1
|
Fisk HL, Shaikh SR. Emerging mechanisms of organ crosstalk: The role of oxylipins. NUTR BULL 2024. [PMID: 39659132 DOI: 10.1111/nbu.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
There is growing interest in the role of oxylipins in the pathophysiology of several diseases. This is accompanied by a limited but evolving evidence base describing augmented oxylipin concentrations in a range of complications including cardiovascular disease, obesity, liver disease and neurological disorders. Despite this, literature describing oxylipin profiles in blood and multiple organs is inconsistent and the mechanisms by which these profiles are altered, and the relationships between localised tissue and circulating oxylipins are poorly understood. Inflammation and immune response associated with disease requires communication across organs and physiological systems. For example, inflammation and comorbidities associated with obesity extend beyond the adipose tissue and affect the vascular, hepatobiliary and digestive systems amongst others. Communication between organs and physiological systems is implicated in the progression of disease as well as the maintenance of homeostasis. There is emerging evidence for the role of oxylipins as a mechanism of communication in organ crosstalk but the role of these in orchestrating multiple organ and system responses is poorly understood. Herein, we review evidence to support and describe the role of oxylipins in organ crosstalk via the cardiosplenic and gut-link axis. In addition, we review emerging mechanisms of oxylipin regulation, the gut microbiome and modification using nutritional intervention. Finally, we describe future perspectives for addressing challenges in measurement and interpretation of oxylipin research with focus on the host genome as a modifier of oxylipin profiles and response to dietary lipid intervention.
Collapse
Affiliation(s)
- Helena Lucy Fisk
- Faculty of Medicine, School of Human Development and Health, Southampton General Hospital, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of OT-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612710. [PMID: 39345420 PMCID: PMC11430106 DOI: 10.1101/2024.09.12.612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha TA, Honeycutt MK, Slattery JD, O’Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema CL, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. Front Endocrinol (Lausanne) 2024; 15:1440070. [PMID: 39145314 PMCID: PMC11321955 DOI: 10.3389/fendo.2024.1440070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Vitaly Ryu
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
4
|
Sotzen M, Ahmed A, Olson LK, Alshaarawy O. Characterization of the effects of cannabinoid receptor deletion on energy metabolism in female C57BL mice. Front Endocrinol (Lausanne) 2024; 15:1386230. [PMID: 38962676 PMCID: PMC11221337 DOI: 10.3389/fendo.2024.1386230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Background Despite the evidence that energy balance is regulated differently in females and that the endocannabinoid system is sexually dimorphic, previous studies on the endocannabinoid system and energy balance predominantly used male models. Here, we characterize the effects of cannabinoid receptor deletion on body weight gain and glucose metabolism in female C57BL mice. Methods Female mice lacking the cannabinoid-1 receptor (CB1R-/-), cannabinoid-2 receptor (CB2R-/-), or both receptors (CB1R-/-/CB2R-/-) and wild-type (WT) mice were fed with a low (LFD; 10% of calories from fat) or high-fat diet (HFD; 45% of calories from fat) for six weeks. Results Female WT mice fed with HFD gained significantly more weight than WT mice fed with LFD (p < 0.001). Similar pattern was observed for CB2/- mice fed with HFD compared to CB2R-/- mice fed with LFD (p < 0.001), but not for CB1R-/- fed with HFD vs. LFD (p = 0.22) or CB1R-/-/CB2R-/- fed with HFD vs. LFD (p = 0.96). Comparing the 4 groups on LFD, weight gain of CB1R-/- mice was greater than all other genotypes (p < 0.05). When fed with HFD, the deletion of CB1R alone in females did not attenuate weight gain compared to WT mice (p = 0.72). Female CB1R-/-/CB2R-/- mice gained less weight than WT mice when fed with HFD (p = 0.007) despite similar food intake and locomotor activity, potentially owing to enhanced thermogenesis in the white adipose tissue. No significant difference in weight gain was observed for female CB2R-/- and WT mice on LFD or HFD. Fasting glucose, however, was higher in CB2R-/- mice fed with LFD than all other groups (p < 0.05). Conclusion The effects of cannabinoid receptor deletion on glucose metabolism in female mice were similar to previously published findings on male mice, yet the effects on body weight gain and thermogenesis were attenuated in CB1R-/- mice.
