501
|
Bonnefond A, Yengo L, Le May C, Fumeron F, Marre M, Balkau B, Charpentier G, Franc S, Froguel P, Cariou B. The loss-of-function PCSK9 p.R46L genetic variant does not alter glucose homeostasis. Diabetologia 2015; 58:2051-5. [PMID: 26049403 DOI: 10.1007/s00125-015-3659-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/13/2015] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a critical regulator of cholesterol homeostasis. PCSK9 inhibitors are being actively developed to lower LDL-cholesterol levels. However, there are conflicting data regarding the consequences of Pcsk9 deficiency on glucose homeostasis in mouse models. Here, we analysed in humans the association between the PCSK9 p.R46L loss-of-function (LOF) variant and (1) glucose homeostasis variables; (2) type 2 diabetes status; and (3) the risk of 9 year incident type 2 diabetes in a prospective study. METHODS PCSK9 p.R46L was genotyped in 4630 French participants from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study and in 1342 French participants with type 2 diabetes. The association between p.R46L and metabolic traits or type 2 diabetes risk was assessed through linear or logistic regression models adjusted for age, sex and BMI. The association between p.R46L and incident type 2 diabetes was assessed using a Cox regression model adjusted for sex, age and BMI at baseline. RESULTS Significant associations (p < 10(-6)) were found between p.R46L and lower total cholesterol (-0.394 mmol/l), LDL-cholesterol (-0.393 mmol/l) and apolipoprotein B concentrations (-0.099 g/l). However, no significant association was observed between p.R46L and markers of glucose homeostasis (including fasting glucose, fasting insulin, HbA1c, HOMA-B, HOMA-IR) or type 2 diabetes risk. Furthermore, no significant association between p.R46L variant and risk of incident type 2 diabetes was observed in DESIR. CONCLUSIONS/INTERPRETATION The PCSK9 p.R46L LOF variant was not associated with impaired glucose homeostasis in humans. These data are reassuring regarding the safety of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Amélie Bonnefond
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Tallapragada DSP, Bhaskar S, Chandak GR. New insights from monogenic diabetes for "common" type 2 diabetes. Front Genet 2015; 6:251. [PMID: 26300908 PMCID: PMC4528293 DOI: 10.3389/fgene.2015.00251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023] Open
Abstract
Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes.
Collapse
Affiliation(s)
| | | | - Giriraj R. Chandak
- Genomic Research on Complex Diseases Laboratory, Council of Scientific and Industrial Research-Centre for Cellular and Molecular BiologyHyderabad, India
| |
Collapse
|
503
|
Abstract
PURPOSE OF REVIEW This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. RECENT FINDINGS Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in-situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. SUMMARY The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | |
Collapse
|
504
|
Sluijs I, Holmes MV, van der Schouw YT, Beulens JWJ, Asselbergs FW, Huerta JM, Palmer TM, Arriola L, Balkau B, Barricarte A, Boeing H, Clavel-Chapelon F, Fagherazzi G, Franks PW, Gavrila D, Kaaks R, Khaw KT, Kühn T, Molina-Montes E, Mortensen LM, Nilsson PM, Overvad K, Palli D, Panico S, Quirós JR, Rolandsson O, Sacerdote C, Sala N, Schmidt JA, Scott RA, Sieri S, Slimani N, Spijkerman AMW, Tjonneland A, Travis RC, Tumino R, van der A DL, Sharp SJ, Forouhi NG, Langenberg C, Riboli E, Wareham NJ. A Mendelian Randomization Study of Circulating Uric Acid and Type 2 Diabetes. Diabetes 2015; 64:3028-36. [PMID: 25918230 PMCID: PMC6284788 DOI: 10.2337/db14-0742] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
Abstract
We aimed to investigate the causal effect of circulating uric acid concentrations on type 2 diabetes risk. A Mendelian randomization study was performed using a genetic score with 24 uric acid-associated loci. We used data of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study, comprising 24,265 individuals of European ancestry from eight European countries. During a mean (SD) follow-up of 10 (4) years, 10,576 verified incident case subjects with type 2 diabetes were ascertained. Higher uric acid was associated with a higher diabetes risk after adjustment for confounders, with a hazard ratio (HR) of 1.20 (95% CI 1.11, 1.30) per 59.48 µmol/L (1 mg/dL) uric acid. The genetic score raised uric acid by 17 µmol/L (95% CI 15, 18) per SD increase and explained 4% of uric acid variation. By using the genetic score to estimate the unconfounded effect, we found that a 59.48 µmol/L higher uric acid concentration did not have a causal effect on diabetes (HR 1.01 [95% CI 0.87, 1.16]). Including data from the Diabetes Genetics Replication And Meta-analysis (DIAGRAM) consortium, increasing our dataset to 41,508 case subjects with diabetes, the summary odds ratio estimate was 0.99 (95% CI 0.92, 1.06). In conclusion, our study does not support a causal effect of circulating uric acid on diabetes risk. Uric acid-lowering therapies may therefore not be beneficial in reducing diabetes risk.
Collapse
Affiliation(s)
- Ivonne Sluijs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, U.K. Division of Transplantation and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joline W J Beulens
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands Department of Cardiology, Heart Long Institute, University Medical Center Utrecht, Utrecht, the Netherlands Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - José María Huerta
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Tom M Palmer
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Larraitz Arriola
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain Public Health Division of Gipuzkoa, San Sebastian, Spain Instituto BIO-Donostia, Basque Government, San Sebastian, Spain
| | - Beverley Balkau
- Inserm, Center for Research in Epidemiology and Population Health (CESP), U1018, Villejuif, France Université Paris-Sud, UMRS 1018, Villejuif, France
| | - Aurelio Barricarte
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain Navarre Public Health Institute (ISPN), Pamplona, Spain
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Françoise Clavel-Chapelon
- Inserm, Center for Research in Epidemiology and Population Health (CESP), U1018, Villejuif, France Université Paris-Sud, UMRS 1018, Villejuif, France
| | - Guy Fagherazzi
- Inserm, Center for Research in Epidemiology and Population Health (CESP), U1018, Villejuif, France Université Paris-Sud, UMRS 1018, Villejuif, France
| | - Paul W Franks
- Lund University, Malmö, Sweden Umeå University, Umeå, Sweden
| | - Diana Gavrila
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tilman Kühn
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther Molina-Montes
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain Andalusian School of Public Health, Granada, Spain
| | - Lotte Maxild Mortensen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark Aalborg University Hospital, Aalborg, Denmark
| | - Domenico Palli
- Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | | | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Center for Cancer Prevention (CPO), Turin, Italy Human Genetics Foundation (HuGeF), Turin, Italy
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, and Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | | | - Nadia Slimani
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, U.K
| | | | - Daphne L van der A
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | | | - Elio Riboli
- School of Public Health, Imperial College London, U.K
| | | |
Collapse
|
505
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
506
|
Joshi PK, Esko T, Mattsson H, Eklund N, Gandin I, Nutile T, Jackson AU, Schurmann C, Smith AV, Zhang W, Okada Y, Stančáková A, Faul JD, Zhao W, Bartz TM, Concas MP, Franceschini N, Enroth S, Vitart V, Trompet S, Guo X, Chasman DI, O'Connel JR, Corre T, Nongmaithem SS, Chen Y, Mangino M, Ruggiero D, Traglia M, Farmaki AE, Kacprowski T, Bjonnes A, van der Spek A, Wu Y, Giri AK, Yanek LR, Wang L, Hofer E, Rietveld CA, McLeod O, Cornelis MC, Pattaro C, Verweij N, Baumbach C, Abdellaoui A, Warren HR, Vuckovic D, Mei H, Bouchard C, Perry JRB, Cappellani S, Mirza SS, Benton MC, Broeckel U, Medland SE, Lind PA, Malerba G, Drong A, Yengo L, Bielak LF, Zhi D, van der Most PJ, Shriner D, Mägi R, Hemani G, Karaderi T, Wang Z, Liu T, Demuth I, Zhao JH, Meng W, Lataniotis L, van der Laan SW, Bradfield JP, Wood AR, Bonnefond A, Ahluwalia TS, Hall LM, Salvi E, Yazar S, Carstensen L, de Haan HG, Abney M, Afzal U, Allison MA, Amin N, Asselbergs FW, Bakker SJL, Barr RG, Baumeister SE, Benjamin DJ, Bergmann S, Boerwinkle E, Bottinger EP, Campbell A, Chakravarti A, Chan Y, Chanock SJ, Chen C, Chen YDI, et alJoshi PK, Esko T, Mattsson H, Eklund N, Gandin I, Nutile T, Jackson AU, Schurmann C, Smith AV, Zhang W, Okada Y, Stančáková A, Faul JD, Zhao W, Bartz TM, Concas MP, Franceschini N, Enroth S, Vitart V, Trompet S, Guo X, Chasman DI, O'Connel JR, Corre T, Nongmaithem SS, Chen Y, Mangino M, Ruggiero D, Traglia M, Farmaki AE, Kacprowski T, Bjonnes A, van der Spek A, Wu Y, Giri AK, Yanek LR, Wang L, Hofer E, Rietveld CA, McLeod O, Cornelis MC, Pattaro C, Verweij N, Baumbach C, Abdellaoui A, Warren HR, Vuckovic D, Mei H, Bouchard C, Perry JRB, Cappellani S, Mirza SS, Benton MC, Broeckel U, Medland SE, Lind PA, Malerba G, Drong A, Yengo L, Bielak LF, Zhi D, van der Most PJ, Shriner D, Mägi R, Hemani G, Karaderi T, Wang Z, Liu T, Demuth I, Zhao JH, Meng W, Lataniotis L, van der Laan SW, Bradfield JP, Wood AR, Bonnefond A, Ahluwalia TS, Hall LM, Salvi E, Yazar S, Carstensen L, de Haan HG, Abney M, Afzal U, Allison MA, Amin N, Asselbergs FW, Bakker SJL, Barr RG, Baumeister SE, Benjamin DJ, Bergmann S, Boerwinkle E, Bottinger EP, Campbell A, Chakravarti A, Chan Y, Chanock SJ, Chen C, Chen YDI, Collins FS, Connell J, Correa A, Cupples LA, Smith GD, Davies G, Dörr M, Ehret G, Ellis SB, Feenstra B, Feitosa MF, Ford I, Fox CS, Frayling TM, Friedrich N, Geller F, Scotland G, Gillham-Nasenya I, Gottesman O, Graff M, Grodstein F, Gu C, Haley C, Hammond CJ, Harris SE, Harris TB, Hastie ND, Heard-Costa NL, Heikkilä K, Hocking LJ, Homuth G, Hottenga JJ, Huang J, Huffman JE, Hysi PG, Ikram MA, Ingelsson E, Joensuu A, Johansson Å, Jousilahti P, Jukema JW, Kähönen M, Kamatani Y, Kanoni S, Kerr SM, Khan NM, Koellinger P, Koistinen HA, Kooner MK, Kubo M, Kuusisto J, Lahti J, Launer LJ, Lea RA, Lehne B, Lehtimäki T, Liewald DCM, Lind L, Loh M, Lokki ML, London SJ, Loomis SJ, Loukola A, Lu Y, Lumley T, Lundqvist A, Männistö S, Marques-Vidal P, Masciullo C, Matchan A, Mathias RA, Matsuda K, Meigs JB, Meisinger C, Meitinger T, Menni C, Mentch FD, Mihailov E, Milani L, Montasser ME, Montgomery GW, Morrison A, Myers RH, Nadukuru R, Navarro P, Nelis M, Nieminen MS, Nolte IM, O'Connor GT, Ogunniyi A, Padmanabhan S, Palmas WR, Pankow JS, Patarcic I, Pavani F, Peyser PA, Pietilainen K, Poulter N, Prokopenko I, Ralhan S, Redmond P, Rich SS, Rissanen H, Robino A, Rose LM, Rose R, Sala C, Salako B, Salomaa V, Sarin AP, Saxena R, Schmidt H, Scott LJ, Scott WR, Sennblad B, Seshadri S, Sever P, Shrestha S, Smith BH, Smith JA, Soranzo N, Sotoodehnia N, Southam L, Stanton AV, Stathopoulou MG, Strauch K, Strawbridge RJ, Suderman MJ, Tandon N, Tang ST, Taylor KD, Tayo BO, Töglhofer AM, Tomaszewski M, Tšernikova N, Tuomilehto J, Uitterlinden AG, Vaidya D, van Hylckama Vlieg A, van Setten J, Vasankari T, Vedantam S, Vlachopoulou E, Vozzi D, Vuoksimaa E, Waldenberger M, Ware EB, Wentworth-Shields W, Whitfield JB, Wild S, Willemsen G, Yajnik CS, Yao J, Zaza G, Zhu X, Project TBJ, Salem RM, Melbye M, Bisgaard H, Samani NJ, Cusi D, Mackey DA, Cooper RS, Froguel P, Pasterkamp G, Grant SFA, Hakonarson H, Ferrucci L, Scott RA, Morris AD, Palmer CNA, Dedoussis G, Deloukas P, Bertram L, Lindenberger U, Berndt SI, Lindgren CM, Timpson NJ, Tönjes A, Munroe PB, Sørensen TIA, Rotimi CN, Arnett DK, Oldehinkel AJ, Kardia SLR, Balkau B, Gambaro G, Morris AP, Eriksson JG, Wright MJ, Martin NG, Hunt SC, Starr JM, Deary IJ, Griffiths LR, Tiemeier H, Pirastu N, Kaprio J, Wareham NJ, Pérusse L, Wilson JG, Girotto G, Caulfield MJ, Raitakari O, Boomsma DI, Gieger C, van der Harst P, Hicks AA, Kraft P, Sinisalo J, Knekt P, Johannesson M, Magnusson PKE, Hamsten A, Schmidt R, Borecki IB, Vartiainen E, Becker DM, Bharadwaj D, Mohlke KL, Boehnke M, van Duijn CM, Sanghera DK, Teumer A, Zeggini E, Metspalu A, Gasparini P, Ulivi S, Ober C, Toniolo D, Rudan I, Porteous DJ, Ciullo M, Spector TD, Hayward C, Dupuis J, Loos RJF, Wright AF, Chandak GR, Vollenweider P, Shuldiner A, Ridker PM, Rotter JI, Sattar N, Gyllensten U, North KE, Pirastu M, Psaty BM, Weir DR, Laakso M, Gudnason V, Takahashi A, Chambers JC, Kooner JS, Strachan DP, Campbell H, Hirschhorn JN, Perola M, Polašek O, Wilson JF. Directional dominance on stature and cognition in diverse human populations. Nature 2015; 523:459-462. [PMID: 26131930 PMCID: PMC4516141 DOI: 10.1038/nature14618] [Show More Authors] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023]
Abstract
Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Collapse
Affiliation(s)
- Peter K Joshi
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Hannele Mattsson
- Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland
| | - Niina Eklund
- Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, Trieste, 34149, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" CNR, via Pietro Castellino, 111, Naples, 80131, Italy
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Albert V Smith
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113-8510, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jessica D Faul
- Institute for Social Research, University of Michigan, 426 Thompson Street, 48104, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA
| | - Maria Pina Concas
- Institute of Population Genetics, National Research Council, Trav. La Crucca n. 3 - Reg. Baldinca, Sassari, 07100, Italy
| | - Nora Franceschini
- Epidemiology, University of North Carolina, 137 E. Franklin St., Suite 306, 27599-8050, Chapel Hill, USA
| | - Stefan Enroth
- Immunology, Genetics & Pathology, Uppsala University, Husargatan 3, Box 815, Uppsala, SE-751 08, Sweden
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center , PO Box 9600, Leiden, Netherlands
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, East, Harvard Medical School, Boston, Boston, MA 02215, USA
| | - Jeffery R O'Connel
- Division of Endocrinology, Diabetes, and Nutrition and Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, 21201, USA
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - batiment génopode, Lausanne, 1015, Switzerland
| | - Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, 02118, MA, USA
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
- NIHR Biomedical Research Centre , Guy's and St. Thomas' Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" CNR, via Pietro Castellino, 111, Naples, 80131, Italy
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, Milano, 20132, Italy
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70, El. Venizelou Ave, Athens, 17671, Greece
| | - Tim Kacprowski
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, Greifswald, 17475, Germany
| | - Andrew Bjonnes
- Center for Human Genetic Research , 55 Fruit Street, Massachusetts General Hospital, 2114, USA
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Anil K Giri
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Lisa R Yanek
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, 21287, Maryland, USA
| | - Lihua Wang
- Department of Genetics, Washington University School of Medicine, 4444 Forest Park Boulevard, Saint Louis, 63108, MO, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, Graz, A-8036, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz2, Graz, A-8036, Austria
| | - Cornelius A Rietveld
- Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 3000 DR, The Netherlands
| | - Olga McLeod
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden
| | - Marilyn C Cornelis
- Channing Division of Network Medicine, Brigham & Women's Hospital, 181 Longwood, Boston, 02115, USA
- Nutrition, Harvard School of Public Health, 401 Park Drive, Boston, 02215, USA
| | - Cristian Pattaro
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Clemens Baumbach
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Abdel Abdellaoui
- Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, Trieste, 34149, Italy
| | - Hao Mei
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State St., Jackson, 39216, MS, USA
| | - Claude Bouchard
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Stefania Cappellani
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Saira S Mirza
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Miles C Benton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, GPO Box 2434, Brisbane Qld 4001, Brisbane, Australia
| | - Ulrich Broeckel
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, 53226, WI, USA
| | - Sarah E Medland
- Quantitative Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia
| | - Penelope A Lind
- Quantitative Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia
| | - Giovanni Malerba
- Dipartimento di Scienze della Vita e della Riproduzione, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Alexander Drong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Loic Yengo
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 University, 1 Rue du Professeur Calmette, 59000, Lille, France
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, 35294, AL, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, P.O. box 30.001, 9700 RB, Groningen, The Netherlands
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Room 4047, 12 South Dr., Bethesda, 20892, Maryland, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, 20850, MD, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick,MD, USA
| | - Tian Liu
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany
- Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 72, Berlin, 14195, Germany
| | - Ilja Demuth
- Charité Research Group on Geriatrics, Charité - Universitätsmedizin Berlin, Reinickendorferstr. 61, 13347, Berlin, Germany
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Weihua Meng
- Division of Population Health Sciences, Medical Research Institute, University of Dundee, Ninewells hospital and School of Medicine, Dundee, DD2 4BF, Scotland
| | - Lazaros Lataniotis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sander W van der Laan
- Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Amelie Bonnefond
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 University, 1 Rue du Professeur Calmette, 59000, Lille, France
| | - Tarunveer S Ahluwalia
- Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Pediatric Asthma Center, Gentofte Hospital, The Capital Region, Copenhagen, Denmark
- Novo Nordisk Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Erika Salvi
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, 2 Verdun St, Perth, 6009, Australia
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Hugoline G de Haan
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Mark Abney
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Uzma Afzal
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
| | - Matthew A Allison
- Department of Family and Preventive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Catharijnesingel 52, Utrecht, 3501 DG, The Netherlands
- Institute of Cardiovascular Science, faculty of Population Health Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stephan J L Bakker
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - R Graham Barr
- Department of Medicine, Columbia University, 622 W. 168th Street, New York, 10032, NY, USA
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, W.-Rathenau-Str. 48, Greifswald, 17475, Germany
| | - Daniel J Benjamin
- Department of Economics, Cornell University, 480 Uris Hall, Ithaca, NY, 14853, USA
- Department of Economics and Center for Economic and Social Research, University of Southern California, 314C Dauterive Hall, 635 Downey Way, Los Angeles, CA, 90089, USA
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - batiment génopode, Lausanne, 1015, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Suite 453E, Houston, Texas, 77030, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Yingleong Chan
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, 20850, MD, USA
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, 665 Huntington Ave, Boston, 02115, USA
| | - Y-D Ida Chen
- Institute for Translational Genomics and Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Francis S Collins
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, 20892, MD, USA
| | - John Connell
- College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, College Office, Level 10, Dundee, DD1 9SY, UK
