR) subjects with obesity. OBJECTIVE We studied whether high-dose ω-3PUFA supplementation for 3 months improves insulin sensitivity and adipose tissue (AT) inflammation in IR subjects with obesity. METHODS Thirteen subjects (BMI = 39.3 ± 1.6 kg/m2) underwent 80 mU/m2·min euglycemic-hyperinsulinemic clamp with subcutaneous (Sc) AT biopsy before and after 3 months of ω-3PUFA (DHA and EPA, 4 g/daily) supplementation. Cytoadipokine plasma profiles were assessed before and after ω-3PUFA. AT-specific inflammatory gene expression was evaluated on Sc fat biopsies. Microarray analysis was performed on the fat biopsies collected during the program. RESULTS Palmitic and stearic acid plasma levels were significantly reduced (P < 0.05) after ω-3PUFA. Gene expression of pro-inflammatory markers and adipokines were improved after ω-3PUFA (P < 0.05). Systemic inflammation was decreased after ω-3PUFA, as shown by cytokine assessment (P < 0.05). These changes were associated with a 25% increase in insulin-stimulated glucose disposal (4.7 ± 0.6 mg/kg ffm•min vs. 5.9 ± 0.9 mg/kg ffm•min) despite no change in body weight. Microarray analysis identified 53 probe sets significantly altered post- ω-3PUFA, with Apolipoprotein E (APOE) being one of the most upregulated genes. CONCLUSION High dose of long chain ω-3PUFA supplementation modulates significant changes in plasma fatty acid profile, AT, and systemic inflammation. These findings are associated with significant improvement of insulin-stimulated glucose disposal. Unbiased microarray analysis of Sc fat biopsy identified APOE as among the most differentially regulated gene after ω-3PUFA supplementation. We speculate that ω-3PUFA increases macrophage-derived APOE mRNA levels with anti-inflammatory properties.
Collapse
|
46
|
Houttu N, Mokkala K, Koivuniemi E, Pellonperä O, Juhila J, Sorsa T, Laitinen K. The Impacts of Fish Oil and/or Probiotic Intervention on Low-Grade Inflammation, IGFBP-1 and MMP-8 in Pregnancy: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Biomolecules 2020; 11:biom11010005. [PMID: 33375174 PMCID: PMC7822218 DOI: 10.3390/biom11010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background: We investigated the impact of fish oil and/or probiotics on serum and vaginal inflammatory and metabolic proteins and their relation to the onset of gestational diabetes mellitus (GDM). Methods: Overweight/obese pregnant women received fish oil + placebo, probiotics + placebo, fish oil + probiotics or placebo + placebo from early pregnancy until six months postpartum (fish oil: 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid; probiotics: Lactobacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). Serum high sensitivity C-reactive protein (hsCRP) and serum/vaginal (s/v) phosphorylated insulin-like growth factor binding-protein-1 (phIGFBP-1), IGFBP-1 and matrix metalloproteinase 8 (MMP-8) were analyzed. GDM was diagnosed according to 2 h 75 g OGTT. Results: The intervention had no impact on the change in proteins during pregnancy. Nevertheless, s-MMP-8 decreased and s-IGFBP-1 increased more in obese than in overweight women in the fish oil + probiotics group, while a decrease in s-MMP-8 was seen in obese women and an increase was seen in overweight women in the probiotics + placebo group. The late pregnancy s-phIGFBP-1 was higher in women who developed GDM in fish oil + probiotics-group compared to fish oil + placebo-group. The concentrations of s-phIGFBP-1 (635.9 ± 315.3 ng/mL vs. 753.2 ± 335.1 ng/mL, p = 0.005) and s-IGFBP-1 (3.78 ± 0.72 ng/mL vs. 3.96 ± 0.69 ng/mL, p = 0.042) were lower in early pregnancy in women who developed GDM than in women remaining healthy. Conclusions: The intervention per se had no impact on the proteins, but obesity and GDM may modify the effect. IGFBPs may affect the development of GDM.
Collapse
Affiliation(s)
- Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; (K.M.); (E.K.); (K.L.)