Collapse
MESH Headings
- Animals
- Female
- Energy Metabolism
- Mice
- Mice, Inbred C57BL
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/deficiency
- Diet, High-Fat/adverse effects
- Mice, Knockout
- Weight Gain/genetics
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Body Weight
Collapse
Affiliation(s)
- Morgan Sotzen
- Department of Family Medicine, Michigan State University, East Lansing, MI, United States
| | - Ahmed Ahmed
- Department of Family Medicine, Michigan State University, East Lansing, MI, United States
| | - L. Karl Olson
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Omayma Alshaarawy
- Department of Family Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha T, Honeycutt MK, Slattery JD, O'Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema C, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596425. [PMID: 38854021 PMCID: PMC11160755 DOI: 10.1101/2024.05.29.596425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
|
6
|
Almousa AS, Subash-Babu P, Alanazi IO, Alshatwi AA, Alkhalaf H, Bahattab E, Alsiyah A, Alzahrani M. Hemp Seed Oil Inhibits the Adipogenicity of the Differentiation-Induced Human Mesenchymal Stem Cells through Suppressing the Cannabinoid Type 1 (CB1). Molecules 2024; 29:1568. [PMID: 38611847 PMCID: PMC11013118 DOI: 10.3390/molecules29071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.
Collapse
Affiliation(s)
- Albatul S. Almousa
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Human Nutrition, College of Home Economics, King Khalid University, P.O. Box 3236, Abha 10001, Saudi Arabia
| | - Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ibrahim O. Alanazi
- The Healthy Aging Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; (I.O.A.); (H.A.); (E.B.)
- Genome Research Unit, Department of Biochemistry, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Huda Alkhalaf
- The Healthy Aging Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; (I.O.A.); (H.A.); (E.B.)
| | - Eman Bahattab
- The Healthy Aging Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; (I.O.A.); (H.A.); (E.B.)
| | - Atheer Alsiyah
- The Applied Genomics Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohammad Alzahrani
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
7
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
8
|
Maliszewska K, Miniewska K, Godlewski A, Gosk W, Mojsak M, Kretowski A, Ciborowski M. Changes in plasma endocannabinoids concentrations correlate with 18F-FDG PET/MR uptake in brown adipocytes in humans. Front Mol Biosci 2023; 10:1073683. [PMID: 37564131 PMCID: PMC10411954 DOI: 10.3389/fmolb.2023.1073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Recent data suggest a possible role of endocannabinoids in the regulation of brown adipose tissue (BAT) activity. Those findings indicate potential treatment options for obesity. The aim of this study was to evaluate the relationship between plasma endocannabinoids concentrations and the presence of BAT in humans. Methods: The study group consisted of 25 subjects divided into two groups: BAT positive BAT(+), (n = 17, median age = 25 years) and BAT negative BAT(-), (n = 8, median age = 28 years). BAT was estimated using 18F-FDG PET/MR after 2 h of cold exposure. The level of plasma endocannabinoids was assessed at baseline, 60 min and 120 min of cold exposure. Results: In both groups, BAT(+) and BAT(-), during the cooling, we observed a decrease of the same endocannabinoids: arachidonoylethanolamide (AEA), eicosapentaenoyl ethanolamide (EPEA) and oleoyl ethanolamide (OEA) with a much more profound decline in BAT(+) subjects. Statistically significant fall of PEA (palmitoylethanolamide) and SEA (stearoylethanolamide) concentrations after 60 min (FC = 0.7, p = 0.007 and FC = 0.8, p = 0.03, respectively) and 120 min (FC = 0.81, p = 0.004, and FC = 0.9, p = 0.01, respectively) of cooling was observed only in individuals with BAT. Conclusion: We noticed the profound decline of endocannabinoids concentrations in subjects with increased 18F-FDG PET/MR uptake in BAT. Identification of a new molecules related to BAT activity may create a new target for obesity treatment.
Collapse
Affiliation(s)
- Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
10
|
CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms231911447. [PMID: 36232744 PMCID: PMC9569643 DOI: 10.3390/ijms231911447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with the global CB1 antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a “browning” of white adipose tissue (WAT) defined by UCP1 expression levels. Male Sprague Dawley rats consumed an HFD (21% fat) for 9 weeks before receiving daily intraperitoneal injections with vehicle or AM251 (3 mg/kg) for 6 weeks. mRNA expression of genes involved in metabolic functions were measured in skeletal muscle and adipose tissue, and blood was harvested for the measurement of hormones and cytokines. Muscle citrate synthase activity was also measured. AM251 treatment decreased fat pad weight (epididymal, peri-renal, brown), and plasma levels of leptin, glucagon, ghrelin, and GLP-1, and increased PAI-1 along with a range of pro-inflammatory and anti-inflammatory cytokines; however, AM251 did not alter plasma adiponectin levels, skeletal muscle citrate synthase activity or mRNA expression of the genes measured in muscle. AM251 treatment had no effect on white fat UCP1 expression levels. AM251 decreased fat pad mass, altered plasma hormone levels, but did not induce browning of WAT defined by UCP1 mRNA levels or alter gene expression in muscle treated acutely with adiponectin, demonstrating the complexity of the endocannabinoid system and metabolism. The CB1 ligand AM251 increased systemic inflammation suggesting limitations on its use in metabolic disorders.