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State St., Jackson, 39216, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, 02118, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Gail Davies
- Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, Greifswald, 17475, Germany
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Cardiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil, 4, Genève 14, 1211, Switzerland
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, 4444 Forest Park Boulevard, Saint Louis, 63108, MO, USA
| | - Ian Ford
- Robertson Centre, University of Glasgow, Boyd Orr Building, Glasgow, G12 8QQ, Scotland
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
- Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School , 75 Francis St, Boston, 02115, MA, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, 17475, Greifswald, Germany
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Generation Scotland
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Irina Gillham-Nasenya
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Misa Graff
- Epidemiology, University of North Carolina, 137 E Franklin St., Suite 306, USA
| | - Francine Grodstein
- Nutrition, Harvard School of Public Health, 401 Park Drive, Boston, 02215, USA
| | - Charles Gu
- Division of Biostatistics, Washington University, 660 S Euclid, St Louis, 63110, MO, USA
| | - Chris Haley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Christopher J Hammond
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
| | - Sarah E Harris
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Tamara B Harris
- National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas D Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Nancy L Heard-Costa
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, 02118, MA, USA
| | - Kauko Heikkilä
- Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland
| | - Lynne J Hocking
- Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, Greifswald, 17475, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
| | - Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025 China
| | - Jennifer E Huffman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anni Joensuu
- Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland
| | - Åsa Johansson
- Immunology, Genetics & Pathology, Uppsala University, Husargatan 3, Box 815, Uppsala, SE-751 08, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, SE-75237, Sweden
| | - Pekka Jousilahti
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - J Wouter Jukema
- Department of Cardiology C5-P , Leiden University Medical Center, PO Box 9600, Leiden, Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, P.O. Box 2000, Tampere, 33521, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shona M Kerr
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Nazir M Khan
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Philipp Koellinger
- Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 3000 DR, The Netherlands
| | - Heikki A Koistinen
- Diabetes Prevention Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
- Department of Medicine, Division of Endocrinology, Helsinki University Central Hospital, P.O.Box 340, Haartmaninkatu 4, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, Helsinki, FI-00290, Finland
| | - Manraj K Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
| | - Michiaki Kubo
- Laboratory for Genotyping Development RCfIMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9, FI-00014 University of Helsinki, Helsinki, Finland
- Folkhälsan Reasearch Centre, PB 63, Helsinki, FI-00014 University of Helsinki, Finland
| | - Lenore J Launer
- National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rodney A Lea
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, GPO Box 2434, Brisbane Qld 4001, Brisbane, Australia
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, Tampere, 33520, Finland
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Lars Lind
- Department of Medical Sciences, University Hospital, Uppsala, 75185, Sweden
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Marja-Liisa Lokki
- Transplantation laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, RTP, NC, USA
| | - Stephanie J Loomis
- Ophthalmology, Massachusetts Eye and Ear, 243 Charles St, Boston, 02114, USA
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Thomas Lumley
- Department of Statistics, University of Auckland, 303.325 Science Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Annamari Lundqvist
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Satu Männistö
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, University Hospital, Route du Bugnon 44, Lausanne, 1011, Switzerland
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, Milano, 20132, Italy
| | - Angela Matchan
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Rasika A Mathias
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, 21287, Maryland, USA
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224, USA
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital , 50 Staniford St, Boston, 02114, MA, USA
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition and Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, 21201, USA
| | - Grant W Montgomery
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia
| | - Alanna Morrison
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Suite 453E, Houston, Texas, 77030, USA
| | - Richard H Myers
- Genome Science Institute, Boston University School of Medicine, 72 East Concord Street, E-304, Boston, 2118, MA, USA
| | - Rajiv Nadukuru
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Mari Nelis
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Markku S Nieminen
- HUCH Heart and Lung center, Helsinki University Central Hospital, P.O. Box 340, Helsinki, FI-00029, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, P.O. box 30.001, 9700 RB, Groningen, The Netherlands
| | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, 02118, MA, USA
| | | | | | - Walter R Palmas
- Department of Medicine, Columbia University, 622 W. 168th Street, New York, 10032, NY, USA
| | - James S Pankow
- Division of Epidemiology and Community Health , University of Minnesota , 1300 S 2nd Street, Minneapolis, 55454, USA
| | - Inga Patarcic
- Centre for Global Health and Department of Public Health, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | - Francesca Pavani
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | - Kirsi Pietilainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland
- Department of Medicine, Division of Endocrinology, Helsinki University Central Hospital, P.O.Box 340, Haartmaninkatu 4, Helsinki, FI-00029, Finland
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, P.O.Box 63, Haartmaninkatu 8, FI-00014, Helsinki, Finland
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, W2 1LA, UK
| | - Inga Prokopenko
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Sarju Ralhan
- Department of Cardiology and Cardio thoracic Surgery Hero DMC Heart Institute, Civil Lines, 141001, Ludhiana, India
| | - Paul Redmond
- Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Stephen S Rich
- Department Public Health Sciences, University of Virginia School of Medicine, 3232 West Complex, Charlottesville, 22908, USA
| | - Harri Rissanen
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, East, Harvard Medical School, Boston, Boston, MA 02215, USA
| | - Richard Rose
- Department of Psychological & Brain Sciences, Indiana University Bloomington, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, Milano, 20132, Italy
| | | | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Antti-Pekka Sarin
- Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland
| | - Richa Saxena
- Center for Human Genetic Research , 55 Fruit Street, Massachusetts General Hospital, 2114, USA
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Harrachgasse 21, Graz, A-8010, Austria
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - William R Scott
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sudha Seshadri
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, 02118, MA, USA
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, W2 1LA, UK
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India
| | - Blair H Smith
- University of Dundee, Kirsty Semple Way, Dundee, DD2 4DB, UK
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Maria G Stathopoulou
- UMR INSERM U1122; IGE-PCV "Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire", INSERM, University of Lorraine, 30 Rue Lionnois, Nancy, 54000, France
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Nikhil Tandon
- Department of Endocrinology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| | - Sian-Tsun Tang
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, USA
| | - Anna Maria Töglhofer
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Harrachgasse 21, Graz, A-8010, Austria
| | - Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Natalia Tšernikova
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010 Estonia
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria
- Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Dhananjay Vaidya
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, 21287, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Astrid van Hylckama Vlieg
- Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300RC, The Netherlands
| | - Jessica van Setten
- Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Tuula Vasankari
- Finnish Lung Health Association, Sibeliuksenkatu 11 A 1, Helsinki, FI-00250, Finland
| | - Sailaja Vedantam
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Efthymia Vlachopoulou
- Transplantation laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
| | - Diego Vozzi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Eero Vuoksimaa
- Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Erin B Ware
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | | | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia
| | - Sarah Wild
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
| | | | - Jie Yao
- Institute for Translational Genomics and Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, 90502, USA
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Piazzale A. Stefani 1, Verona, 37124, Italy
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, USA
| | - The BioBank Japan Project
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Rany M Salem
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
- Department of Medicine, Stanford University, 300 Pasteur Drive, Stanford, 94305, CA, USA
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Pediatric Asthma Center, Gentofte Hospital, The Capital Region, Copenhagen, Denmark
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Daniele Cusi
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142 Milan, Italy
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, 2 Verdun St, Perth, 6009, Australia
| | - Richard S Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 University, 1 Rue du Professeur Calmette, 59000, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Gerard Pasterkamp
- Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National institute on Aging, Baltimore, 21225, Maryland, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Andrew D Morris
- Jacqui Wood Cancer Centre, Medical Research Insitute, University of Dundee, Ninewells hospital and School of Medicine, Dundee, DD1 9SY, Scotland
| | - Colin N A Palmer
- Centre for Pharmacogenetics and Pharmacogenomics, Medical Research Institute, University of Dundee, Ninewells hospital and School of Medicine, Dundee, DD1 9SY, Scotland
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70, El. Venizelou Ave, Athens, 17671, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lars Bertram
- Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 72, Berlin, 14195, Germany
- Faculty of Medicine, Imperial College London, Charing Cross Campus - St Dunstan's Road, London, W6 8RP, UK
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, 20850, MD, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Thorkild I A Sørensen
- Novo Nordisk Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital , The Capital Region, Copenhagen, 2000, Denmark
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Room 4047, 12 South Dr., Bethesda, 20892, Maryland, USA
| | - Donna K Arnett
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, 35294, AL, USA
| | - Albertine J Oldehinkel
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, P.O. box 30.001, Groningen, 9700 RB, The Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, 48109, Ann Arbor, MI, USA
| | - Beverley Balkau
- Epidemiology of diabetes, obesity and chronic kidney disease over the lifecourse, Inserm, CESP Center for Research in Epidemiology and Population Health U1018, 16 Avenue Paul Vaillant Couturier, Villejuif, 94807, France
| | - Giovanni Gambaro
- Dipartimento di Scienze Mediche, Catholic University of the Sacred Heart, Via G. Moscati 31/34, Roma, 00168, Italy
| | - Andrew P Morris
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Department of Biostatistics, University of Liverpool, Duncan Building, Daulby Stree, Liverpool, L69 3GA, UK
| | - Johan G Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, P.O. Box 20, University of Helsinki, Helsinki, FI-00014, Finland
- Vasa Central Hospital, Sandviksgatan 2-4, Vasa, 65130, Finland
- Folkhälsan Reasearch Centre, PB 63, University of Helsinki, Helsinki, FI-00014, Finland
- Unit of General Practice, Helsinki University Central Hospital, Haartmaninkatu 4, Helsinki, FI-00290, Finland
| | - Margie J Wright
- Neuro-Imaging Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006 Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, 4006, Australia
| | - Steven C Hunt
- Cardiovascular Genetics Division, University of Utah, 420 Chipeta Way, Room 1160, Salt Lake City, 84117, Utah, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, GPO Box 2434, Brisbane Qld 4001, Brisbane, Australia
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Nicola Pirastu
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, Trieste, 34149, Italy
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland
- National Institute for Health and Welfare (THL), P.O.Box 30, Mannerheimintie 166, Helsinki, FI-00271, Finland
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Louis Pérusse
- Department of kinesiology, Laval University, 2300 rue de la Terrasse, Quebec, G1V 0A6, Canada
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, 39216, MS, USA
| | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, Trieste, 34149, Italy
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, 20521, Finland
- Research Center of Applied and Preventive Cardiovascular medicine, University of Turku, Turku, 20521, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Hanzeplein 1, Groningen, 9700RB, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Catharijnesingel 52, Utrecht, 3501 DG, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, Groningen, 9700RB, The Netherlands
| | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, 665 Huntington Ave, Boston, 02115, USA
| | - Juha Sinisalo
- HUCH Heart and Lung center, Helsinki University Central Hospital, P.O. Box 340, Helsinki, FI-00029, Finland
| | - Paul Knekt
- Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Box 6501, Stockholm, SE-113 83, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm, SE-171 77, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, Graz, A-8036, Austria
| | - Ingrid B Borecki
- Department of Genetics and Biostatistics, Washington University School of Medicine, 4444 Forest Park Boulevard, Saint Louis, 63108, MO, USA
| | - Erkki Vartiainen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Diane M Becker
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, 21287, Maryland, USA
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205, Maryland, USA
| | - Dwaipayan Bharadwaj
- Genomics and Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Dharambir K Sanghera
- Department of Pediatrics, University of Oklahoma Health Sciences Center, 940 Stanton Young Boulevard, Oklahoma City, 73104, OK , USA
- Department of Pharmaceutical Sciences , University of Oklahoma Health Sceienecs Center, Oklahoma City , 73104, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, W.-Rathenau-Str. 48, Greifswald, 17475, Germany
| | - Eleftheria Zeggini
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010 Estonia
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, Trieste, 34137, Italy
| | - Carole Ober
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, Milano, 20132, Italy
| | - Igor Rudan
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" CNR, via Pietro Castellino, 111, Naples, 80131, Italy
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London, SE1 7EH, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, 02118, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, 01702, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029, USA
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital, Route du Bugnon 44, Lausanne, 1011, Switzerland
| | - Alan Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition and Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, 21201, USA
- Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, 21201, USA
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, 685 W Baltimore MSTF, Baltimore, 21201, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, East, Harvard Medical School, Boston, Boston, MA 02215, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences , Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Naveed Sattar
- BHF centre, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, Scotland
| | - Ulf Gyllensten
- Immunology, Genetics & Pathology, Uppsala University, Husargatan 3, Box 815, Uppsala, SE-751 08, Sweden
| | - Kari E North
- Epidemiology, University of North Carolina, 137 E Franklin St., Suite 306, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, 137 E. Franklin St., Suite 306, Chapel Hill, USA
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council, Trav. La Crucca n. 3 - Reg. Baldinca, Sassari, 07100, Italy
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA
- Group Health Research Institute, Group Health Cooperative, 1730 Minor Ave, Suite 1360, Seattle, 98101, WA, USA
| | - David R Weir
- Institute for Social Research, University of Michigan, 426 Thompson Street, 48104, Ann Arbor, MI, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, Imperial College London, Praed Street, London, W2 1NY, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, Imperial College London, Praed Street, London, W2 1NY, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Harry Campbell
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Joel N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, 02242, MA, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland
| | - Ozren Polašek
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
- Centre for Global Health and Department of Public Health, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | - James F Wilson
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU, Edinburgh, UK
| |
Collapse
|
507
|
Prudente S, Bailetti D, Mendonca C, Mannino GC, Fontana A, Andreozzi F, Hastings T, Mercuri L, Alberico F, Basile G, Copetti M, Sesti G, Doria A, Trischitta V. Infrequent TRIB3 coding variants and coronary artery disease in type 2 diabetes. Atherosclerosis 2015; 242:334-9. [PMID: 26253791 DOI: 10.1016/j.atherosclerosis.2015.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/26/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Genes that modulate insulin sensitivity may also be involved in shaping the risk of coronary artery disease (CAD). The relatively common TRIB3 Q84R polymorphism (rs2295490) has been associated with abnormal insulin signaling, endothelial dysfunction, insulin resistance, and pro-atherogenic phenotypes. The aim of our study was to investigate the association between low-frequency TRIB3 coding variants and CAD in patients with type 2 diabetes (T2D). METHODS Three case-control studies for CAD from Italy and US were analyzed, for a total of 1565 individuals, all with type 2 diabetes. Infrequent variants were identified by re-sequencing TRIB3 exons in 140 "extreme cases" and 140 "super-controls" and then genotyped in all study subjects. RESULTS TRIB3 infrequent variants (n = 8), considered according to a collapsing rare variants framework, were significantly associated with CAD in diabetic patients from Italy (n = 700, OR = 0.43, 95% CI 0.20-0.91; p = 0.027), but not from the US (n = 865, OR = 1.22, 95% CI 0.69-2.18; p = 0.49). In the Italian sets, the association was especially strong among individuals who also carried the common R84 variant. CONCLUSION Although preliminary, our finding suggests a role of TRIB3 low-frequency variants on CAD among Italian patients with T2D. Further studies are needed to address the role of TRIB3 infrequent variants in other populations of both European and non-European ancestries.