- Correspondence:
| | - Kati Mokkala
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; (K.M.); (E.K.); (K.L.)
| | - Ella Koivuniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; (K.M.); (E.K.); (K.L.)
| | - Outi Pellonperä
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | | | - Timo Sorsa
- Department of Oral and Maxillofacial Disease, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland;
- Department of Oral Diseases, Karolinska Institutet, 141 04 Huddinge, Sweden
| | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; (K.M.); (E.K.); (K.L.)
| |
Collapse
|
47
|
Čížková T, Štěpán M, Daďová K, Ondrůjová B, Sontáková L, Krauzová E, Matouš M, Koc M, Gojda J, Kračmerová J, Štich V, Rossmeislová L, Šiklová M. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J Clin Endocrinol Metab 2020; 105:5903324. [PMID: 32902644 DOI: 10.1210/clinem/dgaa630] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Metabolic disturbances and a pro-inflammatory state associated with aging and obesity may be mitigated by physical activity or nutrition interventions. OBJECTIVE The aim of this study is to assess whether physical fitness/exercise training (ET) alleviates inflammation in adipose tissue (AT), particularly in combination with omega-3 supplementation, and whether changes in AT induced by ET can contribute to an improvement of insulin sensitivity and metabolic health in the elderly. DESIGN, PARTICIPANTS, MAIN OUTCOME MEASURES The effect of physical fitness was determined in cross-sectional comparison of physically active/physically fit (trained) and sedentary/less physically fit (untrained) older women (71 ± 4 years, n = 48); and in double-blind randomized intervention by 4 months of ET with or without omega-3 (Calanus oil) supplementation (n = 55). Physical fitness was evaluated by spiroergometry (maximum graded exercise test) and senior fitness tests. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Samples of subcutaneous AT were used to analyze mRNA gene expression, cytokine secretion, and immune cell populations. RESULTS Trained women had lower mRNA levels of inflammation and oxidative stress markers, lower relative content of CD36+ macrophages, and higher relative content of γδT-cells in AT when compared with untrained women. Similar effects were recapitulated in response to a 4-month ET intervention. Content of CD36+ cells, γδT-cells, and mRNA expression of several inflammatory and oxidative stress markers correlated to insulin sensitivity and cardiorespiratory fitness. CONCLUSIONS In older women, physical fitness is associated with less inflammation in AT. This may contribute to beneficial metabolic outcomes achieved by ET. When combined with ET, omega-3 supplementation had no additional beneficial effects on AT inflammatory characteristics.
Collapse
Affiliation(s)
- Terezie Čížková
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Štěpán
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Klára Daďová
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Sontáková
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Miloš Matouš
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Gojda
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Jana Kračmerová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Štich
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
48
|
Katsnelson G, Ceddia RB. Docosahexaenoic and eicosapentaenoic fatty acids differentially regulate glucose and fatty acid metabolism in L6 rat skeletal muscle cells. Am J Physiol Cell Physiol 2020; 319:C1120-C1129. [PMID: 32966124 DOI: 10.1152/ajpcell.00304.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate whether the n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can directly regulate glucose and fat metabolism in skeletal muscle besides exerting anti-inflammatory effects. To accomplish this, L6 skeletal muscle cells were treated with 50 µM of either DHA or EPA for 1, 3, and 5 days. Here, we report that basal and insulin-stimulated rates of glucose uptake, glycogen synthesis, protein kinase B (AKT), and glycogen synthase kinase 3 (GSK3) phosphorylation were not affected by DHA or EPA. However, glucose and palmitate oxidation were consistently elevated by DHA treatment, whereas EPA only increased this variable transiently. Similarly, only DHA caused significant and sustained increases in AMP-activated protein kinase (AMPK) phosphorylation and protein levels of carnitine-palmitoyl transferase-1b (CPT1b) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in skeletal muscle cells. DHA also caused a larger anti-inflammatory effect than EPA in these cells. In conclusion, besides exerting anti-inflammatory effects, DHA and EPA directly regulated glucose and fat metabolism in skeletal muscle cells, although DHA was more effective in doing so than EPA. Thus, by directly enhancing glucose and fat oxidation, DHA may increase glucose disposal and reduce intramyocellular lipid accumulation.
Collapse
Affiliation(s)
- Glen Katsnelson
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
50
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|