Collapse
|
11
|
Miranda K, Becker W, Busbee PB, Dopkins N, Abdulla OA, Zhong Y, Zhang J, Nagarkatti M, Nagarkatti PS. Yin and yang of cannabinoid CB1 receptor: CB1 deletion in immune cells causes exacerbation while deletion in non-immune cells attenuates obesity. iScience 2022; 25:104994. [PMID: 36093055 PMCID: PMC9460165 DOI: 10.1016/j.isci.2022.104994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
While blockade of cannabinoid receptor 1 (CB1) has been shown to attenuate diet-induced obesity (DIO), its relative role in different cell types has not been tested. The current study investigated the role of CB1 in immune vs non-immune cells during DIO by generating radiation-induced bone marrow chimeric mice that expressed functional CB1 in all cells except the immune cells or expressed CB1 only in immune cells. CB1−/− recipient hosts were resistant to DIO, indicating that CB1 in non-immune cells is necessary for induction of DIO. Interestingly, chimeras with CB1−/− in immune cells showed exacerbation in DIO combined with infiltration of bone-marrow-derived macrophages to the brain and visceral adipose tissue, elevated food intake, and increased glucose intolerance. These results demonstrate the opposing role of CB1 in hematopoietic versus non-hematopoietic cells during DIO and suggests that targeting immune CB1 receptors provides a new pathway to ameliorate obesity and related metabolic disorders. Cannabinoid Receptor 1 (CB1), and not CB2, regulates diet-induced obesity (DIO) CB1 deficiency in non-immune cell types promotes DIO resistance CB1 deficiency in immune cells exacerbates DIO disease phenotype CB1 activation in immune cells is a potential therapeutic target for DIO attenuation
Collapse
|
12
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
13
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Wu D, Wang H, Xie L, Hu F. Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:908868. [PMID: 35865314 PMCID: PMC9294175 DOI: 10.3389/fendo.2022.908868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid increase of obesity and associated diseases has become a major global health problem. Adipose tissues are critical for whole-body homeostasis. The gut microbiota has been recognized as a significant environmental factor in the maintenance of energy homeostasis and host immunity. A growing body of evidence suggests that the gut microbiota regulates host metabolism through a close cross-talk with adipose tissues. It modulates energy expenditure and alleviates obesity by promoting energy expenditure, but it also produces specific metabolites and structural components that may act as the central factors in the pathogenesis of inflammation, insulin resistance, and obesity. Understanding the relationship between gut microbiota and adipose tissues may provide potential intervention strategies to treat obesity and associated diseases. In this review, we focus on recent advances in the gut microbiota and its actions on adipose tissues and highlight the joint actions of the gut microbiota and adipose tissue with each other in the regulation of energy metabolism.
Collapse
|
16
|
The Peripheral Cannabinoid Receptor Type 1 (CB 1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021; 26:molecules26206178. [PMID: 34684760 PMCID: PMC8538448 DOI: 10.3390/molecules26206178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.
Collapse
|
17
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
18
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
19
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
20
|
Paszkiewicz RL, Bergman RN, Santos RS, Frank AP, Woolcott OO, Iyer MS, Stefanovski D, Clegg DJ, Kabir M. A Peripheral CB1R Antagonist Increases Lipolysis, Oxygen Consumption Rate, and Markers of Beiging in 3T3-L1 Adipocytes Similar to RIM, Suggesting that Central Effects Can Be Avoided. Int J Mol Sci 2020; 21:E6639. [PMID: 32927872 PMCID: PMC7554772 DOI: 10.3390/ijms21186639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
With the increased prevalence of obesity and related co-morbidities, such as type 2 diabetes (T2D), worldwide, improvements in pharmacological treatments are necessary. The brain- and peripheral-cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been shown to induce weight loss and improve glucose homeostasis. We have previously demonstrated that RIM promotes adipose tissue beiging and decreased adipocyte cell size, even during maintenance on a high-fat diet. Given the adverse side-effects of brain-penetrance with RIM, in this study we aimed to determine the site of action for a non-brain-penetrating CB1R antagonist AM6545. By using in vitro assays, we demonstrated the direct effects of this non-brain-penetrating CB1R antagonist on cultured adipocytes. Specifically, we showed, for the first time, that AM6545 significantly increases markers of adipose tissue beiging, mitochondrial biogenesis, and lipolysis in 3T3-L1 adipocytes. In addition, the oxygen consumption rate (OCR), consisting of baseline respiratory rate, proton leak, maximal respiratory capacity, and ATP synthase activity, was greater for cells exposed to AM6545, demonstrating greater mitochondrial uncoupling. Using a lipolysis inhibitor during real-time OCR measurements, we determined that the impact of CB1R antagonism on adipocytes is driven by increased lipolysis. Thus, our data suggest the direct role of CB1R antagonism on adipocytes does not require brain penetrance, supporting the importance of focus on peripheral CB1R antagonism pharmacology for reducing the incidence of obesity and T2D.