Collapse
Affiliation(s)
- Sabrina Prudente
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy.
| | - Diego Bailetti
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Gaia Chiara Mannino
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Andrea Fontana
- IRCCS Casa Sollievo della Sofferenza, Unit of Biostatistics, San Giovanni Rotondo, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Luana Mercuri
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy
| | - Federica Alberico
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy
| | - Giorgio Basile
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Massimiliano Copetti
- IRCCS Casa Sollievo della Sofferenza, Unit of Biostatistics, San Giovanni Rotondo, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Vincenzo Trischitta
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy; IRCSS Casa Sollievo della Sofferenza, Research Unit of Diabetes and Endocrine Diseases, San Giovanni Rotondo, Italy.
| |
Collapse
|
508
|
Mohlke KL, Boehnke M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum Mol Genet 2015; 24:R85-92. [PMID: 26160912 DOI: 10.1093/hmg/ddv264] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association (GWAS) and sequencing studies are providing new insights into the genetic basis of type 2 diabetes (T2D) and the inter-individual variation in glycemic traits, including levels of glucose, insulin, proinsulin and hemoglobin A1c (HbA1c). At the end of 2011, established loci (P < 5 × 10(-8)) totaled 55 for T2D and 32 for glycemic traits. Since then, most new loci have been detected by analyzing common [minor allele frequency (MAF)>0.05] variants in increasingly large sample sizes from populations around the world, and in trans-ancestry studies that successfully combine data from diverse populations. Most recently, advances in sequencing have led to the discovery of four loci for T2D or glycemic traits based on low-frequency (0.005 < MAF ≤ 0.05) variants, and additional low-frequency, potentially functional variants have been identified at GWAS loci. Established published loci now total ∼88 for T2D and 83 for one or more glycemic traits, and many additional loci likely remain to be discovered. Future studies will build on these successes by identifying additional loci and by determining the pathogenic effects of the underlying variants and genes.
Collapse
Affiliation(s)
- Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
509
|
Walker CG, Solis-Trapala I, Holzapfel C, Ambrosini GL, Fuller NR, Loos RJF, Hauner H, Caterson ID, Jebb SA. Modelling the Interplay between Lifestyle Factors and Genetic Predisposition on Markers of Type 2 Diabetes Mellitus Risk. PLoS One 2015; 10:e0131681. [PMID: 26154605 PMCID: PMC4496090 DOI: 10.1371/journal.pone.0131681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/04/2015] [Indexed: 01/21/2023] Open
Abstract
The risk of developing type 2 diabetes mellitus (T2DM) is determined by a complex interplay involving lifestyle factors and genetic predisposition. Despite this, many studies do not consider the relative contributions of this complex array of factors to identify relationships which are important in progression or prevention of complex diseases. We aimed to describe the integrated effect of a number of lifestyle changes (weight, diet and physical activity) in the context of genetic susceptibility, on changes in glycaemic traits in overweight or obese participants following 12-months of a weight management programme. A sample of 353 participants from a behavioural weight management intervention were included in this study. A graphical Markov model was used to describe the impact of the intervention, by dividing the effects into various pathways comprising changes in proportion of dietary saturated fat, physical activity and weight loss, and a genetic predisposition score (T2DM-GPS), on changes in insulin sensitivity (HOMA-IR), insulin secretion (HOMA-B) and short and long term glycaemia (glucose and HbA1c). We demonstrated the use of graphical Markov modelling to identify the importance and interrelationships of a number of possible variables changed as a result of a lifestyle intervention, whilst considering fixed factors such as genetic predisposition, on changes in traits. Paths which led to weight loss and change in dietary saturated fat were important factors in the change of all glycaemic traits, whereas the T2DM-GPS only made a significant direct contribution to changes in HOMA-IR and plasma glucose after considering the effects of lifestyle factors. This analysis shows that modifiable factors relating to body weight, diet, and physical activity are more likely to impact on glycaemic traits than genetic predisposition during a behavioural intervention.
Collapse
Affiliation(s)
- Celia G. Walker
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Ivonne Solis-Trapala
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Christina Holzapfel
- Else Kroener-Fresenius-Center for Nutritional Medicine, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Gina L. Ambrosini
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Nicholas R. Fuller
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW, Australia
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, The Genetics of Obesity and Related Metabolic Traits Programme, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hans Hauner
- Else Kroener-Fresenius-Center for Nutritional Medicine, Faculty of Medicine, Technische Universität München, Munich, Germany
| | - Ian D. Caterson
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW, Australia
| | - Susan A. Jebb
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| |
Collapse
|
510
|
Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, Dörr M, Frayling TM, Uitterlinden AG, Hofman A, van Meurs JBJ, Erkeland SJ, Franco OH, Dehghan A. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat 2015; 35:1524-31. [PMID: 25256095 DOI: 10.1002/humu.22706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNA) play a crucial role in the regulation of diverse biological processes by post-transcriptional modulation of gene expression. Genetic polymorphisms in miRNA-related genes can potentially contribute to a wide range of phenotypes. The effect of such variants on cardiometabolic diseases has not yet been defined. We systematically investigated the association of genetic variants in the seed region of miRNAs with cardiometabolic phenotypes, using the thus far largest genome-wide association studies on 17 cardiometabolic traits/diseases. We found that rs2168518:G>A, a seed region variant of miR-4513, associates with fasting glucose, low-density lipoprotein-cholesterol, total cholesterol, systolic and diastolic blood pressure, and risk of coronary artery disease. We experimentally showed that miR-4513 expression is significantly reduced in the presence of the rs2168518 mutant allele. We sought to identify miR-4513 target genes that may mediate these associations and revealed five genes (PCSK1, BNC2, MTMR3, ANK3, and GOSR2) through which these effects might be taking place. Using luciferase reporter assays, we validated GOSR2 as a target of miR-4513 and further demonstrated that the miRNA-mediated regulation of this gene is changed by rs2168518. Our findings indicate a pleiotropic effect of miR-4513 on cardiometabolic phenotypes and may improve our understanding of the pathophysiology of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
511
|
Fall T, Xie W, Poon W, Yaghootkar H, Mägi R, Knowles JW, Lyssenko V, Weedon M, Frayling TM, Ingelsson E. Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes 2015; 64:2676-84. [PMID: 25948681 DOI: 10.2337/db14-1710] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022]
Abstract
The effects of dyslipidemia on the risk of type 2 diabetes (T2D) and related traits are not clear. We used regression models and 140 lipid-associated genetic variants to estimate associations between circulating HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), and triglycerides and T2D and related traits. Each genetic test was corrected for effects of variants on the other two lipid types and surrogates of adiposity. We used the largest data sets available: 34,840 T2D case and 114,981 control subjects from the DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) consortium and up to 133,010 individuals without diabetes for insulin secretion and sensitivity from the MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium) and GENESIS (GENEticS of Insulin Sensitivity) studies. Eight of 21 associations between groups of variants and diabetes traits were significant at the nominal level, including those between genetically determined lower HDL-C (β = -0.12, P = 0.03) and T2D and genetically determined lower LDL-C (β = -0.21, P = 5 × 10(-6)) and T2D. Although some of these may represent causal associations, we discuss why caution must be used when using Mendelian randomization in the context of circulating lipid levels and diabetes traits. In conclusion, we found evidence of links between genetic variants associated with lipids and T2D, but deeper knowledge of the underlying genetic mechanisms of specific lipid variants is needed before drawing definite conclusions about causality based on Mendelian randomization methodology.
Collapse
Affiliation(s)
- Tove Fall
- Molecular Epidemiology, Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Weijia Xie
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, Devon, U.K
| | - Wenny Poon
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Center, Malmö, Sweden
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, Devon, U.K
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Joshua W Knowles
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Center, Malmö, Sweden
| | - Michael Weedon
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, Devon, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, Devon, U.K.
| | - Erik Ingelsson
- Molecular Epidemiology, Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
512
|
Horikoshi M, Mӓgi R, van de Bunt M, Surakka I, Sarin AP, Mahajan A, Marullo L, Thorleifsson G, Hӓgg S, Hottenga JJ, Ladenvall C, Ried JS, Winkler TW, Willems SM, Pervjakova N, Esko T, Beekman M, Nelson CP, Willenborg C, Wiltshire S, Ferreira T, Fernandez J, Gaulton KJ, Steinthorsdottir V, Hamsten A, Magnusson PKE, Willemsen G, Milaneschi Y, Robertson NR, Groves CJ, Bennett AJ, Lehtimӓki T, Viikari JS, Rung J, Lyssenko V, Perola M, Heid IM, Herder C, Grallert H, Müller-Nurasyid M, Roden M, Hypponen E, Isaacs A, van Leeuwen EM, Karssen LC, Mihailov E, Houwing-Duistermaat JJ, de Craen AJM, Deelen J, Havulinna AS, Blades M, Hengstenberg C, Erdmann J, Schunkert H, Kaprio J, Tobin MD, Samani NJ, Lind L, Salomaa V, Lindgren CM, Slagboom PE, Metspalu A, van Duijn CM, Eriksson JG, Peters A, Gieger C, Jula A, Groop L, Raitakari OT, Power C, Penninx BWJH, de Geus E, Smit JH, Boomsma DI, Pedersen NL, Ingelsson E, Thorsteinsdottir U, Stefansson K, Ripatti S, Prokopenko I, McCarthy MI, Morris AP, ENGAGE Consortium. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genet 2015; 11:e1005230. [PMID: 26132169 PMCID: PMC4488845 DOI: 10.1371/journal.pgen.1005230] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/18/2015] [Indexed: 11/19/2022] Open
Abstract
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated. Human genetic studies have demonstrated that quantitative human anthropometric and metabolic traits, including body mass index, waist-hip ratio, and plasma concentrations of glucose and insulin, are highly heritable, and are established risk factors for type 2 diabetes and cardiovascular diseases. Although many regions of the genome have been associated with these traits, the specific genes responsible have not yet been identified. By making use of advanced statistical “imputation” techniques applied to more than 87,000 individuals of European ancestry, and publicly available “reference panels” of more than 37 million genetic variants, we have been able to identify novel regions of the genome associated with these glycaemic and obesity-related traits and localise genes within these regions that are most likely to be causal. This improved understanding of the biological mechanisms underlying glycaemic and obesity-related traits is extremely important because it may advance drug development for downstream disease endpoints, ultimately leading to public health benefits.
Collapse
Affiliation(s)
- Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Reedik Mӓgi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Martijn van de Bunt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Ida Surakka
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Letizia Marullo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Sara Hӓgg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Sara M. Willems
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Children’s Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marian Beekman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Disease Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Christina Willenborg
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Steven Wiltshire
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Juan Fernandez
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kyle J. Gaulton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Anders Hamsten
- Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Neil R. Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Christopher J. Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Amanda J. Bennett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Terho Lehtimӓki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine, University of Tampere, Tampere, Finland
| | - Jorma S. Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Johan Rung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Steno Diabetes Center A/S, Gentofte, Denmark
| | - Markus Perola
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Iris M. Heid
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Elina Hypponen
- School of Population Health, University of South Australia, Adelaide, Australia
- Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, London, United Kingdom
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Medical Systems Biology, Leiden, The Netherlands
| | - Elisabeth M. van Leeuwen
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lennart C. Karssen
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Anton J. M. de Craen
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris Deelen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Aki S. Havulinna
- Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Matthew Blades
- Bioinformatics and Biostatistics Support Hub (B/BASH), University of Leicester, Leicester, United Kingdom
| | - Christian Hengstenberg
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Munich, Munich, Germany
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Munich, Munich, Germany
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- The Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Disease Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| | - Veikko Salomaa
- Unit of Chronic Disease Epidemiology and Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Medical Systems Biology, Leiden, The Netherlands
| | - Johan G. Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
- Department of Health Promotion and Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Olli T. Raitakari
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Chris Power
- Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, London, United Kingdom
| | | | - Eco de Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- EMGO Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes H. Smit
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Medical Sciences, Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Thorsteinsdottir
- deCode Genetic - Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCode Genetic - Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- The Department of Public Health, University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Inga Prokopenko
- Deparment of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
513
|
Ross S, D'Mello M, Anand SS, Eikelboom J, Stewart AFR, Samani NJ, Roberts R, Paré G. Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events: A Mendelian Randomization Analysis. ACTA ACUST UNITED AC 2015; 8:618-27. [PMID: 26043746 DOI: 10.1161/circgenetics.114.000952] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Statins lower low-density lipoprotein cholesterol (LDL-C) and risk of coronary artery disease (CAD), but they may be ineffective or not tolerated. Bile acid sequestrants (BAS) reduce LDL-C, yet their clinical efficacy on CAD remains controversial. METHODS AND RESULTS We conducted a systematic review and meta-analysis of randomized controlled trials to assess the effect of cholestyramine and colesevelam. We then used Mendelian randomization to estimate the effect of BAS on reducing the risk of CAD. First, we quantified the effect of rs4299376 (ABCG5/ABCG8), which affects the intestinal cholesterol absorption pathway targeted by BAS and then we used these estimates to predict the effect of BAS on CAD. Nineteen randomized controlled trials with a total of 7021 study participants were included. Cholestyramine 24 g/d was associated with a reduction in LDL-C of 23.5 mg/dL (95% confidence interval [CI] -26.8,-20.2; N=3806) and a trend toward reduced risk of CAD (odds ratio 0.81, 95% CI 0.70-1.02; P=0.07; N=3806), whereas colesevelam 3.75 g/d was associated with a reduction in LDL-C of 22.7 mg/dL (95% CI -28.3, -17.2; N=759). Based on the findings that rs4299376 was associated with a 2.75 mg/dL decrease in LDL-C and a 5% decrease in risk of CAD outcomes, we estimated that cholestyramine was associated with an odds ratio for CAD of 0.63 (95% CI 0.52-0.77; P=6.3×10(-6)) and colesevelam with an odds ratio of 0.64 (95% CI 0.52-0.79, P=4.3×10(-5)), which were not statistically different from BAS clinical trials (P>0.05). CONCLUSIONS The cholesterol lowering effect of BAS may translate into a clinically relevant reduction in CAD.
Collapse
Affiliation(s)
- Stephanie Ross
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - Matthew D'Mello
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - Sonia S Anand
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - John Eikelboom
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | | | - Alexandre F R Stewart
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - Nilesh J Samani
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - Robert Roberts
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.)
| | - Guillaume Paré
- From the Population Health Research Institute, Hamilton Health Sciences (S.R., M.D'M., S.S.A., J.E., G.P.), Department of Clinical Epidemiology & Biostatistics, Population Genomics Program (S.R., M.D'M., S.S.A., G.P.), Population Genomics Program, Chanchlani Research Centre (S.R., M.D'M., S.S.A., G.P.), Department of Medicine (S.S.A., J.E.), Department of Pathology & Molecular Medicine (G.P.), Thrombosis & Atherosclerosis Research Institute (G.P.), Hamilton Health Sciences, McMaster University, Hamilton; John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada (A.F.R.S., R.R.); Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom (N.J.S.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom (N.J.S.); and Department of Medicine, University of Ottawa, Ottawa, ON, Canada (R.R.).
| |
Collapse
|
514
|
Østergaard SD, Mukherjee S, Sharp SJ, Proitsi P, Lotta LA, Day F, Perry JRB, Boehme KL, Walter S, Kauwe JS, Gibbons LE, Alzheimer’s Disease Genetics Consortium, The GERAD1 Consortium, EPIC-InterAct Consortium, Larson EB, Powell JF, Langenberg C, Crane PK, Wareham NJ, Scott RA. Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study. PLoS Med 2015; 12:e1001841; discussion e1001841. [PMID: 26079503 PMCID: PMC4469461 DOI: 10.1371/journal.pmed.1001841] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR). METHODS AND FINDINGS We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, NSNPs = 49), fasting glucose (NSNPs = 36), insulin resistance (NSNPs = 10), body mass index (BMI, NSNPs = 32), total cholesterol (NSNPs = 73), HDL-cholesterol (NSNPs = 71), LDL-cholesterol (NSNPs = 57), triglycerides (NSNPs = 39), systolic blood pressure (SBP, NSNPs = 24), smoking initiation (NSNPs = 1), smoking quantity (NSNPs = 3), university completion (NSNPs = 2), and years of education (NSNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP-AD associations from the International Genomics of Alzheimer's Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62-0.91]; p = 3.4 × 10(-3)). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10(-8)). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51-0.89]; p = 6.5 × 10(-3)), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses. CONCLUSIONS Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure--or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications--may reduce AD risk.
Collapse
Affiliation(s)
- Søren D. Østergaard
- Research Department P, Aarhus University Hospital, Risskov, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Luca A. Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Felix Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - John R. B. Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Kevin L. Boehme
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Stefan Walter
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - John S. Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura E. Gibbons
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | | | | | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Seattle, Washington, United States of America
| | - John F. Powell
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
515
|
Triglyceride-Increasing Alleles Associated with Protection against Type-2 Diabetes. PLoS Genet 2015; 11:e1005204. [PMID: 26020539 PMCID: PMC4447354 DOI: 10.1371/journal.pgen.1005204] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
Elevated plasma triglyceride (TG) levels are an established risk factor for type-2 diabetes (T2D). However, recent studies have hinted at the possibility that genetic risk for TG may paradoxically protect against T2D. In this study, we examined the association of genetic risk for TG with incident T2D, and the interaction of baseline TG with TG genetic risk on incident T2D in 13,247 European-Americans (EA) and 3,238 African-Americans (AA) from three prospective cohort studies. A TG genetic risk score (GRS) was calculated based on 31 validated single nucleotide polymorphisms (SNPs). We considered several baseline covariates, including body- mass index (BMI) and lipid traits. Among EA and AA, we find, as expected, that baseline levels of TG are strongly positively associated with incident T2D (p<2 x 10-(10)). However, the TG GRS is negatively associated with T2D (p=0.013), upon adjusting for only race, in the full dataset. Upon additionally adjusting for age, sex, BMI, high-density lipoprotein cholesterol and TG, the TG GRS is significantly and negatively associated with T2D incidence (p=7.0 x 10(-8)), with similar trends among both EA and AA. No single SNP appears to be driving this association. We also find a significant statistical interaction of the TG GRS with TG (pi(nteraction) = 3.3 x 10-(4)), whereby the association of TG with incident T2D is strongest among those with low genetic risk for TG. Further research is needed to understand the likely pleiotropic mechanisms underlying these findings, and to clarify the causal relationship between T2D and TG.
Collapse
|
516
|
Ahmad OS, Morris JA, Mujammami M, Forgetta V, Leong A, Li R, Turgeon M, Greenwood CMT, Thanassoulis G, Meigs JB, Sladek R, Richards JB. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat Commun 2015; 6:7060. [PMID: 26017687 PMCID: PMC4458864 DOI: 10.1038/ncomms8060] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/27/2015] [Indexed: 12/25/2022] Open
Abstract
In observational studies, type-2 diabetes (T2D) is associated with an increased risk of coronary heart disease (CHD), yet interventional trials have shown no clear effect of glucose-lowering on CHD. Confounding may have therefore influenced these observational estimates. Here we use Mendelian randomization to obtain unconfounded estimates of the influence of T2D and fasting glucose (FG) on CHD risk. Using multiple genetic variants associated with T2D and FG, we find that risk of T2D increases CHD risk (odds ratio (OR)=1.11 (1.05–1.17), per unit increase in odds of T2D, P=8.8 × 10−5; using data from 34,840/114,981 T2D cases/controls and 63,746/130,681 CHD cases/controls). FG in non-diabetic individuals tends to increase CHD risk (OR=1.15 (1.00–1.32), per mmol·per l, P=0.05; 133,010 non-diabetic individuals and 63,746/130,681 CHD cases/controls). These findings provide evidence supporting a causal relationship between T2D and CHD and suggest that long-term trials may be required to discern the effects of T2D therapies on CHD risk. In order to effectively design interventions, it is useful to understand the complex interplay between multiple syndromes. Here, Ahmad et al. use genome-wide association study data and Mendelian randomisation to examine the influence of Type 2 diabetes and fasting glucose levels on coronary heart disease.
Collapse
Affiliation(s)
- Omar S Ahmad
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John A Morris
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Muhammad Mujammami
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Vincenzo Forgetta
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Aaron Leong
- Division of General Internal Medicine, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Li
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada [3] Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Maxime Turgeon
- Department of Oncology, Epidemiology, Biostatistics and Occupational Health, and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Celia M T Greenwood
- Department of Oncology, Epidemiology, Biostatistics and Occupational Health, and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - George Thanassoulis
- 1] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert Sladek
- 1] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - J Brent Richards
- 1] Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3A 0G4, Canada [2] Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada [3] Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada [4] Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| |
Collapse
|
517
|
Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BGA, Brown SJ, Feenstra B, Joseph J, Surdulescu GL, Zheng HF, Richards JB, Murray A, Spector TD, Wilson SG, Perry JRB. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. Eur J Hum Genet 2015; 24:284-90. [PMID: 26014426 PMCID: PMC4564946 DOI: 10.1038/ejhg.2015.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7 879 351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10−8), with minor allele frequencies of 1.3–23.9%. Novel signals included variants for progesterone (P=7.68 × 10−12), oestradiol (P=1.63 × 10−8) and FAI (P=1.50 × 10−8). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10−8) and LH (P=3.94 × 10−9) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10−14) and progesterone (P=6.09 × 10−14). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Purdey J Campbell
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Shelby Chew
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Ee Mun Lim
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Narelle Hadlow
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Bronwyn G A Stuckey
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Suzanne J Brown
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - John Joseph
- Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Gabriela L Surdulescu
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Hou Feng Zheng
- Department of Medicine, Human Genetics, McGill University, Montreal, Canada
| | - J Brent Richards
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Department of Medicine, Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute, McGill University, Montreal, Canada
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scott G Wilson
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John R B Perry
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, UK
| |
Collapse
|
518
|
Matsuba R, Sakai K, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K, Maegawa H, Watada H, Tobe K, Kashiwagi A, Kawamori R, Maeda S. Replication Study in a Japanese Population to Evaluate the Association between 10 SNP Loci, Identified in European Genome-Wide Association Studies, and Type 2 Diabetes. PLoS One 2015; 10:e0126363. [PMID: 25951451 PMCID: PMC4423838 DOI: 10.1371/journal.pone.0126363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Aim We performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and 7 susceptibility loci originally identified by European genome-wide association study (GWAS) in 2012: ZMIZ1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, and BCAR1. We also examined the association of 3 additional loci: CCND2 and GIPR, identified in sex-differentiated analyses, and LAMA1, which was shown to be associated with non-obese European type 2 diabetes. Methods We genotyped 6,972 Japanese participants (4,280 type 2 diabetes patients and 2,692 controls) for each of the 10 single nucleotide polymorphisms (SNPs): rs12571751 in ZMIZ1, rs10842994 near KLHDC5, rs2796441 near TLE1, rs459193 near ANKRD55, rs10401969 in CILP2, rs12970134 near MC4R, rs7202877 near BCAR1, rs11063069 near CCND2, rs8108269 near GIPR, and rs8090011 in LAMA1 using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using a logistic regression analysis. Results All SNPs examined in this study had the same direction of effect (odds ratio > 1.0, p = 9.77 × 10-4, binomial test), as in the original reports. Among them, rs12571751 in ZMIZ1 was significantly associated with type 2 diabetes [p = 0.0041, odds ratio = 1.123, 95% confidence interval 1.037–1.215, adjusted for sex, age and body mass index (BMI)], but we did not observe significant association of the remaining 9 SNP loci with type 2 diabetes in the present Japanese population (p ≥ 0.005). A genetic risk score, constructed from the sum of risk alleles for the 7 SNP loci identified by un-stratified analyses in the European GWAS meta-analysis were associated with type 2 diabetes in the present Japanese population (p = 2.3 × 10-4, adjusted for sex, age and BMI). Conclusions ZMIZ1 locus has a significant effect on conferring susceptibility to type 2 diabetes also in the Japanese population.
Collapse
Affiliation(s)
- Ren Matsuba
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kensuke Sakai
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Minako Imamura
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- * E-mail:
| | - Yasushi Tanaka
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Minoru Iwata
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
- Community Medical Support Unit, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroshi Hirose
- Health Center, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Kaku
- Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
519
|
Renström F, Koivula RW, Varga TV, Hallmans G, Mulder H, Florez JC, Hu FB, Franks PW. Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis: the GLACIER Study. Diabetologia 2015; 58:997-1005. [PMID: 25707907 DOI: 10.1007/s00125-015-3533-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS The association of single nucleotide polymorphisms (SNPs) proximal to CRY2 and MTNR1B with fasting glucose is well established. CRY1/2 and MTNR1B encode proteins that regulate circadian rhythmicity and influence energy metabolism. Here we tested whether season modified the relationship of these loci with blood glucose concentration. METHODS SNPs rs8192440 (CRY1), rs11605924 (CRY2) and rs10830963 (MTNR1B) were genotyped in a prospective cohort study from northern Sweden (n = 16,499). The number of hours of daylight exposure during the year ranged from 4.5 to 22 h daily. Owing to the non-linear distribution of daylight throughout the year, season was dichotomised based on the vernal and autumnal equinoxes. Effect modification was assessed using linear regression models fitted with a SNP × season interaction term, marginal effect terms and putative confounding variables, with fasting or 2 h glucose concentrations as outcomes. RESULTS The rs8192440 (CRY1) variant was only associated with fasting glucose among participants (n = 2,318) examined during the light season (β = -0.04 mmol/l per A allele, 95% CI -0.08, -0.01, p = 0.02, p interaction = 0.01). In addition to the established association with fasting glucose, the rs11605924 (CRY2) and rs10830963 (MTNR1B) loci were associated with 2 h glucose concentrations (β = 0.07 mmol/l per A allele, 95% CI 0.03, 0.12, p = 0.0008, n = 9,605, and β = -0.11 mmol/l per G allele, 95% CI -0.15, -0.06, p < 0.0001, n = 9,517, respectively), but only in participants examined during the dark season (p interaction = 0.006 and 0.04, respectively). Repeated measures analyses including data collected 10 years after baseline (n = 3,500) confirmed the results for the CRY1 locus (p interaction = 0.01). CONCLUSIONS/INTERPRETATION In summary, these observations suggest a biologically plausible season-dependent association between SNPs at CRY1, CRY2 and MTNR1B and glucose homeostasis.
Collapse
Affiliation(s)
- Frida Renström
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Clinical Research Center Building 91, Level 10, Jan Waldenströms gata 35, SE-205 02, Malmö, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
520
|
Wang Y, Liu A, Mills JL, Boehnke M, Wilson AF, Bailey-Wilson JE, Xiong M, Wu CO, Fan R. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genet Epidemiol 2015; 39:259-75. [PMID: 25809955 PMCID: PMC4443751 DOI: 10.1002/gepi.21895] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case.
Collapse
Affiliation(s)
- Yifan Wang
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James L. Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander F. Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Momiao Xiong
- Human Genetics Center, University of Texas - Houston, Houston, Texas, United States of America
| | - Colin O. Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruzong Fan
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
521
|
Raghavan S, Porneala B, McKeown N, Fox CS, Dupuis J, Meigs JB. Metabolic factors and genetic risk mediate familial type 2 diabetes risk in the Framingham Heart Study. Diabetologia 2015; 58:988-96. [PMID: 25619168 PMCID: PMC4393775 DOI: 10.1007/s00125-015-3498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/01/2015] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus in parents is a strong determinant of diabetes risk in their offspring. We hypothesise that offspring diabetes risk associated with parental diabetes is mediated by metabolic risk factors. METHODS We studied initially non-diabetic participants of the Framingham Offspring Study. Metabolic risk was estimated using beta cell corrected insulin response (CIR), HOMA-IR or a count of metabolic syndrome components (metabolic syndrome score [MSS]). Dietary risk and physical activity were estimated using questionnaire responses. Genetic risk score (GRS) was estimated as the count of 62 type 2 diabetes risk alleles. The outcome of incident diabetes in offspring was examined across levels of parental diabetes exposure, accounting for sibling correlation and adjusting for age, sex and putative mediators. The proportion mediated was estimated by comparing regression coefficients for parental diabetes with (β adj) and without (β unadj) adjustments for CIR, HOMA-IR, MSS and GRS (percentage mediated = 1 - β adj / β unadj). RESULTS Metabolic factors mediated 11% of offspring diabetes risk associated with parental diabetes, corresponding to a reduction in OR per diabetic parent from 2.13 to 1.96. GRS mediated 9% of risk, corresponding to a reduction in OR per diabetic parent from 2.13 to 1.99. CONCLUSIONS/INTERPRETATION Metabolic risk factors partially mediated offspring type 2 diabetes risk conferred by parental diabetes to a similar magnitude as genetic risk. However, a substantial proportion of offspring diabetes risk associated with parental diabetes remains unexplained by metabolic factors, genetic risk, diet and physical activity, suggesting that important familial influences on diabetes risk remain undiscovered.
Collapse
Affiliation(s)
- Sridharan Raghavan
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| | - Nicola McKeown
- Nutritional Epidemiology Program, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Caroline S. Fox
- Laboratory for Metabolic and Population Health, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James B. Meigs
- Division of General Internal Medicine, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, 50 Staniford Street, 9th Floor, Boston, MA 02114, USA
| |
Collapse
|
522
|
Meroufel DN, Ouhaïbi-Djellouli H, Mediene-Benchekor S, Hermant X, Grenier-Boley B, Lardjam-Hetraf SA, Boulenouar H, Hamani-Medjaoui I, Saïdi-Mehtar N, Amouyel P, Houti L, Goumidi L, Meirhaeghe A. Examination of the brain natriuretic peptide rs198389 single-nucleotide polymorphism on type 2 diabetes mellitus and related phenotypes in an Algerian population. Gene 2015; 567:159-63. [PMID: 25934190 DOI: 10.1016/j.gene.2015.04.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND In European populations, the NPPB rs198389 single nucleotide polymorphism (SNP) is associated with a reduced risk of type 2 diabetes mellitus (T2DM). We investigated the putative associations between NPPB rs198389, the T2DM risk and quantitative metabolic traits in an Algerian population. METHODS The association analysis was performed as a T2DM case-control study (with 78 cases and 645 controls) nested into the ISOR population-based study. RESULTS The NPPB rs198389 SNP was not associated with T2DM (odds ratio (OR) [95% confidence interval (CI)]=0.73 [0.51-1.04], p=0.08). However, the C allele was associated with lower fasting plasma insulin levels (p=0.05) and a lower homeostatic model assessment insulin resistance index (p=0.05) in non-diabetic individuals. CONCLUSION The NPPB rs198389 SNP might modulate fasting insulin levels in an Algerian population.
Collapse
Affiliation(s)
- Djabaria Naïma Meroufel
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria.
| | - Hadjira Ouhaïbi-Djellouli
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria; Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université d'Oran, BP 1524, El M'Naouer, 31000 Oran, Algeria.
| | - Sounnia Mediene-Benchekor
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria; Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université d'Oran, BP 1524, El M'Naouer, 31000 Oran, Algeria.
| | - Xavier Hermant
- INSERM, U1167, Institut Pasteur de Lille, Université de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Lille cedex, France.
| | - Benjamin Grenier-Boley
- INSERM, U1167, Institut Pasteur de Lille, Université de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Lille cedex, France.
| | - Sarah Aïcha Lardjam-Hetraf
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria.
| | - Houssam Boulenouar
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria.
| | - Imane Hamani-Medjaoui
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria; Caisse Nationale des Assurances Sociales des travailleurs salariés, Clinique Spécialisée en Orthopédie et Rééducation des Victimes des Accidents de Travail, Hai Bouamama (El Hassi) Oran, Algeria.
| | - Nadhira Saïdi-Mehtar
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria.
| | - Philippe Amouyel
- INSERM, U1167, Institut Pasteur de Lille, Université de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Lille cedex, France.
| | - Leïla Houti
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de Technologie d'Oran Mohamed Boudiaf, BP 1505, El M'Naouer, 31000 Oran, Algeria; Faculté de Médecine, Université Djillali Liabes de Sidi Bel Abbes, BP 89, 22000 Sidi-Bel-Abbès, Algeria; Laboratoire des Systèmes d'Information en Santé, Université d'Oran, BP 1524, El M'Naouer, 31000 Oran, Algeria.
| | - Louisa Goumidi
- INSERM, U1167, Institut Pasteur de Lille, Université de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Lille cedex, France.
| | - Aline Meirhaeghe
- INSERM, U1167, Institut Pasteur de Lille, Université de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Lille cedex, France.
| |
Collapse
|
523
|
Fox CS, Hall JL, Arnett DK, Ashley EA, Delles C, Engler MB, Freeman MW, Johnson JA, Lanfear DE, Liggett SB, Lusis AJ, Loscalzo J, MacRae CA, Musunuru K, Newby LK, O'Donnell CJ, Rich SS, Terzic A. Future translational applications from the contemporary genomics era: a scientific statement from the American Heart Association. Circulation 2015; 131:1715-36. [PMID: 25882488 DOI: 10.1161/cir.0000000000000211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care.
Collapse
|
524
|
Segrè AV, Wei N, Altshuler D, Florez JC. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk. Diabetes 2015; 64:1470-83. [PMID: 25368101 PMCID: PMC4375079 DOI: 10.2337/db14-0703] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies (GWAS) have uncovered >65 common variants associated with type 2 diabetes (T2D); however, their relevance for drug development is not yet clear. Of note, the first two T2D-associated loci (PPARG and KCNJ11/ABCC8) encode known targets of antidiabetes medications. We therefore tested whether other genes/pathways targeted by antidiabetes drugs are associated with T2D. We compiled a list of 102 genes in pathways targeted by marketed antidiabetic medications and applied Gene Set Enrichment Analysis (MAGENTA [Meta-Analysis Gene-set Enrichment of variaNT Associations]) to this gene set, using available GWAS meta-analyses for T2D and seven quantitative glycemic traits. We detected a strong enrichment of drug target genes associated with T2D (P = 2 × 10(-5); 14 potential new associations), primarily driven by insulin and thiazolidinedione (TZD) targets, which was replicated in an independent meta-analysis (Metabochip). The glycemic traits yielded no enrichment. The T2D enrichment signal was largely due to multiple genes of modest effects (P = 4 × 10(-4), after removing known loci), highlighting new associations for follow-up (ACSL1, NFKB1, SLC2A2, incretin targets). Furthermore, we found that TZD targets were enriched for LDL cholesterol associations, illustrating the utility of this approach in identifying potential side effects. These results highlight the potential biomedical relevance of genes revealed by GWAS and may provide new avenues for tailored therapy and T2D treatment design.