Collapse
Affiliation(s)
- Rebecca L. Paszkiewicz
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Richard N. Bergman
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Roberta S. Santos
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Aaron P. Frank
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Orison O. Woolcott
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Malini S. Iyer
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Darko Stefanovski
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Deborah J. Clegg
- The College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA;
| | - Morvarid Kabir
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| |
Collapse
|
21
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
22
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
23
|
Law JM, Morris DE, Astle V, Finn E, Muros JJ, Robinson LJ, Randell T, Denvir L, Symonds ME, Budge H. Brown Adipose Tissue Response to Cold Stimulation Is Reduced in Girls With Autoimmune Hypothyroidism. J Endocr Soc 2019; 3:2411-2426. [PMID: 31777769 PMCID: PMC6872489 DOI: 10.1210/js.2019-00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 01/15/2023] Open
Abstract
Objective The interaction between thyroid status and brown adipose tissue (BAT) activation is complex. We assessed the effect of autoimmune hypothyroidism (ATD) in female children on BAT activation, measured using infrared thermography. Design Twenty-six female participants (14 with ATD and 12 healthy controls) between 5 and 17 years of age attended a single study session. Thermal images were taken of the supraclavicular region before, and after, the introduction of a cool stimulus. Results Participants with ATD had lower resting (hypothyroid, 34.9 ± 0.7°C; control, 35.4 ± 0.5°C; P = 0.03) and stimulated (hypothyroid, 35.0 ± 0.6°C; control, 35.5 ± 0.5°C; P = 0.04) supraclavicular temperatures compared with controls, but there was no difference between groups in the temperature increase with stimulation. BAT activation, calculated as the relative temperature change comparing the supraclavicular temperature to a sternal reference region, was reduced in participants with ATD (hypothyroid, 0.1 ± 0.1°C; control, 0.2 ± 0.2°C; P = 0.04). Children with ATD were frequently biochemically euthyroid due to replacement therapy, but, despite this, increased relative supraclavicular temperature was closely associated with increased TSH (r = 0.7, P = 0.01) concentrations. Conclusions Girls with ATD had an attenuated thermogenic response to cold stimulation compared with healthy controls, but, contrary to expectation, those with suboptimal biochemical control (with higher TSH) showed increased BAT activation. This suggests that the underlying disease process may have a negative effect on BAT response, but high levels of TSH can mitigate, and even stimulate, BAT activity. In summary, thyroid status is a complex determinant of BAT activity in girls with ATD.
Collapse
Affiliation(s)
- James M Law
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - David E Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Valerie Astle
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Ellie Finn
- School of Medicine, Monash University, Melbourne, Victoria, Australia
| | - José Joaquín Muros
- Department of Food Science, School of Pharmacy, University of Granada, Granada, Spain
| | - Lindsay J Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Tabitha Randell
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Louise Denvir
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Disease Centre and Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Iyer MS, Paszkiewicz RL, Bergman RN, Richey JM, Woolcott OO, Asare-Bediako I, Wu Q, Kim SP, Stefanovski D, Kolka CM, Clegg DJ, Kabir M. Activation of NPRs and UCP1-independent pathway following CB1R antagonist treatment is associated with adipose tissue beiging in fat-fed male dogs. Am J Physiol Endocrinol Metab 2019; 317:E535-E547. [PMID: 31237449 PMCID: PMC6766608 DOI: 10.1152/ajpendo.00539.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
CB1 receptor (CB1R) antagonism improves the deleterious effects of a high-fat diet (HFD) by reducing body fat mass and adipocyte cell size. Previous studies demonstrated that the beneficial effects of the CB1R antagonist rimonabant (RIM) in white adipose tissue (WAT) are partially due to an increase of mitochondria numbers and upregulation thermogenesis markers, suggesting an induction of WAT beiging. However, the molecular mechanism by which CB1R antagonism induces weight loss and WAT beiging is unclear. In this study, we probed for genes associated with beiging and explored longitudinal molecular mechanisms by which the beiging process occurs. HFD dogs received either RIM (HFD+RIM) or placebo (PL) (HFD+PL) for 16 wk. Several genes involved in beiging were increased in HFD+RIM compared with pre-fat, HFD, and HFD+PL. We evaluated lipolysis and its regulators including natriuretic peptide (NP) and its receptors (NPRs), β-1 and β-3 adrenergic receptor (β1R, β3R) genes. These genes were increased in WAT depots, accompanied by an increase in lipolysis in HFD+RIM. In addition, RIM decreased markers of inflammation and increased adiponectin receptors in WAT. We observed a small but significant increase in UCP1; therefore, we evaluated the newly discovered UCP1-independent thermogenesis pathway. We confirmed that SERCA2b and RYR2, the two key genes involved in this pathway, were upregulated in the WAT. Our data suggest that the upregulation of NPRs, β-1R and β-3R, lipolysis, and SERCA2b and RYR2 may be one of the mechanisms by which RIM promotes beiging and overall the improvement of metabolic homeostasis induced by RIM.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/drug effects