Collapse
Affiliation(s)
- Ayellet V Segrè
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Nancy Wei
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | | | | | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA Department of Molecular Biology, Massachusetts General Hospital, Boston, MA Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA Department of Genetics, Harvard Medical School, Boston, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
525
|
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol 2015; 26:88-95. [PMID: 25692341 PMCID: PMC4422901 DOI: 10.1097/mol.0000000000000155] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Glucokinase regulator (GCKR) encodes glucokinase regulatory protein (GKRP), a hepatocyte-specific inhibitor of the glucose-metabolizing enzyme glucokinase (GCK). Genome-wide association studies have identified a common coding variant within GCKR associated with multiple metabolic traits. This review focuses on recent insights into the critical role of GKRP in hepatic glucose metabolism that have stemmed from the study of human genetics. This knowledge has improved our understanding of glucose and lipid physiology and informed the development of targeted molecular therapeutics for diabetes. RECENT FINDINGS Rare GCKR variants have effects on GKRP expression, localization, and activity. These variants are collectively associated with hypertriglyceridaemia but are not causal. Crystal structures of GKRP and the GCK-GKRP complex have been solved, providing greater insight into the molecular interactions between these proteins. Finally, small molecules have been identified that directly bind GKRP and reduce blood glucose levels in rodent models of diabetes. SUMMARY GCKR variants across the allelic spectrum have effects on glucose and lipid homeostasis. Functional analysis has highlighted numerous molecular mechanisms for GKRP dysfunction. Hepatocyte-specific GCK activation via small molecule GKRP inhibition may be a new avenue for type 2 diabetes treatment, particularly considering evidence indicating GKRP loss-of-function alone does not cause hypertriglyceridaemia.
Collapse
Affiliation(s)
- Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthew G. Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Broad Institute, Cambridge, Massachusetts, USA
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, Oxford, UK
| |
Collapse
|
526
|
Abstract
The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.
Collapse
|
527
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
528
|
Ross S, Gerstein HC, Eikelboom J, Anand SS, Yusuf S, Paré G. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur Heart J 2015; 36:1454-62. [DOI: 10.1093/eurheartj/ehv083] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/03/2015] [Indexed: 11/12/2022] Open
|
529
|
Ghanbari M, Franco OH, de Looper HWJ, Hofman A, Erkeland SJ, Dehghan A. Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several Genes Associated With Cardio-metabolic Phenotypes. ACTA ACUST UNITED AC 2015; 8:473-86. [PMID: 25814643 DOI: 10.1161/circgenetics.114.000968] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Genome-wide association studies enabled us to discover a large number of variants and genomic loci contributing to cardiovascular and metabolic disorders. However, because the vast majority of the identified variants are thought to merely be proxies for other functional variants, the causal mechanisms remain to be elucidated. We hypothesized that the part of the functional variants involved in deregulating cardiometabolic genes is located in microRNA (miRNA)-binding sites. METHODS AND RESULTS Using the largest genome-wide association studies available on glycemic indices, lipid traits, anthropometric measures, blood pressure, coronary artery diseases, and type 2 diabetes mellitus, we identified 11,067 variants that are associated with cardiometabolic phenotypes. Of these, 230 variants are located within miRNA-binding sites in the 3'-untranslated region of 155 cardiometabolic genes. Thirty-seven of 230 variants were found to fulfill our predefined criteria for being functional in their genomic loci. Ten variants were subsequently selected for experimental validation based on genome-wide association studies results, expression quantitative trait loci (eQTL) analyses, and coexpression of their host genes and regulatory miRNAs in relevant tissues. Luciferase reporter assays revealed an allele-specific regulation of genes hosting the variants by miRNAs. These cotransfection experiments showed that rs174545 (FADS1:miR-181a-2), rs1059611 (LPL:miR-136), rs13702 (LPL:miR-410), rs1046875 (FN3KRP:miR-34a), rs7956 (MKRN2:miR-154), rs3217992 (CDKN2B:miR-138-2-3p), and rs11735092 (HSD17B13:miR-375) decrease or abrogate miRNA-dependent regulation of the genes. Conversely, 2 variants, rs6857 (PVRL2:miR-320e) and rs907091 (IKZF3:miR-326), were shown to enhance the activity of miRNAs on their host genes. CONCLUSIONS We provide evidence for a model in which polymorphisms in miRNA-binding sites can both positively and negatively affect miRNA-mediated regulation of cardiometabolic genes.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.)
| | - Oscar H Franco
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.)
| | - Hans W J de Looper
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.)
| | - Albert Hofman
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.)
| | - Stefan J Erkeland
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.)
| | - Abbas Dehghan
- From the Department of Epidemiology (M.G., O.H.F., A.H., A.D.) and Department of Hematology, Cancer Institute (H.d.L., S.E.), Erasmus University Medical Center, Rotterdam, The Netherlands; and Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (M.G.).
| |
Collapse
|
530
|
The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS One 2015; 10:e0121553. [PMID: 25812009 PMCID: PMC4374872 DOI: 10.1371/journal.pone.0121553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Objective Genome-wide association studies have uncovered a large number of genetic variants associated with type 2 diabetes or related phenotypes. In many cases the causal gene or polymorphism has not been identified, and its impact on response to anti-hyperglycemic medications is unknown. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH, NCT01762046) is a novel resource of genetic and biochemical data following glipizide and metformin administration. We describe recruitment, enrollment, and phenotyping procedures and preliminary results for the first 668 of our planned 1,000 participants enriched for individuals at risk of requiring anti-diabetic therapy in the future. Methods All individuals are challenged with 5 mg glipizide × 1; twice daily 500 mg metformin × 2 days; and 75-g oral glucose tolerance test following metformin. Genetic variants associated with glycemic traits and blood glucose, insulin, and other hormones at baseline and following each intervention are measured. Results Approximately 50% of the cohort is female and 30% belong to an ethnic minority group. Following glipizide administration, peak insulin occurred at 60 minutes and trough glucose at 120 minutes. Thirty percent of participants experienced non-severe symptomatic hypoglycemia and required rescue with oral glucose. Following metformin administration, fasting glucose and insulin were reduced. Common genetic variants were associated with fasting glucose levels. Conclusions SUGAR-MGH represents a viable pharmacogenetic resource which, when completed, will serve to characterize genetic influences on pharmacological perturbations, and help establish the functional relevance of newly discovered genetic loci to therapy of type 2 diabetes. Trial Registration ClinicalTrials.gov NCT01762046
Collapse
|
531
|
Rando OJ, Simmons RA. I'm eating for two: parental dietary effects on offspring metabolism. Cell 2015; 161:93-105. [PMID: 25815988 PMCID: PMC4465102 DOI: 10.1016/j.cell.2015.02.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
It has long been understood that the pathogenesis of complex diseases such as diabetes includes both genetic and environmental components. More recently, it has become clear that not only does an individual's environment influence their own metabolism, but in some cases, the environment experienced by their parents may also contribute to their risk of metabolic disease. Here, we review the evidence that parental diet influences metabolic phenotype in offspring in mammals and provide a current survey of our mechanistic understanding of these effects.
Collapse
Affiliation(s)
- Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
532
|
Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 2015; 31:290-9. [PMID: 25812926 DOI: 10.1016/j.tig.2015.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/29/2023]
Abstract
Insulin-producing β cells within the pancreatic islet of Langerhans are responsible for maintaining glucose homeostasis; the loss or malfunction of β cells results in diabetes mellitus. Recent advances in cell purification strategies and sequencing technologies as well as novel molecular tools have revealed that epigenetic modifications and long noncoding RNAs (lncRNAs) represent an integral part of the transcriptional mechanisms regulating pancreas development and β cell function. Importantly, these findings have uncovered a new layer of gene regulation in the pancreas that can be exploited to enhance the restoration and/or repair of β cells to treat diabetes.
Collapse
|
533
|
Knowles JW, Xie W, Zhang Z, Chennamsetty I, Assimes TL, Paananen J, Hansson O, Pankow J, Goodarzi MO, Carcamo-Orive I, Morris AP, Chen YDI, Mäkinen VP, Ganna A, Mahajan A, Guo X, Abbasi F, Greenawalt DM, Lum P, Molony C, Lind L, Lindgren C, Raffel LJ, Tsao PS, Schadt EE, Rotter JI, Sinaiko A, Reaven G, Yang X, Hsiung CA, Groop L, Cordell HJ, Laakso M, Hao K, Ingelsson E, Frayling TM, Weedon MN, Walker M, Quertermous T. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. J Clin Invest 2015; 125:1739-51. [PMID: 25798622 DOI: 10.1172/jci74692] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/05/2015] [Indexed: 11/17/2022] Open
Abstract
Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.
Collapse
|
534
|
Hansen TH, Vestergaard H, Jørgensen T, Jørgensen ME, Lauritzen T, Brandslund I, Christensen C, Pedersen O, Hansen T, Gjesing AP. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC MEDICAL GENETICS 2015; 16:17. [PMID: 25927630 PMCID: PMC4422140 DOI: 10.1186/s12881-015-0160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present study was to validate the association of the rs11085226 G-allele of PTBP1 with previously investigated OGTT- and IVGTT-derived diabetes-related metabolic quantitative phenotypes, to conduct exploratory analyses of additional measures of beta-cell function, and to further investigate a potential association with type 2 diabetes. METHODS PTBP1 rs11085226 was genotyped in 20,911 individuals of Danish Caucasian ethnicity ascertained from 9 study samples. Case control analysis was performed on 5,634 type 2 diabetic patients and 11,319 individuals having a normal fasting glucose level as well as 4,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. RESULTS Analyses of fasting and OGTT-derived quantitative traits did not show any significant associations with the PTBP1 rs11085226 variant. Meta-analysis of IVGTT-derived quantitative traits showed a nominally significant association between the variant and reduced beta-cell responsiveness to glucose (β = -0.1 mmol · kg(-1) · min(-1); 95% CI: -0.200.20 - -0.024; P = 0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. CONCLUSIONS Despite failure to replicate the previously reported associations of PTBP1 rs11085226 with OGTT- and IVGTT-derived measures of beta-cell function, we did find a nominally significant association with reduced beta-cell responsiveness to glucose during an IVGTT, a trait not previously investigated, leaving the potential influence of this variant in PTBP1 on glucose stimulated insulin release open for further investigation. However, the present study does not support the hypothesis that the variant confers risk of type 2 diabetes.
Collapse
Affiliation(s)
- Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup University Hospital, Nordre Ringvej 57, Building 84-85, DK-2600, Glostrup, Denmark. .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, Aarhus University, Bartholins Allé 2, DK-8000, Aarhus, Denmark.
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, Kabbeltoft 25, DK-7100, Vejle, Denmark. .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Cramer Christensen
- Department of Internal Medicine and Endocrinology, SLB, Vejle Hospital, Kabbeltoft 25, DK-7100, Vejle, Denmark.
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark. .,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
535
|
Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 2015; 30:543-52. [PMID: 25773750 PMCID: PMC4516908 DOI: 10.1007/s10654-015-0011-z] [Citation(s) in RCA: 1108] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/03/2015] [Indexed: 10/25/2022]
Abstract
Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.
Collapse
|
536
|
Ligthart S, de Vries PS, Uitterlinden AG, Hofman A, CHARGE Inflammation working group, Franco OH, Chasman DI, Dehghan A. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein. PLoS One 2015; 10:e0118859. [PMID: 25768928 PMCID: PMC4358943 DOI: 10.1371/journal.pone.0118859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes.
Collapse
Affiliation(s)
- Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Paul S. de Vries
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
537
|
Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 2015; 6:87-123. [PMID: 25774817 PMCID: PMC4377835 DOI: 10.3390/genes6010087] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex disease that is caused by a complex interplay between genetic, epigenetic and environmental factors. While the major environmental factors, diet and activity level, are well known, identification of the genetic factors has been a challenge. However, recent years have seen an explosion of genetic variants in risk and protection of T2D due to the technical development that has allowed genome-wide association studies and next-generation sequencing. Today, more than 120 variants have been convincingly replicated for association with T2D and many more with diabetes-related traits. Still, these variants only explain a small proportion of the total heritability of T2D. In this review, we address the possibilities to elucidate the genetic landscape of T2D as well as discuss pitfalls with current strategies to identify the elusive unknown heritability including the possibility that our definition of diabetes and its subgroups is imprecise and thereby makes the identification of genetic causes difficult.
Collapse
Affiliation(s)
- Rashmi B Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, CRC, Skåne University Hospital SUS, SE-205 02 Malmö, Sweden.
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, CRC, Skåne University Hospital SUS, SE-205 02 Malmö, Sweden.
- Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki 00014, Finland.
| |
Collapse
|
538
|
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Blackwell JM. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS One 2015; 10:e0119333. [PMID: 25760438 PMCID: PMC4356593 DOI: 10.1371/journal.pone.0119333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
A body mass index (BMI) >22kg/m2 is a risk factor for type 2 diabetes (T2D) in Aboriginal Australians. To identify loci associated with BMI and T2D we undertook a genome-wide association study using 1,075,436 quality-controlled single nucleotide polymorphisms (SNPs) genotyped (Illumina 2.5M Duo Beadchip) in 402 individuals in extended pedigrees from a Western Australian Aboriginal community. Imputation using the thousand genomes (1000G) reference panel extended the analysis to 6,724,284 post quality-control autosomal SNPs. No associations achieved genome-wide significance, commonly accepted as P<5x10-8. Nevertheless, genes/pathways in common with other ethnicities were identified despite the arrival of Aboriginal people in Australia >45,000 years ago. The top hit (rs10868204 Pgenotyped = 1.50x10-6; rs11140653 Pimputed_1000G = 2.90x10-7) for BMI lies 5' of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped = 8.06x10-6; rs10841048 Pimputed_1000G = 6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped = 4.65x10-5; rs13225016 Pimputed_1000G = 6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped = 5.59x10-6, Pimputed_1000G = 5.73x10-6) for T2D lies 5' of BCL9 that, along with TCF7L2, promotes beta-catenin's transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other populations included MC4R (Pgenotyped = 4.49x10-4) for BMI and IGF2BP2 Pimputed_1000G = 2.55x10-6) for T2D. Our results may provide novel functional leads in understanding disease pathogenesis in this Australian Aboriginal population.