- Animals
- Diet, High-Fat/adverse effects
- Dogs
- Gene Expression/drug effects
- Inflammation/pathology
- Inflammation/prevention & control
- Insulin Resistance
- Male
- Organelle Biogenesis
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Atrial Natriuretic Factor/drug effects
- Rimonabant/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Uncoupling Protein 1/drug effects
- Weight Loss/drug effects
Collapse
Affiliation(s)
- Malini S Iyer
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | | | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Joyce M Richey
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Orison O Woolcott
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Isaac Asare-Bediako
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Qiang Wu
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Stella P Kim
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Darko Stefanovski
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Cathryn M Kolka
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| | - Morvarid Kabir
- Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California
| |
Collapse
|
26
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Simcocks AC, Jenkin KA, O’Keefe L, Samuel CS, Mathai ML, McAinch AJ, Hryciw DH. Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocr Connect 2019; 8:203-216. [PMID: 30707678 PMCID: PMC6391900 DOI: 10.1530/ec-18-0535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Atypical cannabinoid compounds O-1602 and O-1918 are ligands for the putative cannabinoid receptors G protein-coupled receptor 55 and G protein-coupled receptor 18. The role of O-1602 and O-1918 in attenuating obesity and obesity-related pathologies is unknown. Therefore, we aimed to determine the role that either compound had on body weight and body composition, renal and hepatic function in diet-induced obesity. Male Sprague-Dawley rats were fed a high-fat diet (40% digestible energy from lipids) or a standard chow diet for 10 weeks. In a separate cohort, male Sprague-Dawley rats were fed a high-fat diet for 9 weeks and then injected daily with 5 mg/kg O-1602, 1 mg/kg O-1918 or vehicle (0.9% saline/0.75% Tween 80) for a further 6 weeks. Our data demonstrated that high-fat feeding upregulates whole kidney G protein receptor 55 expression. In diet-induced obesity, we also demonstrated O-1602 reduces body weight, body fat and improves albuminuria. Despite this, treatment with O-1602 resulted in gross morphological changes in the liver and kidney. Treatment with O-1918 improved albuminuria, but did not alter body weight or fat composition. In addition, treatment with O-1918 also upregulated circulation of pro-inflammatory cytokines including IL-1α, IL-2, IL-17α, IL-18 and RANTES as well as plasma AST. Thus O-1602 and O-1918 appear not to be suitable treatments for obesity and related comorbidities, due to their effects on organ morphology and pro-inflammatory signaling in obesity.
Collapse
Affiliation(s)
- Anna C Simcocks
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
| | - Kayte A Jenkin
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- School of Science and Health, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Lannie O’Keefe
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael L Mathai
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, St Albans campus, Melbourne, Victoria, Australia
- School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
28
|
Kim HJ, Choi EJ, Kim HS, Choi CW, Choi SW, Kim SL, Seo WD, Do SH. Germinated soy germ extract ameliorates obesity through beige fat activation. Food Funct 2019; 10:836-848. [PMID: 30681105 DOI: 10.1039/c8fo02252f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a worldwide public health concern requiring safe and effective strategies. Recent studies suggest that bioactive compounds from soybeans have beneficial effects on weight loss and reducing fat accumulation. However, despite the biochemical and nutritional changes during germination, the biological effects of germinated soy germ have not been fully investigated. In this article, germinated soy germ extract (GSGE) was evaluated as a potential treatment option for obesity using 3T3-L1 pre-adipocyte and high-fat diet (HFD)-induced obese mice. In vitro studies demonstrated that GSGE suppressed the differentiation of 3T3-L1 cells into mature adipocytes, along with reductions in lipid accumulation and lipid droplet formation. In vivo studies also showed that a daily dose of 1 mg kg-1 of GSGE reduced weight gain, adipocyte area, serum triglyceride, and LDL-cholesterol in HFD-fed mice. The GSGE treatment promoted browning, which was associated with increased UCP1 expression in vitro and in vivo. In addition, GSGE treatment induced beige fat activation by upregulation of lipolysis and beta-oxidation. Furthermore, gene and protein expression levels of endocannabinoid system-related factors such as NAPE-PLD, FAAH, DAGL-α, and CB2 were altered along with browning and beige fat activation by GSGE. The present study indicates that GSGE effectively inhibits lipid accumulation and promotes beige fat transition and activation. Therefore, we suggest that GSGE treatment could be a promising strategy for the prevention of obesity by promoting weight loss, reducing fat accumulation, and improving obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Han-Jun Kim
- Konkuk University, Department of Clinical Pathology, College of Veterinary Medicine, Seoul, 05029, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Maurer SF, Dieckmann S, Kleigrewe K, Colson C, Amri EZ, Klingenspor M. Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handb Exp Pharmacol 2019; 251:183-214. [PMID: 30141101 DOI: 10.1007/164_2018_150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Sebastian Dieckmann