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard W. Francis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth S. H. Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J. Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E. Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
539
|
Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518:197-206. [PMID: 25673413 DOI: 10.1038/nature14177] [Citation(s) in RCA: 3209] [Impact Index Per Article: 320.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Collapse
|
540
|
Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Leach IM, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Sung YJ, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Daw EW, Deelen J, Deelman E, Delgado G, Doney AS, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, et alShungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Leach IM, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Sung YJ, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Daw EW, Deelen J, Deelman E, Delgado G, Doney AS, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkilä K, Herzig KH, Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I, Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Mach F, Magnusson PK, Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda KL, Mooijaart SP, Mühleisen TW, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nalls MA, Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Smith AV, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tayo BO, Thorand B, Thorleifsson G, Tomaschitz A, Troffa C, van Oort FV, Verweij N, Vonk JM, Waite LL, Wennauer R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Zhao JH, Brennan EP, Choi M, Eriksson P, Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman ÅK, Hivert MF, Huang J, Kanoni S, Karpe F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JR, Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ, Zondervan KT, Amouyel P, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Blangero J, Brown MJ, Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC, Danesh J, de Faire U, de Geus EJ, Dörr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA, Harris TB, Hattersley AT, Heliövaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A, Homuth G, Humphries SE, Hyppönen E, Illig T, Jarvelin MR, Johansen B, Jousilahti P, Jula AM, Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW, Möhlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW, Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PE, Shuldiner AR, Staessen JA, Steinthorsdottir V, Stolk RP, Strauch K, Tönjes A, Tremblay A, Tremoli E, Vohl MC, Völker U, Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L, Froguel P, Grabe HJ, Hamsten A, Hui J, Hveem K, Jöckel KH, Kivimaki M, Kuh D, Laakso M, Liu Y, März W, Munroe PB, Njølstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo J, Slagboom PE, Snieder H, Spector TD, Stefansson K, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann HE, Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM, Groop LC, Hunter DJ, Kaplan RC, O'Connell JR, Qi L, Schlessinger D, Strachan DP, Thorsteinsdottir U, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Zillikens MC, McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos RJ, Cupples LA, Morris AP, Lindgren CM, Mohlke KL. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015; 518:187-196. [PMID: 25673412 PMCID: PMC4338562 DOI: 10.1038/nature14132] [Show More Authors] [Citation(s) in RCA: 1168] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Abstract
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Dmitry Shungin
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå 901 87, Sweden
- Department of Clinical Sciences, Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hosptial, Malmö 205 02, Sweden
- Department of Odontology, Umeå University, Umeå 901 85, Sweden
| | - Thomas W Winkler
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Damien C Croteau-Chonka
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adam E Locke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reedik Mägi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tune H Pers
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Joseph M W Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Martin L Buchkovich
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L Heard-Costa
- National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexander W Drong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Ci Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Stefan Gustafsson
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tove Fall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1010, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Joshua C Randall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - André Scherag
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Sailaja Vedantam
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Jin Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rudolf Fehrmann
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Bratati Kahali
- Department of Internal Medicine, Division of Gastroenterology, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Ellen M Schmidt
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Denise Anderson
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia 6008, Australia
| | - Marian Beekman
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jennifer L Bragg-Gresham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Kidney Epidemiology and Cost Center, University of Michigan, Ann Arbor, MI 48109
| | - Steven Buyske
- Department of Statistics & Biostatistics, Rutgers University, Piscataway, NJ USA
- Department of Genetics, Rutgers University, Piscataway, NJ USA
| | - Ayse Demirkan
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva 1211, Switzerland
| | - Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Division of Cardiovacular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Anne U Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Toby Johnson
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland
- University Institute for Social and Preventative Medecine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne 1005, Switzerland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Germany
- Department of Internal Medicine II, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Kati Kristiansson
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Irene Mateo Leach
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | - Carolina Medina-Gomez
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Cameron D Palmer
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Marjolein J Peters
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21225, USA
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Jana V Van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Loïc Yengo
- CNRS UMR 8199, F-59019 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- Université de Lille 2, F-59000 Lille, France
| | - Weihua Zhang
- Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Johan Ärnlöv
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Gillian M Arscott
- PathWest Laboratory Medicine of Western Australia, NEDLANDS, Western Australia 6009, Australia
| | | | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | - Claire Bellis
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | - Christian Berne
- Department of Medical Sciences, Endocrinology, Diabetes and Metabolism, Uppsala University, Uppsala 75185, Sweden
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany
- Department of Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Stefan Böhringer
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Fabrice Bonnet
- Inserm UMR991, Department of Endocrinology, University of Rennes, F-35000 Rennes, France
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany
| | - Marcel Bruinenberg
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Delia B Carba
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City 6000, Philippines
| | - Ida H Caspersen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - E Warwick Daw
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joris Deelen
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Ewa Deelman
- Information Sciences Institute, University of Southern California, Marina del Rey, California, USA
| | - Graciela Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Germany
| | - Alex Sf Doney
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Niina Eklund
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael R Erdos
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Karol Estrada
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elodie Eury
- CNRS UMR 8199, F-59019 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- Université de Lille 2, F-59000 Lille, France
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala 75185, Sweden
| | - Bruna Gigante
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm 17177, Sweden
| | - Alan S Go
- Kaiser Permanente, Division of Research, Oakland, CA 94612, USA
| | - Alain Golay
- Service of Therapeutic Education for Diabetes, Obesity and Chronic Diseases, Geneva University Hospital, Geneva CH-1211, Switzerland
| | - Harald Grallert
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tanja B Grammer
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Germany
| | - Jürgen Gräßler
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Jagvir Grewal
- Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Goran Hallmans
- Department of Public Health and Clinical Medicine, Unit of Nutritional Research, Umeå University, Umeå 90187, Sweden
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maija Hassinen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Kauko Heikkilä
- Hjelt Institute Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Quinta Helmer
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Faculty of Psychology and Education, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hans L Hillege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim 7489, Norway
| | - Steven C Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84108, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands
- Center for Medical Sytems Biology, Leiden, The Netherlands
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Nedlands, Western Australia 6009, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia
| | | | | | | | - Leena Kinnunen
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Wolfgang Koenig
- Department of Internal Medicine II, Ulm University Medical Centre, D-89081 Ulm, Germany
| | | | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Karin Leander
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm 17177, Sweden
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City 6000, Philippines
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Jaana Lindström
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Stéphane Lobbens
- CNRS UMR 8199, F-59019 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- Université de Lille 2, F-59000 Lille, France
| | - Mattias Lorentzon
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - François Mach
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva 1211, Switzerland
| | - Patrik Ke Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Sigrun Merger
- Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | | | - Alireza Moayyeri
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
- Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK
| | - Keri L Monda
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- The Center for Observational Research, Amgen, Inc., Thousand Oaks, CA 91320, USA
| | - Simon P Mooijaart
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Thomas W Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Sardinia 09042, Italy
| | - Gabriele Müller
- Center for Evidence-based Healthcare, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, D-81377 Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, D-81377 Munich, Germany
- Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, D-80636 Munich, Germany
| | - Ramaiah Nagaraja
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Nicola Glorioso
- Hypertension and Related Diseases Centre - AOU, University of Sassari Medical School, Sassari 07100, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Matthias Olden
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Nigel W Rayner
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | - Frida Renstrom
- Department of Clinical Sciences, Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hosptial, Malmö 205 02, Sweden
| | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, Cagliari, Sardinia 09042, Italy
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria
| | - Salome Scholtens
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur 201, Iceland
- University of Iceland, Reykjavik 101, Iceland
| | - Kathleen Stirrups
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ UK
| | - Heather M Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amy J Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ann-Christine Syvänen
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala 75144, Sweden
| | - Bamidele O Tayo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 61053, USA
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany
| | | | - Andreas Tomaschitz
- Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Chiara Troffa
- Hypertension and Related Diseases Centre - AOU, University of Sassari Medical School, Sassari 07100, Italy
| | - Floor Va van Oort
- Department of Child and Adolescent Psychiatry, Psychology, Erasmus MC University Medical Centre, 3000 CB Rotterdam, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Lindsay L Waite
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Roman Wennauer
- Department of Clinical Chemistry, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK
| | - Qunyuan Zhang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Per Eriksson
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Lasse Folkersen
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden
| | - Ali G Gharavi
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York NY, USA
| | - Åsa K Hedman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford OX3 7LE, UK
| | - Sarah Keildson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York NY, USA
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Harvard School of Public Health, Department of Biostatistics, Harvard University, Boston, MA 2115, USA
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, New Haven CT, USA
| | - Baoshan Ma
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Amy J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Co. Down BT9 7AB, UK
| | - Ruth McPherson
- University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Josine L Min
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Joanne M Murabito
- National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham MA 01702, USA
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - George Nicholson
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
- MRC Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Christian Olsson
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden
| | - John Rb Perry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Eva Reinmaa
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Rany M Salem
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Niina Sandholm
- Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, FI-00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290 Helsinki, Finland
| | - Eric E Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10580, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Lisette Stolk
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Edgar E Vallejo
- Computer Science Department, Tecnológico de Monterrey, Atizapán de Zaragoza, 52926, Mexico
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Krina T Zondervan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford OX3 7BN, UK
| | - Philippe Amouyel
- Institut Pasteur de Lille; INSERM, U744; Université de Lille 2; F-59000 Lille, France
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, EA3430, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Stephan Jl Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | - John Beilby
- PathWest Laboratory Medicine of Western Australia, NEDLANDS, Western Australia 6009, Australia
- Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, CA, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Morris J Brown
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Michel Burnier
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter S Chines
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Claudi-Boehm
- Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville TN 37203, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Stockholm 17177, Sweden
| | - Eco Jc de Geus
- Biological Psychology, VU University Amsterdam, 1081BT Amsterdam, The Netherlands
- Institute for Research in Extramural Medicine, Institute for Health and Care Research, VU University, 1081BT Amsterdam, The Netherlands
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, D-17475 Greifswald, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany
| | - Raimund Erbel
- Clinic of Cardiology, West-German Heart Centre, University Hospital Essen, Essen, Germany
| | - Johan G Eriksson
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, FI-00290 Helsinki, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Division of Cardiovacular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Ele Ferrannini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
- National Research Council Institute of Clinical Physiology, University of Pisa, Pisa, Italy
| | - Jean Ferrières
- Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Terrence Forrester
- UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Oscar H Franco
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur 201, Iceland
- University of Iceland, Reykjavik 101, Iceland
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter, Barrack Road, Exeter EX2 5DW, UK
| | - Markku Heliövaara
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano 39100, Italy - Affiliated Institute of the University of Lübeck, D-23562 Lübeck, Germany
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany
| | - Albert Hofman
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Sciences, University College London, London WC1E 6JJ, UK
| | - Elina Hyppönen
- Sansom Institute for Health Research, University of South Australia, Adelaide 5000, South Australia, Australia
- School of Population Health, University of South Australia, Adelaide 5000, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Population, Policy, and Practice, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, D-30625 Hannover, Germany
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
- Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
- National Institute for Health and Welfare, FI-90101 Oulu, Finland
- MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Unit of Primary Care, Oulu University Hospital, FI-90220 Oulu, Finland
- Institute of Health Sciences, FI-90014 University of Oulu, Finland
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pekka Jousilahti
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Antti M Jula
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Jaakko Kaprio
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland
- Hjelt Institute Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland
| | - Frank Kee
- UK Clinical Research Collaboration Centre of Excellence for Public Health (NI), Queens University of Belfast, Belfast, Northern Ireland
| | - Sirkka M Keinanen-Kiukaanniemi
- Institute of Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care/General Practice, Oulu University Hospital, Oulu, Finland
| | - Jaspal S Kooner
- Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Kovacs
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany
- Department of Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Aldi T Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meena Kumari
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
- Department of Biological and Social Epidemiology, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Johanna Kuusisto
- Department of Medicine, Kuopio University Hospital and University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, FI-33520 Tampere, Finland
| | - Valeriya Lyssenko
- Steno Diabetes Center A/S, Gentofte DK-2820, Denmark
- Lund University Diabetes Centre and Department of Clinical Science, Diabetes & Endocrinology Unit, Lund University, Malmö 221 00, Sweden
| | - Satu Männistö
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ USA
| | - Colin A McKenzie
- UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Arthur W Musk
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
| | - Stefan Möhlenkamp
- Clinic of Cardiology, West-German Heart Centre, University Hospital Essen, Essen, Germany
| | - Andrew D Morris
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Mari Nelis
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK
| | - Lyle J Palmer
- Epidemiology and Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Genetic Epidemiology & Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Brenda W Penninx
- Institute for Research in Extramural Medicine, Institute for Health and Care Research, VU University, 1081BT Amsterdam, The Netherlands
- Department of Psychiatry, Neuroscience Campus, VU University Amsterdam, Amsterdam, The Netherlands
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, D-80636 Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany
| | - Peter P Pramstaller
- Center for Biomedicine, European Academy Bozen, Bolzano (EURAC), Bolzano 39100, Italy - Affiliated Institute of the University of Lübeck, D-23562 Lübeck, Germany
- Department of Neurology, General Central Hospital, Bolzano 39100, Italy
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, FI-20521 Turku, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - D C Rao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Marylyn D Ritchie
- Center for Systems Genomics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Rudan
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville TN 37203, USA
- Croatian Centre for Global Health, Faculty of Medicine, University of Split, 21000 Split, Croatia
| | - Veikko Salomaa
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
- National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Jouko Saramies
- South Carelia Central Hospital, 53130 Lappeenranta, Finland
| | - Mark A Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Peter Eh Schwarz
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Geriatric Research and Education Clinical Center, Vetrans Administration Medical Center, Baltimore, MD 21201, USA
| | - Jan A Staessen
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, B-3000 Leuven, Belgium
| | | | - Ronald P Stolk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, D-81377 Munich, Germany
| | - Anke Tönjes
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany
- Department of Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada
| | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano & Centro Cardiologico Monzino, Instituto di Ricovero e Cura a Carattere Scientifico, Milan 20133, italy
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
- Department of Food Science and Nutrition, Laval University, Quebec, QC G1V 0A6, Canada
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislaufforschung - German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital (CHUV) and University of Lausanne, 1011, Switzerland
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK
| | - Jacqueline C Witteman
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Linda S Adair
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Murielle Bochud
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Imperial College London and Nanyang Technological University, Singapore, 637553 Singapore, Singapore
- Department of Internal Medicine I, Ulm University Medical Centre, D-89081 Ulm, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Stéphane Cauchi
- CNRS UMR 8199, F-59019 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- Université de Lille 2, F-59000 Lille, France
| | - Mark J Caulfield
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John C Chambers
- Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 61053, USA
| | - George Dedoussis
- Department of Dietetics-Nutrition, Harokopio University, Athens, Greece
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21225, USA
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- CNRS UMR 8199, F-59019 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- Université de Lille 2, F-59000 Lille, France
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS-Hospital Stralsund, D-17475 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Greifswald, D-17475 Greifswald, Germany
| | - Anders Hamsten
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, NEDLANDS, Western Australia 6009, Australia
- Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- School of Population Health, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Kristian Hveem
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim 7489, Norway
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at University College London, London WC1B 5JU, UK
| | - Markku Laakso
- Department of Medicine, Kuopio University Hospital and University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria
- Synlab Academy, Synlab Services GmbH, Mannheim, Germany
| | - Patricia B Munroe
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ben A Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands
- Center for Medical Sytems Biology, Leiden, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Colin Na Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chris Power
- Population, Policy, and Practice, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Thomas Quertermous
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Fernando Rivadeneira
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Timo E Saaristo
- Finnish Diabetes Association, Kirjoniementie 15, FI-33680 Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | - Danish Saleheen
- Biological Psychology, VU University Amsterdam, 1081BT Amsterdam, The Netherlands
- Center for Non-Communicable Diseases, Karatchi, Pakistan
- Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Juha Sinisalo
- Helsinki University Central Hospital Heart and Lung Center, Department of Medicine, Helsinki University Central Hospital, FI-00290 Helsinki, Finland
| | - P Eline Slagboom
- Netherlands Consortium for Healthy Aging (NCHA), Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen inc., Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Michael Stumvoll
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, D-04103 Leipzig, Germany
- Department of Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | - Jaakko Tuomilehto
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
- Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), Madrid, Spain
- Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria
| | - André G Uitterlinden
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Pim van der Harst
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
- Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute Netherlands-Netherlands Heart Institute, 3501 DG Utrecht, The Netherlands
| | - Giovanni Veronesi
- EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Division of Cardiovacular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, D-85764 Munich, Germany
- Klinikum Grosshadern, D-81377 Munich, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany, D-85764 Neuherberg, Germany
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ingrid B Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Leif C Groop
- Institute for Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland
- Lund University Diabetes Centre and Department of Clinical Science, Diabetes & Endocrinology Unit, Lund University, Malmö 221 00, Sweden
| | - David J Hunter
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Robert C Kaplan
- Albert Einstein College of Medicine. Department of Epidemiology and Population Health, Belfer 1306, NY 10461, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lu Qi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - David P Strachan
- Division of Population Health Sciences & Education, St George's, University of London, London SW17 0RE, UK
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen inc., Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC University Medical Center, 3015 GE Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
- Center for Medical Sytems Biology, Leiden, The Netherlands
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Visscher
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- The University of Queensland Diamantina Institute, The Translation Research Institute, Brisbane 4012, Australia
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- The University of Queensland Diamantina Institute, The Translation Research Institute, Brisbane 4012, Australia
| | - Joel N Hirschhorn
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - M Carola Zillikens
- Netherlands Consortium for Healthy Aging (NCHA), 3015GE Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, OX3 7LJ, UK
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham MA 01702, USA
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
- NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Paul W Franks
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå 901 87, Sweden
- Department of Clinical Sciences, Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hosptial, Malmö 205 02, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75185, Sweden
| | - Iris M Heid
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, D-93053 Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Ruth Jf Loos
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- National Heart, Lung, and Blood Institute, the Framingham Heart Study, Framingham MA 01702, USA
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Department of Biostatistics, University of Liverpool, Liverpool L69 3GA, UK
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge 02142, MA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
541
|
Aschard H, Vilhjálmsson B, Joshi A, Price A, Kraft P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am J Hum Genet 2015; 96:329-39. [PMID: 25640676 DOI: 10.1016/j.ajhg.2014.12.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
In recent years, a number of large-scale genome-wide association studies have been published for human traits adjusted for other correlated traits with a genetic basis. In most studies, the motivation for such an adjustment is to discover genetic variants associated with the primary outcome independently of the correlated trait. In this report, we contend that this objective is fulfilled when the tested variants have no effect on the covariate or when the correlation between the covariate and the outcome is fully explained by a direct effect of the covariate on the outcome. For all other scenarios, an unintended bias is introduced with respect to the primary outcome as a result of the adjustment, and this bias might lead to false positives. Here, we illustrate this point by providing examples from published genome-wide association studies, including large meta-analysis of waist-to-hip ratio and waist circumference adjusted for body mass index (BMI), where genetic effects might be biased as a result of adjustment for body mass index. Using both theory and simulations, we explore this phenomenon in detail and discuss the ramifications for future genome-wide association studies of correlated traits and diseases.
Collapse
|
542
|
Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, Brown CD, Newgard CB, Becker TC, Layden BT, Lowe WL, Reddy TE. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun 2015; 6:6069. [PMID: 25648650 PMCID: PMC4318120 DOI: 10.1038/ncomms7069] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Maternal glucose levels during pregnancy impact the developing fetus, affecting metabolic health early and later in life. Both genetic and environmental factors influence maternal metabolism, but little is known about the genetic mechanisms that alter glucose metabolism during pregnancy. Here we report that haplotypes previously associated with gestational hyperglycemia in the third trimester disrupt regulatory element activity and reduce expression of the nearby HKDC1 gene. We further find that experimentally reducing or increasing HKDC1 expression reduces or increases hexokinase activity, respectively, in multiple cellular models; and that purified HKDC1 protein has hexokinase activity in vitro. Together, these results suggest a novel mechanism of gestational glucose regulation in which the effects of genetic variants in multiple regulatory elements alter glucose homeostasis by coordinately reducing expression of the novel hexokinase HKDC1.
Collapse
Affiliation(s)
- Cong Guo
- 1] Duke University Program in Genetics &Genomics, Durham, North Carolina 27708, USA [2] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Anton E Ludvik
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Michelle E Arlotto
- Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Loren L Armstrong
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher B Newgard
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Department of Pharmacology &Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA [3] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Thomas C Becker
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Brian T Layden
- 1] Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Timothy E Reddy
- 1] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA [2] Department of Biostatistics &Bioinformatics, Duke University Medical School, Durham, North Carolina 27710, USA
| |
Collapse
|
543
|
Genetic architecture of insulin resistance in the mouse. Cell Metab 2015; 21:334-347. [PMID: 25651185 PMCID: PMC4349439 DOI: 10.1016/j.cmet.2015.01.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 02/08/2023]
Abstract
Insulin resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment, and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates. Our results show dramatic variation in IR among strains of mice and widespread differences between sexes that are dependent on genotype. We uncover more than 15 genome-wide significant loci and validate a gene, Agpat5, associated with IR. We also integrate plasma metabolite levels and global gene expression from liver and adipose tissue to identify metabolite quantitative trait loci (mQTL) and expression QTL (eQTL), respectively. Our results provide a resource for analysis of interactions between diet, sex, and genetic background in IR.
Collapse
|
544
|
Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, Castellani LW, Rau CD, Pan C, Phun J, Zhou Z, Yang WP, Neuhaus I, Gargalovic PS, Kirchgessner TG, Graham M, Lee R, Tontonoz P, Gerszten RE, Hevener AL, Lusis AJ. Genetic architecture of insulin resistance in the mouse. Cell Metab 2015. [PMID: 25651185 DOI: 10.1016/j.cmet.2015.01.002.genetic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Insulin resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment, and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates. Our results show dramatic variation in IR among strains of mice and widespread differences between sexes that are dependent on genotype. We uncover more than 15 genome-wide significant loci and validate a gene, Agpat5, associated with IR. We also integrate plasma metabolite levels and global gene expression from liver and adipose tissue to identify metabolite quantitative trait loci (mQTL) and expression QTL (eQTL), respectively. Our results provide a resource for analysis of interactions between diet, sex, and genetic background in IR.
Collapse
Affiliation(s)
- Brian W Parks
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margarete Mehrabian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nikolas Psychogios
- Cardiovascular Research Center and Cardiology Division, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Simon T Hui
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Frode Norheim
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Lawrence W Castellani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christoph D Rau
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Phun
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen-Pin Yang
- Department of Applied Genomics, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Isaac Neuhaus
- Department of Applied Genomics, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Peter S Gargalovic
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Todd G Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Mark Graham
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Richard Lee
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Gerszten
- Cardiovascular Research Center and Cardiology Division, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
545
|
Wessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, Dauriz M, Hivert MF, Raghavan S, Lipovich L, Hidalgo B, Fox K, Huffman JE, An P, Lu Y, Rasmussen-Torvik LJ, Grarup N, Ehm MG, Li L, Baldridge AS, Stančáková A, Abrol R, Besse C, Boland A, Bork-Jensen J, Fornage M, Freitag DF, Garcia ME, Guo X, Hara K, Isaacs A, Jakobsdottir J, Lange LA, Layton JC, Li M, Hua Zhao J, Meidtner K, Morrison AC, Nalls MA, Peters MJ, Sabater-Lleal M, Schurmann C, Silveira A, Smith AV, Southam L, Stoiber MH, Strawbridge RJ, Taylor KD, Varga TV, Allin KH, Amin N, Aponte JL, Aung T, Barbieri C, Bihlmeyer NA, Boehnke M, Bombieri C, Bowden DW, Burns SM, Chen Y, Chen YD, Cheng CY, Correa A, Czajkowski J, Dehghan A, Ehret GB, Eiriksdottir G, Escher SA, Farmaki AE, Frånberg M, Gambaro G, Giulianini F, Goddard WA, Goel A, Gottesman O, Grove ML, Gustafsson S, Hai Y, Hallmans G, Heo J, Hoffmann P, Ikram MK, Jensen RA, Jørgensen ME, Jørgensen T, Karaleftheri M, Khor CC, Kirkpatrick A, Kraja AT, Kuusisto J, Lange EM, Lee IT, Lee WJ, Leong A, Liao J, Liu C, Liu Y, Lindgren CM, Linneberg A, Malerba G, et alWessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, Dauriz M, Hivert MF, Raghavan S, Lipovich L, Hidalgo B, Fox K, Huffman JE, An P, Lu Y, Rasmussen-Torvik LJ, Grarup N, Ehm MG, Li L, Baldridge AS, Stančáková A, Abrol R, Besse C, Boland A, Bork-Jensen J, Fornage M, Freitag DF, Garcia ME, Guo X, Hara K, Isaacs A, Jakobsdottir J, Lange LA, Layton JC, Li M, Hua Zhao J, Meidtner K, Morrison AC, Nalls MA, Peters MJ, Sabater-Lleal M, Schurmann C, Silveira A, Smith AV, Southam L, Stoiber MH, Strawbridge RJ, Taylor KD, Varga TV, Allin KH, Amin N, Aponte JL, Aung T, Barbieri C, Bihlmeyer NA, Boehnke M, Bombieri C, Bowden DW, Burns SM, Chen Y, Chen YD, Cheng CY, Correa A, Czajkowski J, Dehghan A, Ehret GB, Eiriksdottir G, Escher SA, Farmaki AE, Frånberg M, Gambaro G, Giulianini F, Goddard WA, Goel A, Gottesman O, Grove ML, Gustafsson S, Hai Y, Hallmans G, Heo J, Hoffmann P, Ikram MK, Jensen RA, Jørgensen ME, Jørgensen T, Karaleftheri M, Khor CC, Kirkpatrick A, Kraja AT, Kuusisto J, Lange EM, Lee IT, Lee WJ, Leong A, Liao J, Liu C, Liu Y, Lindgren CM, Linneberg A, Malerba G, Mamakou V, Marouli E, Maruthur NM, Matchan A, McKean-Cowdin R, McLeod O, Metcalf GA, Mohlke KL, Muzny DM, Ntalla I, Palmer ND, Pasko D, Peter A, Rayner NW, Renström F, Rice K, Sala CF, Sennblad B, Serafetinidis I, Smith JA, Soranzo N, Speliotes EK, Stahl EA, Stirrups K, Tentolouris N, Thanopoulou A, Torres M, Traglia M, Tsafantakis E, Javad S, Yanek LR, Zengini E, Becker DM, Bis JC, Brown JB, Adrienne Cupples L, Hansen T, Ingelsson E, Karter AJ, Lorenzo C, Mathias RA, Norris JM, Peloso GM, Sheu WHH, Toniolo D, Vaidya D, Varma R, Wagenknecht LE, Boeing H, Bottinger EP, Dedoussis G, Deloukas P, Ferrannini E, Franco OH, Franks PW, Gibbs RA, Gudnason V, Hamsten A, Harris TB, Hattersley AT, Hayward C, Hofman A, Jansson JH, Langenberg C, Launer LJ, Levy D, Oostra BA, O'Donnell CJ, O'Rahilly S, Padmanabhan S, Pankow JS, Polasek O, Province MA, Rich SS, Ridker PM, Rudan I, Schulze MB, Smith BH, Uitterlinden AG, Walker M, Watkins H, Wong TY, Zeggini E, Laakso M, Borecki IB, Chasman DI, Pedersen O, Psaty BM, Shyong Tai E, van Duijn CM, Wareham NJ, Waterworth DM, Boerwinkle E, Linda Kao WH, Florez JC, Loos RJ, Wilson JG, Frayling TM, Siscovick DS, Dupuis J, Rotter JI, Meigs JB, Scott RA, Goodarzi MO. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015; 6:5897. [PMID: 25631608 PMCID: PMC4311266 DOI: 10.1038/ncomms6897] [Show More Authors] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
Collapse
Affiliation(s)
- Jennifer Wessel
- Department of Epidemiology, Fairbanks School of Public Health, Indianapolis, Indiana 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
| | - Sara M Willems
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Marco Dauriz
- Massachusetts General Hospital, General Medicine Division, Boston, Massachusetts 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona Medical School and Hospital Trust of Verona, Verona 37126, Italy
| | - Marie-France Hivert
- Harvard Pilgrim Health Care Institute, Department of Population Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Division of Endocrinology and Metabolism, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sridharan Raghavan
- Massachusetts General Hospital, General Medicine Division, Boston, Massachusetts 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48202, USA
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Keolu Fox
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Jennifer E Huffman
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, Scotland EH4 2XU, UK
| | - Ping An
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Margaret G Ehm
- Quantitative Sciences, PCPS, GlaxoSmithKline, North Carolina 27709, USA
| | - Li Li
- Quantitative Sciences, PCPS, GlaxoSmithKline, North Carolina 27709, USA
| | - Abigail S Baldridge
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Ravinder Abrol
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | - Céline Besse
- CEA, Institut de Génomique, Centre National de Génotypage, 2 Rue Gaston Crémieux, EVRY Cedex 91057, France
| | - Anne Boland
- CEA, Institut de Génomique, Centre National de Génotypage, 2 Rue Gaston Crémieux, EVRY Cedex 91057, France
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Daniel F Freitag
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa E Garcia
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland 21224, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Kazuo Hara
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | | | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jill C Layton
- Indiana University, Fairbanks School of Public Health, Indianapolis, Indiana 46202, USA
| | - Man Li
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal DE-14558, Germany
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland 20892, USA
| | - Marjolein J Peters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
- The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam 2300 RC, The Netherlands
| | - Maria Sabater-Lleal
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Angela Silveira
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Albert V Smith
- Icelandic Heart Association, Holtasmari 1, Kopavogur IS-201, Iceland
- University of Iceland, Reykjavik IS-101, Iceland
| | - Lorraine Southam
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Marcus H Stoiber
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, Malmö SE-205 02, Sweden
| | - Kristine H Allin
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Jennifer L Aponte
- Quantitative Sciences, PCPS, GlaxoSmithKline, North Carolina 27709, USA
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Caterina Barbieri
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano 20132, Italy
| | - Nathan A Bihlmeyer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Cristina Bombieri
- Section of Biology and Genetics, Department of Life and Reproduction Sciences, University of Verona, Verona 37100, Italy
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Sean M Burns
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | - Yii-DerI Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Jacek Czajkowski
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Georg B Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Division of Cardiology, Geneva University Hospital Geneva 1211, Switzerland
| | | | - Stefan A Escher
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, Malmö SE-205 02, Sweden
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Mattias Frånberg
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department of Numerical Analysis and Computer Science, SciLifeLab, Stockholm University, Stockholm SE-106 91, Sweden
| | - Giovanni Gambaro
- Division of Nephrology, Department of Internal Medicine and Medical Specialties, Columbus-Gemelli University Hospital, Catholic University, Rome 00168, Italy
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | - Anuj Goel
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå SE-901 87, Sweden
| | - Jiyoung Heo
- Department of Biomedical Technology, Sangmyung University, Chungnam 330-720, Korea
| | - Per Hoffmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn DE-53127, Germany
- Human Genomics Research Group, Division of Medical Genetics, University Hospital Basel Department of Biomedicine 4031, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1) Genomic Imaging Research Center Juelich, Juelich DE-52425, Germany
| | - Mohammad K Ikram
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857, Singapore
- Memory Aging & Cognition Centre (MACC), National University Health System, Singapore 117599, Singapore
| | - Richard A Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup DK-2600, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg DK-9220, Denmark
| | | | - Chiea C Khor
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Andrea Kirkpatrick
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | - Aldi T Kraja
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio FI-70211, Finland
| | - Ethan M Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - I T Lee
- Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Aaron Leong
- Massachusetts General Hospital, General Medicine Division, Boston, Massachusetts 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jiemin Liao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Chunyu Liu
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup DK-2600, Denmark
- Department of Clinical Experimental Research, Copenhagen University Hospital Glostrup, Glostrup DK-2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Life and Reproduction Sciences, University of Verona, Verona 37100, Italy
| | - Vasiliki Mamakou
- National and Kapodistrian University of Athens, Faculty of Medicine, Athens 115 27, Greece
- Dromokaiteio Psychiatric Hospital, Athens 124 61, Greece
| | - Eirini Marouli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Nisa M Maruthur
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Angela Matchan
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles 90033, USA
| | - Olga McLeod
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ioanna Ntalla
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
- University of Leicester, Leicester LE1 7RH, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27106, USA
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andreas Peter
- Department of Internal Medicine, Division of Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry and Institute of Diabetes Research and Metabolic Diseases, University of Tübingen, Tübingen DE-72076, Germany
- German Center for Diabetes Research (DZD), Neuherberg DE-85764, Germany
| | - Nigel W Rayner
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
- The Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, Malmö SE-205 02, Sweden
| | - Ken Rice
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Cinzia F Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano 20132, Italy
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicole Soranzo
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Hematology, Long Road, Cambridge CB2 0XY, UK
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eli A Stahl
- Division of Psychiatric Genomics, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kathleen Stirrups
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Nikos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Laiko General Hospital, Athens 11527, Greece
| | - Anastasia Thanopoulou
- Diabetes Centre, 2nd Department of Internal Medicine, National University of Athens, Hippokration General Hospital, Athens 11527, Greece
| | - Mina Torres
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles 90033, USA
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano 20132, Italy
| | | | - Sundas Javad
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Lisa R Yanek
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Eleni Zengini
- Dromokaiteio Psychiatric Hospital, Athens 124 61, Greece
- University of Sheffield, Sheffield S10 2TN, UK
| | - Diane M Becker
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - James B Brown
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Statistics, University of California at Berkeley, Berkeley, California 94720, USA
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen 1165, Denmark
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew J Karter
- Division of Research, Kaiser Permanente, Northern California Region, Oakland, California 94612, USA
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 77030, USA
| | - Rasika A Mathias
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado 80204, USA
| | - Gina M Peloso
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Wayne H.-H. Sheu
- Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- College of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano 20132, Italy
| | - Dhananjay Vaidya
- The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rohit Varma
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles 90033, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27106, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam Rehbrücke, Nuthetal DE-14558, Germany
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | | | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, Malmö SE-205 02, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå SE-901 87, Sweden
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, Kopavogur IS-201, Iceland
- University of Iceland, Reykjavik IS-101, Iceland
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Tamara B Harris
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland 21224, USA
| | - Andrew T Hattersley
- Genetics of Diabetes, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, Scotland EH4 2XU, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Jan-Håkan Jansson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå SE-901 87, Sweden
- Research Unit, Skellefteå SE-931 87, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland 21224, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Framingham Heart Study, Framingham, Massachusetts 01702, USA
| | - Ben A Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 1TN, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split 21000, Croatia
| | - Michael A Province
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- Division of Cardiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Igor Rudan
- Centre for Population Health Sciences, Medical School, University of Edinburgh, Edinburgh, Scotland EH8 9YL, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal DE-14558, Germany
- German Center for Diabetes Research (DZD), Neuherberg DE-85764, Germany
| | - Blair H Smith
- Medical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Hugh Watkins
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857, Singapore
| | | | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio FI-70211, Finland
| | - Ingrid B Borecki
- Division of Statistical Genomics and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Department of Health Services, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98195, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CE, The Netherlands
- Center for Medical Systems Biology, Leiden 2300, The Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Dawn M Waterworth
- Genetics, PCPS, GlaxoSmithKline, Philadelphia, Pennsylvania 19104, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - W H Linda Kao
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 38677, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - David S Siscovick
- New York Academy of Medicine, New York, New York 10029, USA
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington 98195, USA
| | - Josée Dupuis
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - James B Meigs
- Massachusetts General Hospital, General Medicine Division, Boston, Massachusetts 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Mark O Goodarzi
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| |
Collapse
|
546
|
Mahajan A, Sim X, Ng HJ, Manning A, Rivas MA, Highland HM, Locke AE, Grarup N, Im HK, Cingolani P, Flannick J, Fontanillas P, Fuchsberger C, Gaulton KJ, Teslovich TM, Rayner NW, Robertson NR, Beer NL, Rundle JK, Bork-Jensen J, Ladenvall C, Blancher C, Buck D, Buck G, Burtt NP, Gabriel S, Gjesing AP, Groves CJ, Hollensted M, Huyghe JR, Jackson AU, Jun G, Justesen JM, Mangino M, Murphy J, Neville M, Onofrio R, Small KS, Stringham HM, Syvänen AC, Trakalo J, Abecasis G, Bell GI, Blangero J, Cox NJ, Duggirala R, Hanis CL, Seielstad M, Wilson JG, Christensen C, Brandslund I, Rauramaa R, Surdulescu GL, Doney ASF, Lannfelt L, Linneberg A, Isomaa B, Tuomi T, Jørgensen ME, Jørgensen T, Kuusisto J, Uusitupa M, Salomaa V, Spector TD, Morris AD, Palmer CNA, Collins FS, Mohlke KL, Bergman RN, Ingelsson E, Lind L, Tuomilehto J, Hansen T, Watanabe RM, Prokopenko I, Dupuis J, Karpe F, Groop L, Laakso M, Pedersen O, Florez JC, Morris AP, Altshuler D, Meigs JB, Boehnke M, McCarthy MI, Lindgren CM, Gloyn AL, On Behalf of the T2D-GENES consortium and GoT2D consortium. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet 2015; 11:e1004876. [PMID: 25625282 PMCID: PMC4307976 DOI: 10.1371/journal.pgen.1004876] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/04/2014] [Indexed: 12/23/2022] Open
Abstract
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights. Understanding how FI and FG levels are regulated is important because their derangement is a feature of T2D. Despite recent success from GWAS in identifying regions of the genome influencing glycemic traits, collectively these loci explain only a small proportion of trait variance. Unlocking the biological mechanisms driving these associations has been challenging because the vast majority of variants map to non-coding sequence, and the genes through which they exert their impact are largely unknown. In the current study, we sought to increase our understanding of the physiological pathways influencing both traits using exome-array genotyping in up to 33,231 non-diabetic individuals to identify coding variants and consequently genes associated with either FG or FI levels. We identified novel association signals for both traits including the receptor for GLP-1 agonists which are a widely used therapy for T2D. Furthermore, we identified coding variants at several GWAS loci which point to the genes underlying these association signals. Importantly, we found that multiple coding variants in G6PC2 result in a loss of protein function and lower fasting glucose levels.