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | | | | | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
30
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
31
|
Lipina C, Walsh SK, Mitchell SE, Speakman JR, Wainwright CL, Hundal HS. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J 2018; 33:1299-1312. [PMID: 30148676 PMCID: PMC6355063 DOI: 10.1096/fj.201800171r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Emerging evidence indicates that G-protein coupled receptor 55 (GPR55), a nonclassic receptor of the endocannabinoid system that is activated by L-α-lysophosphatidylinositol and various cannabinoid ligands, may regulate endocrine function and energy metabolism. We examined how GPR55 deficiency and modulation affects insulin signaling in skeletal muscle, adipose tissue, and liver alongside expression analysis of proteins implicated in insulin action and energy metabolism. We show that GPR55-null mice display decreased insulin sensitivity in these tissues, as evidenced by reduced phosphorylation of PKB/Akt and its downstream targets, concomitant with increased adiposity and reduced physical activity relative to wild-type counterparts. Impaired tissue insulin sensitivity coincided with reduced insulin receptor substrate-1 abundance in skeletal muscle, whereas in liver and epididymal fat it was associated with increased expression of the 3-phosphoinoistide lipid phosphatase, phosphatase and tensin homolog. In contrast, GPR55 activation enhanced insulin signaling in cultured skeletal muscle cells, adipocytes, and hepatocytes; this response was negated by receptor antagonists and GPR55 gene silencing in L6 myotubes. Sustained GPR55 antagonism in 3T3-L1 adipocytes enhanced expression of proteins implicated in lipogenesis and promoted triglyceride accumulation. Our findings identify GPR55 as a positive regulator of insulin action and adipogenesis and as a potential therapeutic target for countering obesity-induced metabolic dysfunction and insulin resistance.-Lipina, C., Walsh, S. K., Mitchell, S. E., Speakman, J. R., Wainwright, C. L., Hundal, H. S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cherry L Wainwright
- Centre for Cardiometabolic Health Research, Robert Gordon University, Aberdeen, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
32
|
Hernández-Vázquez E, Young-Peralta S, Cerón-Romero L, García-Jiménez S, Estrada-Soto S. Acute and subacute antidiabetic studies of ENP-9, a new 1,5-diarylpyrazole derivative. J Pharm Pharmacol 2018; 70:1031-1039. [PMID: 29774523 DOI: 10.1111/jphp.12933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore the antihyperglycaemic and antidiabetic effects and to determine the acute toxicity of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (ENP-9). METHODS The antihyperglycaemic effect of ENP-9 (50 mg/kg) was determined by oral glucose tolerance test (OGTT). Also, the acute (16, 50 and 160 mg/kg) and subacute (50 mg/kg/day for 10 days) antidiabetic effects of ENP-9 were determined. After subacute treatment, blood samples were analysed to determine glucose and lipid profiles. Also, an acute toxicity determination of ENP-9 was conducted followed the OECD recommendation. Molecular docking was performed using AutoDock 4.2.6 at human cannabinoid receptor 1 (PDB code 5TGZ). KEY FINDINGS Acute Administration of ENP-9 showed significant antidiabetic effect and decreased the maximum OGTT peak, compared to the control group (P < 0.05). Moreover, the 10 days treatment induced a decrease in plasma glucose levels, being significant at the end of the experiments (P < 0.05); however, triacylglycerols and cholesterol were not modified. Finally, LD50 of ENP-9 was estimated to be greater than 2000 mg/kg. Molecular docking suggests that ENP-9 may act as rimonabant does. CONCLUSIONS ENP-9 showed significant antihyperglycaemic and antidiabetic properties and also was demonstrated to be safety in the studied doses, which might allow future studies for its potential development as antidiabetic agent.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México, México
| | - Sandra Young-Peralta
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Litzia Cerón-Romero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Sara García-Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
33
|
Lahesmaa M, Eriksson O, Gnad T, Oikonen V, Bucci M, Hirvonen J, Koskensalo K, Teuho J, Niemi T, Taittonen M, Lahdenpohja S, U Din M, Haaparanta-Solin M, Pfeifer A, Virtanen KA, Nuutila P. Cannabinoid Type 1 Receptors Are Upregulated During Acute Activation of Brown Adipose Tissue. Diabetes 2018; 67:1226-1236. [PMID: 29650773 DOI: 10.2337/db17-1366] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/02/2018] [Indexed: 11/13/2022]
Abstract
Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans. Obesity is associated with upregulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and to decrease cardiometabolic risk factors. These effects may be mediated partly via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents. To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography radioligand [18F]FMPEP-d2 and measured BAT activation in parallel with the glucose analog [18F]fluorodeoxyglucose. Activation by cold exposure markedly increased CB1R density and glucose uptake in the BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in the BAT of rats. In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes. Our results highlight that CB1Rs are significant for human BAT activity, and the CB1Rs provide a novel therapeutic target for BAT activation in humans.