Collapse
Affiliation(s)
- Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hui Jin Ng
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alisa Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Manuel A. Rivas
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Heather M. Highland
- Human Genetics Center, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Adam E. Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hae Kyung Im
- Department of Health Studies, Biostatistics Laboratory, The University of Chicago, Chicago, Illinois, United States of America
| | - Pablo Cingolani
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pierre Fontanillas
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kyle J. Gaulton
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya M. Teslovich
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - N. William Rayner
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Neil R. Robertson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jana K. Rundle
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Christine Blancher
- High Throughput Genomics, Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David Buck
- High Throughput Genomics, Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gemma Buck
- High Throughput Genomics, Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Noël P. Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Anette P. Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher J. Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mette Hollensted
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeroen R. Huyghe
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Goo Jun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johanne Marie Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Jacquelyn Murphy
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert Onofrio
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joseph Trakalo
- High Throughput Genomics, Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Graeme I. Bell
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nancy J. Cox
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Ravindranath Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Craig L. Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mark Seielstad
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine & Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Cramer Christensen
- Department of Internal Medicine and Endocrinology, Vejle Hospital, Vejle, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Rainer Rauramaa
- Foundation for Research in Health, Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Gabriela L. Surdulescu
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Alex S. F. Doney
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Allan Linneberg
- Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Bo Isomaa
- Department of Social Services and Health Care, Jakobstad, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, Denmark
| | - Johanna Kuusisto
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Andrew D. Morris
- Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Colin N. A. Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Francis S. Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard N. Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California, United States of America
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), University Hospital LaPaz, Autonomous University of Madrid, Madrid, Spain
- Center for Vascular Prevention, Danube University Krems, Krems, Austria
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Richard M. Watanabe
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
| | - Josee Dupuis
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Markku Laakso
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose C. Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James B. Meigs
- General Medicine Division, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail: (CML); (ALG)
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- * E-mail: (CML); (ALG)
| | | |
Collapse
|
547
|
Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, Sofat R, Stender S, Johnson PCD, Scott RA, Leusink M, Verweij N, Sharp SJ, Guo Y, Giambartolomei C, Chung C, Peasey A, Amuzu A, Li K, Palmen J, Howard P, Cooper JA, Drenos F, Li YR, Lowe G, Gallacher J, Stewart MCW, Tzoulaki I, Buxbaum SG, van der A DL, Forouhi NG, Onland-Moret NC, van der Schouw YT, Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, Topor-Madry R, Stepaniak U, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de Faire U, Veglia F, Ford I, Jukema JW, Westendorp RGJ, de Borst GJ, de Jong PA, Algra A, Spiering W, Maitland-van der Zee AH, Klungel OH, de Boer A, Doevendans PA, Eaton CB, Robinson JG, Duggan D, Kjekshus J, Downs JR, Gotto AM, Keech AC, Marchioli R, Tognoni G, Sever PS, Poulter NR, Waters DD, Pedersen TR, Amarenco P, Nakamura H, McMurray JJV, Lewsey JD, Chasman DI, Ridker PM, Maggioni AP, Tavazzi L, Ray KK, Seshasai SRK, Manson JE, Price JF, Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y, Schreiner PJ, Fornage M, Siscovick DS, Cushman M, Kumari M, Wareham NJ, Verschuren WMM, Redline S, Patel SR, Whittaker JC, Hamsten A, Delaney JA, et alSwerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, Sofat R, Stender S, Johnson PCD, Scott RA, Leusink M, Verweij N, Sharp SJ, Guo Y, Giambartolomei C, Chung C, Peasey A, Amuzu A, Li K, Palmen J, Howard P, Cooper JA, Drenos F, Li YR, Lowe G, Gallacher J, Stewart MCW, Tzoulaki I, Buxbaum SG, van der A DL, Forouhi NG, Onland-Moret NC, van der Schouw YT, Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, Topor-Madry R, Stepaniak U, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de Faire U, Veglia F, Ford I, Jukema JW, Westendorp RGJ, de Borst GJ, de Jong PA, Algra A, Spiering W, Maitland-van der Zee AH, Klungel OH, de Boer A, Doevendans PA, Eaton CB, Robinson JG, Duggan D, Kjekshus J, Downs JR, Gotto AM, Keech AC, Marchioli R, Tognoni G, Sever PS, Poulter NR, Waters DD, Pedersen TR, Amarenco P, Nakamura H, McMurray JJV, Lewsey JD, Chasman DI, Ridker PM, Maggioni AP, Tavazzi L, Ray KK, Seshasai SRK, Manson JE, Price JF, Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y, Schreiner PJ, Fornage M, Siscovick DS, Cushman M, Kumari M, Wareham NJ, Verschuren WMM, Redline S, Patel SR, Whittaker JC, Hamsten A, Delaney JA, Dale C, Gaunt TR, Wong A, Kuh D, Hardy R, Kathiresan S, Castillo BA, van der Harst P, Brunner EJ, Tybjaerg-Hansen A, Marmot MG, Krauss RM, Tsai M, Coresh J, Hoogeveen RC, Psaty BM, Lange LA, Hakonarson H, Dudbridge F, Humphries SE, Talmud PJ, Kivimäki M, Timpson NJ, Langenberg C, Asselbergs FW, Voevoda M, Bobak M, Pikhart H, Wilson JG, Reiner AP, Keating BJ, Hingorani AD, Sattar N. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 2015; 385:351-61. [PMID: 25262344 PMCID: PMC4322187 DOI: 10.1016/s0140-6736(14)61183-1] [Show More Authors] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. FINDINGS Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0·16-0·47), plasma insulin concentration (1·62%, 0·53-2·72), and plasma glucose concentration (0·23%, 0·02-0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00-1·05); the rs12916-T allele association was consistent (1·06, 1·03-1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18-1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10-0·38 in all trials; 0·33 kg, 95% CI 0·24-0·42 in placebo or standard care controlled trials and -0·15 kg, 95% CI -0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9-6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06-1·18 in all trials; 1·11, 95% CI 1·03-1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04-1·22 in intensive-dose vs moderate dose trials). INTERPRETATION The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition. FUNDING The funding sources are cited at the end of the paper.
Collapse
Affiliation(s)
- Daniel I Swerdlow
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK.
| | - David Preiss
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | - Karoline B Kuchenbaecker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Department of Surgery, Division of Transplantation, and Clinical Epidemiology Unit, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael V Holmes
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK
| | - Jorgen E L Engmann
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK
| | - Tina Shah
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK
| | - Reecha Sofat
- UCL Department of Medicine, University College London, London, UK
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul C D Johnson
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Maarten Leusink
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Centre Groningen, Department of Cardiology, Groningen, Netherlands
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Yiran Guo
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Christina Chung
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Anne Peasey
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | | | - KaWah Li
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Jutta Palmen
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Philip Howard
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Jackie A Cooper
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Fotios Drenos
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Yun R Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gordon Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - John Gallacher
- Department of Primary Care and Public Health, Cardiff University Medical School, Cardiff University, Cardiff, UK
| | - Marlene C W Stewart
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | | | - Daphne L van der A
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate B Schnabel
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Jaroslav A Hubacek
- Centre for Experimental Medicine, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | - Andrzej Pajak
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Roman Topor-Madry
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Stepaniak
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Sofia Malyutina
- Institute of Internal and Preventive Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Damiano Baldassarre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy; Centro Cardiologico Monzino IRCCS Milan, Milan, Italy
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Elena Tremoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy; Centro Cardiologico Monzino IRCCS Milan, Milan, Italy
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Rudi G J Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Gert Jan de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ale Algra
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - David Duggan
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - John Kjekshus
- Department of Cardiology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - John R Downs
- Department of Medicine, University of Texas Health Science Centre, San Antonio, TX, USA; VERDICT, South Texas Veterans Health Care System, San Antonio, TX, USA
| | | | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Roberto Marchioli
- Hematology and Oncology Therapeutic Delivery Unit, Quintiles, Milan, Italy
| | - Gianni Tognoni
- Department of Clinical Pharmacology and Epidemiology, Consorzio Mario NegriSud, Santa Maria Imbaro, Chieti, Italy
| | - Peter S Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Neil R Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - David D Waters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Terje R Pedersen
- Centre for Preventative Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | | - John J V McMurray
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - James D Lewsey
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | | | | | | | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, Cotignola (RA), Italy
| | - Kausik K Ray
- Cardiac and Cell Sciences Research Institute, London, UK
| | | | | | - Jackie F Price
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Richard W Morris
- UCL Department of Primary Care and Population Health, University College London, London, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Siscovick
- Cardiovascular Health Research Unit of the Department of Medicine, Department of Epidemiology, and Department of Health Services, University of Washington, Seattle, WA, USA
| | - Mary Cushman
- Departments of Medicine and Pathology, University of Vermont, Colchester, VT, USA
| | - Meena Kumari
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Susan Redline
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Joseph A Delaney
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Caroline Dale
- Department of Non-Communicable Disease Epidemiology, London, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Andrew Wong
- MRCUnit for Lifelong Health and Ageing, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Diana Kuh
- MRCUnit for Lifelong Health and Ageing, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Rebecca Hardy
- MRCUnit for Lifelong Health and Ageing, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Sekar Kathiresan
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Berta A Castillo
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pim van der Harst
- University of Groningen, University Medical Centre Groningen, Department of Cardiology, Groningen, Netherlands
| | - Eric J Brunner
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael G Marmot
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA USA
| | | | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ronald C Hoogeveen
- Baylor College of Medicine, Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Houston, TX, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit of the Department of Medicine, Department of Epidemiology, and Department of Health Services, University of Washington, Seattle, WA, USA
| | - Leslie A Lange
- Department of Genetics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Steve E Humphries
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Philippa J Talmud
- Centre for Cardiovascular Genetics, University College London, London, UK
| | - Mika Kivimäki
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Folkert W Asselbergs
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, Netherlands
| | - Mikhail Voevoda
- Institute of Internal and Preventive Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia; Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Martin Bobak
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - Hynek Pikhart
- UCL Research Department of Epidemiology and Public Health, University College London, London, UK
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brendan J Keating
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aroon D Hingorani
- UCL Institute of Cardiovascular Science and Farr Institute, University College London, London, UK
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
548
|
Støy J, Kampmann U, Mengel A, Magnusson NE, Jessen N, Grarup N, Rungby J, Stødkilde-Jørgensen H, Brandslund I, Christensen C, Hansen T, Pedersen O, Møller N. Reduced CD300LG mRNA tissue expression, increased intramyocellular lipid content and impaired glucose metabolism in healthy male carriers of Arg82Cys in CD300LG: a novel genometabolic cross-link between CD300LG and common metabolic phenotypes. BMJ Open Diabetes Res Care 2015; 3:e000095. [PMID: 26336608 PMCID: PMC4553907 DOI: 10.1136/bmjdrc-2015-000095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/02/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND CD300LG rs72836561 (c.313C>T, p.Arg82Cys) has in genetic-epidemiological studies been associated with the lipoprotein abnormalities of the metabolic syndrome. CD300LG belongs to the CD300-family of membrane-bound molecules which have the ability to recognize and interact with extracellular lipids. We tested whether this specific polymorphism results in abnormal lipid accumulation in skeletal muscle and liver and other indices of metabolic dysfunction. METHODS 40 healthy men with a mean age of 55 years were characterized metabolically including assessment of insulin sensitivity by the hyperinsulinemic euglycemic clamp, intrahepatic lipid content (IHLC) and intramyocellular lipid content (IMCL) by MR spectroscopy, and β-cell function by an intravenous glucose tolerance test. Changes in insulin signaling and CD300LG mRNA expression were determined by western blotting and quantitative PCR in muscle and adipose tissue. RESULTS Compared with the 20 controls (CC carriers), the 20 CT carriers (polymorphism carriers) had higher IMCL (p=0.045), a reduced fasting forearm glucose uptake (p=0.011), a trend toward lower M-values during the clamp; 6.0 mg/kg/min vs 7.1 (p=0.10), and higher IHLC (p=0.10). CT carriers had lower CD300LG mRNA expression and CD300LG expression in muscle correlated with IMCL (β=-0.35, p=0.046), forearm glucose uptake (β=0.37, p=0.03), and tended to correlate with the M-value (β=0.33, p=0.06), independently of CD300LG genotype. β-cell function was unaffected. CONCLUSIONS The CD300LG polymorphism was associated with decreased CD300LG mRNA expression in muscle and adipose tissue, increased IMCL, and abnormalities of glucose metabolism. CD300LG mRNA levels correlated with IMCL and forearm glucose uptake. These findings link a specific CD300LG polymorphism with features of the metabolic syndrome suggesting a role for CD300LG in the regulation of common metabolic traits. TRIAL REGISTRATION NUMBER NCT01571609.
Collapse
Affiliation(s)
- Julie Støy
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Kampmann
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Annette Mengel
- Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nils E Magnusson
- Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Center for Diabetes Research and Department of Clinical Pharmacology, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | | | - Torben Hansen
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Møller
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
549
|
Allard C, Desgagné V, Patenaude J, Lacroix M, Guillemette L, Battista MC, Doyon M, Ménard J, Ardilouze JL, Perron P, Bouchard L, Hivert MF. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 2015; 10:342-51. [PMID: 25800063 PMCID: PMC4622547 DOI: 10.1080/15592294.2015.1029700] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022] Open
Abstract
Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10(-11); N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = -0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = -0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation.
Collapse
Key Words
- BMI, Body Mass Index
- CDA, Canadian Diabetes Association
- CHUS, Centre hospitalier universitaire de Sherbrooke
- CpGs, CG dinucleotides
- DNA methylation
- DNAm, DNA methylation
- DOHaD, Developmental Origins of Health and Disease
- GCT, Glucose Challenge Test
- GDM, Gestational Diabetes Mellitus
- GRS, Genetic Risk Score
- IADPSG, International Association of the Diabetes and Pregnancy Study Groups
- IV, Instrumental Variable
- MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium
- MDS, Multidimensional Scaling
- MR, Mendelian Randomization
- Mendelian randomization
- OGTT, Oral Glucose Tolerance Test
- SGA, Small for Gestational Age
- SNPs, Single Nucleotide Polymorphisms
- TSLS, Two-Stage Least Square
- fetal programming
- gestational diabetes
- glycemia
- leptin
- mQTL, methylation Quantitative Trait Locus
- obesity
- pregnancy
Collapse
Affiliation(s)
- C Allard
- Department of Mathematics; Faculty of Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
| | - V Desgagné
- Department of Biochemistry; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de Recherche Clinique ECOGENE-21; CSSS de Chicoutimi; Chicoutimi, QC Canada
| | - J Patenaude
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
| | - M Lacroix
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
| | - L Guillemette
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
| | - MC Battista
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
| | - M Doyon
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
| | - J Ménard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
| | - JL Ardilouze
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
| | - P Perron
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
| | - L Bouchard
- Department of Biochemistry; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
- Centre de Recherche Clinique ECOGENE-21; CSSS de Chicoutimi; Chicoutimi, QC Canada
| | - MF Hivert
- Department of Medicine; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, QC Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke; Sherbrooke, QC Canada
- Department of Population Medicine; Harvard Pilgrim Health Care Institute; Harvard Medical School; Boston, MA USA
- Diabetes Unit; Massachusetts General Hospital; Boston, MA USA
| |
Collapse
|
550
|
Elovainio M, Jokela M, Rosenström T, Pulkki-Råbäck L, Hakulinen C, Josefsson K, Hintsanen M, Hintsa T, Raitakari OT, Keltikangas-Järvinen L. Temperament and depressive symptoms: what is the direction of the association? J Affect Disord 2015; 170:203-12. [PMID: 25254618 DOI: 10.1016/j.jad.2014.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Temperament characteristics have been suggested to be associated with mental health outcomes, especially depression, but the direction of the association is unknown. In this study, we tested whether temperament characteristics, as defined by the Buss-Plomin adulthood emotionality-activity-sociability (EAS) temperament model, predict depressive symptoms or whether depressive symptoms predict changes in temperament characteristics. METHODS Participants comprised a population-based sample of 719 men and 1020 women from the Young Finns study aged 20-35 years at baseline in 1997 and who responded to repeated surveys of temperament and depressive symptoms in four study phases from 1997 to 2012. The associations were tested using linear regression models, repeated cross-lagged structural equation models, parallel latent growth curve models and two-dimensional continuous-time state space model (Exact Discrete Model). RESULTS Both low sociability (β=-0.12, p<0.001) and high negative emotionality (β=0.34, p<0.001) predicted subsequent increased depressive symptoms, whereas earlier depressive symptoms predicted increased negative emotionality (β=0.50, p<0.001), but not low sociability. LIMITATIONS The depressive symptoms scale applied may not be used for measuring clinically recognized depression. CONCLUSIONS Our findings suggest that the direction of the association is from low sociability to depressive symptoms rather than the reverse, but the association between negative emotionality and depressive symptoms seems to be reciprocal.
Collapse
|