Collapse
Affiliation(s)
- Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Olof Eriksson
- Turku PET Centre, Åbo Akademi, Turku, Finland
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Kalle Koskensalo
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Markku Taittonen
- Department of Anesthesiology, Turku University Hospital, Turku, Finland
| | | | - Mueez U Din
- Turku PET Centre, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
34
|
van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of Adipose Tissue Metabolism by the Endocannabinoid System. Trends Endocrinol Metab 2018; 29:326-337. [PMID: 29588112 DOI: 10.1016/j.tem.2018.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
White adipose tissue (WAT) stores excess energy as triglycerides, and brown adipose tissue (BAT) is specialized in dissipating energy as heat. The endocannabinoid system (ECS) is involved in a broad range of physiological processes and is increasingly recognized as a key player in adipose tissue metabolism. High ECS tonus in the fed state is associated with a disadvantageous metabolic phenotype, and this has led to a search for pharmacological strategies to inhibit the ECS. In this review we present recent developments that cast light on the regulation of adipose tissue metabolism by the ECS, and we discuss novel treatment options including the modulation of endocannabinoid synthesis and breakdown enzymes.
Collapse
Affiliation(s)
- Robin van Eenige
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
36
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
37
|
Abstract
Understanding of the neural and physiological substrates of hunger and satiety has increased rapidly over the last three decades, and pharmacological targets have already been identified for the treatment of obesity that has moved from pre-clinical screening to therapies approved by regulatory authorities. Initially, this review describes the way in which physiological signals of energy availability interact with hedonic and rewarding properties of food to modulate the neural circuitry that supports eating behaviour. This is followed by a brief account of current and promising targets for drug development and a review of the wide range of preclinical paradigms that model important influences on human eating behaviour, and can be used to guide early stages of the drug development process.
Collapse
|
38
|
Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, Zingaretti CM, Sassmann A, Quarta C, Schwitter C, Conrad A, Wettschureck N, Vemuri VK, Makriyannis A, Hartwig J, Mendez-Lago M, Bindila L, Monory K, Giordano A, Cinti S, Marsicano G, Offermanns S, Nisoli E, Pagotto U, Cota D, Lutz B. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest 2017; 127:4148-4162. [PMID: 29035280 DOI: 10.1172/jci83626] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Giacomo Mancini
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pierre Cardinal
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cristina Maria Zingaretti
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - Antonia Sassmann
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carmelo Quarta
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany, and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.,Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Claudia Schwitter
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - V Kiran Vemuri
- Center for Drug Discovery, Departments of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Departments of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jens Hartwig
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - Giovanni Marsicano
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Uberto Pagotto
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna, Italy
| | - Daniela Cota
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany.,German Resilience Center, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
39
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
40
|
Radiosynthesis and evaluation of new PET ligands for peripheral cannabinoid receptor type 1 imaging. Bioorg Med Chem Lett 2017; 27:4114-4117. [PMID: 28757061 DOI: 10.1016/j.bmcl.2017.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17±8% and 20±9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42±36 and 37±13GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD=15.3µM) was much higher than that of 3 (KD=26.0µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.
Collapse
|
41
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
42
|
Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Isabelle Matias
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Ilaria Belluomo
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Daniela Cota
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12:133-43. [PMID: 26678807 DOI: 10.1038/nrendo.2015.211] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.
Collapse
Affiliation(s)
- Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Hubert Plovier
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Lucie Geurts
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Céline Druart
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Amandine Everard
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| |
Collapse
|
44
|
Krott LM, Piscitelli F, Heine M, Borrino S, Scheja L, Silvestri C, Heeren J, Di Marzo V. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. J Lipid Res 2016; 57:464-73. [PMID: 26768656 DOI: 10.1194/jlr.m065227] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning.
Collapse
Affiliation(s)
- Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Simona Borrino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
45
|
Lockie SH, Stefanidis A, Tschöp MH, Oldfield BJ. Combination cannabinoid and opioid receptor antagonists improves metabolic outcomes in obese mice. Mol Cell Endocrinol 2015; 417:10-9. [PMID: 26360587 DOI: 10.1016/j.mce.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 08/07/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Abstract
The CB1 receptor antagonist, rimonabant, causes weight loss but also produces undesirable psychiatric side effects. We investigated using a combination of rimonabant with the opioid receptor antagonists naloxone and norBNI to treat the metabolic sequelae of long-term high fat diet feeding in mice. This combination has previously been shown to have positive effects on both weight loss and mood related behaviour. Diet-induced obese mice were treated chronically with either low dose rimonabant (1 mg/kg) or the combination of rimonabant, naloxone and norBNI (rim nal BNI). After 6 days of treatment, glucose and insulin tolerance tests were performed and body composition analysed using DEXA. Changes in BAT thermogenesis were assessed using implantable radio telemetry probes. Behavioural responses to acute rimonabant or rim nal BNI were examined in the forced swim test and elevated plus maze. Separately, we assessed shifts in Fos immunoreactivity in response to rimonabant or rim nal BNI. Rim nal BNI was significantly better than rimonabant treatment alone at reducing body weight and food intake. In addition, it improved fasting blood glucose and fat mass. Acute low dose rimonabant did not alter behaviour in either the forced swim test or elevated plus maze. Combination rim nal BNI reversed the behavioural effects of high dose (10 mg/kg) rimonabant in obese mice. Rim nal BNI altered Rimonabant-induced Fos in a number of nuclei, with particular shifts in expression in the central and basolateral amygdala, and insular cortex. This study demonstrates that the combination of rimonabant, naloxone and norBNI is effective at producing weight loss over a sustained period of time without altering performance in standardised mouse behaviour tests. Fos expression patterns offer insight into the neuroanatomical substrates subserving these physiological and behavioural changes. These results indicate that CB1-targeted drugs for weight loss may still be feasible.
Collapse
Affiliation(s)
- Sarah H Lockie
- Department of Physiology, Monash University, Wellington Rd, Clayton, Victoria, Australia.
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Wellington Rd, Clayton, Victoria, Australia
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Brian J Oldfield
- Department of Physiology, Monash University, Wellington Rd, Clayton, Victoria, Australia
| |
Collapse
|
46
|
Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 2015; 9:150. [PMID: 26578907 PMCID: PMC4630288 DOI: 10.3389/fnsys.2015.00150] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities.
Collapse
Affiliation(s)
- Sebastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Boris Monge-Rofarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal (COR), Georgia State University Atlanta, GA, USA
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| |
Collapse
|
47
|
Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol Metab 2015; 26:524-537. [PMID: 26412154 DOI: 10.1016/j.tem.2015.07.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.
Collapse
Affiliation(s)
- Wilfrid Mazier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Nicolas Saucisse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Blandine Gatta-Cherifi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; Endocrinology Department, Haut-Lévêque Hospital, 33604 Pessac, France
| | - Daniela Cota
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France.
| |
Collapse
|
48
|
Gatta-Cherifi B, Cota D. New insights on the role of the endocannabinoid system in the regulation of energy balance. Int J Obes (Lond) 2015; 40:210-9. [PMID: 26374449 DOI: 10.1038/ijo.2015.179] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022]
Abstract
Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.
Collapse
Affiliation(s)
- B Gatta-Cherifi
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, Pessac, France
| | - D Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| |
Collapse
|
49
|
Eriksson O, Mikkola K, Espes D, Tuominen L, Virtanen K, Forsbäck S, Haaparanta-Solin M, Hietala J, Solin O, Nuutila P. The Cannabinoid Receptor-1 Is an Imaging Biomarker of Brown Adipose Tissue. J Nucl Med 2015; 56:1937-41. [PMID: 26359260 DOI: 10.2967/jnumed.115.156422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Recently, the existence of significant deposits of brown adipose tissue (BAT) in human adults was confirmed. Its role in the human metabolism is unknown but could be substantial. Inhibition of the cannabinoid receptor-1 (CB1) by the antagonist rimonabant (SR141716) has been associated with activation of BAT thermogenesis and weight loss in mice and rats. The role of peripheral and central CB1 in the activation of BAT merits further investigation. Here we developed a technique for quantifying CB1 in BAT by PET. METHODS Sections of rat BAT and subcutaneous white adipose tissue (WAT) were stained for CB1 and uncoupling protein-1 by immunofluorescent staining. Binding of the radiolabeled CB1 antagonist (3R,5R)-5-(3-(18F-fluoromethoxy)phenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)-phenyl)pyrrolidin-2-one ((18)F-FMPEP-d2) to BAT in vivo and in vitro was assessed in rats by PET. RESULTS We found that CB1 was colocalized with uncoupling protein-1 in BAT, but neither protein was found in WAT. Binding of the radiotracer to BAT sections (but not WAT) in vitro was high and displaceable by pretreatment with rimonabant. Deposits of BAT in rats had significant binding of (18)F-FMPEP-d2 in vivo, indicating high CB1 density. WAT deposits were negative for (18)F-FMPEP-d2, consistent with the immunofluorescent staining and in vitro results. CONCLUSION (18)F-FMPEP-d2 PET can quantify CB1 density noninvasively in vivo in rats. CB1 is therefore a promising surrogate imaging biomarker for assessing the presence of BAT deposits as well as for elucidating the mechanism of CB1 antagonist-mediated weight loss.
Collapse
Affiliation(s)
- Olof Eriksson
- Turku PET Centre, University of Turku, Turku, Finland Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lauri Tuominen
- Turku PET Centre, University of Turku, Turku, Finland Department of Psychiatry, University of Turku, Turku, Finland
| | | | | | | | - Jarmo Hietala
- Turku PET Centre, University of Turku, Turku, Finland Department of Psychiatry, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland Accelerator Laboratory, Åbo Akademi University, Turku, Finland; and
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
50
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|