1
|
Curtis SN, Mayer CA, Bonfield TL, Raffay TM, DiFiore JM, Martin RJ, Hoffman AC, Folz MA, Bavis RW, Dutschmann M, MacFarlane PM. Unique infrared thermographic profiles and altered hypothalamic neurochemistry associated with mortality in endotoxic shock. Exp Neurol 2025; 385:115130. [PMID: 39732274 DOI: 10.1016/j.expneurol.2024.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Neonatal sepsis results in significant morbidity and mortality, but early detection is clinically challenging. In a neonatal rat model of endotoxic shock, we characterised unique infrared thermographic (IRT) profiles in skin temperature that could identify risk of later mortality. Ten-day old rats were placed in a thermally stable isolette and IRT images of cranial (TCR), scapula (TSC) and rump (TRU) skin temperature were obtained continuously for 8 h following an intraperitoneal injection of lipopolysaccharide (LPS) or saline. LPS resulted in ∼74 % mortality (designated as non-survivors, LPSNS) between 4.5 and 7.5 h post-injection. LPSNS and survivors of LPS (LPSS) rats displayed hypothermic tendencies with TCR, TSC and TRU decreasing at ∼80-100 min (T80-100) post-injection. Compared to LPSS rats, however, the hypothermia of LPSNS rats occurred slightly earlier (T80), was more severe, and failed to recover. The TCR, TSC and TRU of LPSS rats fully recovered by 4 h (T240) post-injection. In separate rats, hypothalamic microglia and extracellular matrix (ECM) expression at T240 post-injection were increased in putatively identified LPSNS rats (but not LPSS rats) and negatively correlated with IR temperatures. IRT could be a useful early identifier of infants at risk of death from endotoxic shock, which may be related to early failure of central nervous system (CNS) thermogenic mechanisms mediated by unique hypothalamic changes in inflammatory (microglia) and ECM neurochemistry.
Collapse
Affiliation(s)
- Sean N Curtis
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Catherine A Mayer
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Thomas M Raffay
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Juliann M DiFiore
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Richard J Martin
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Adriana C Hoffman
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Michael A Folz
- School of Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME, United States of America
| | - Mathias Dutschmann
- Pulmonary, Critical, and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Peter M MacFarlane
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.
| |
Collapse
|
2
|
Liu PZ, Raizen DM, Skarke C, Brooks TG, Anafi RC. Genetic variants associated with chronic fatigue syndrome predict population-level fatigue severity and actigraphic measurements. Sleep 2025; 48:zsae243. [PMID: 39442002 DOI: 10.1093/sleep/zsae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/24/2024] [Indexed: 10/25/2024] Open
Abstract
STUDY OBJECTIVES The diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (CFS) is based on a constellation of symptoms which center around fatigue. However, fatigue is commonly reported in the general population by people without CFS. Does the biology underlying fatigue in patients with CFS also drive fatigue experienced by individuals without CFS? METHODS We used UK Biobank actigraphy data to characterize differences in physical activity patterns and daily temperature rhythms between participants diagnosed with CFS compared to controls. We then tested if single nucleotide variants (SNVs) previously associated with CFS are also associated with the variation of these actigraphic CFS correlates and/or subjective fatigue symptoms in the general population. RESULTS Participants diagnosed with CFS (n = 295) had significantly decreased overall movement (Cohen's d = 0.220, 95% CI of -0.335 to -0.106, p-value = 2.42 × 10-15), lower activity amplitudes (Cohen's d = -0.377, 95% CI of -0.492 to -0.262, p-value = 1.74 × 10-6), and lower wrist temperature amplitudes (Cohen's d = -0.173, 95% CI of -0.288 to -0.059, p-value = .002) compared to controls (n = 63,133). Of 30 tested SNVs associated in the literature with CFS, one was associated in the control population with subjective fatigue and one with actigraphic measurements (FDR < 0.05). CONCLUSIONS The genetic overlap of CFS risk with actigraphy and subjective fatigue phenotypes suggests that some biological mechanisms underlying pathologic fatigue in patients with CFS also underlie fatigue symptoms at a broader population level. Therefore, understanding the biology of fatigue in general may inform our understanding of CFS pathophysiology.
Collapse
Affiliation(s)
- Patrick Z Liu
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Raizen
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carsten Skarke
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron C Anafi
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Mitchell D, Fuller A, Snelling EP, Tattersall GJ, Hetem RS, Maloney SK. Revisiting concepts of thermal physiology: understanding negative feedback and set-point in mammals, birds, and lizards. Biol Rev Camb Philos Soc 2025. [PMID: 39912218 DOI: 10.1111/brv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The thermoregulatory system of homeothermic endotherms operates to attain thermal equilibrium, that is no net loss or gain of heat, where possible, under a thermal challenge, and not to attain a set-point or any other target body temperature. The concept of a set-point in homeothermic temperature regulation has been widely misinterpreted, resulting in such confusion that some thermoregulation specialists have recommended that it be abandoned. But the set-point concept has enjoyed a resurgence in a different domain, lizard microclimate selection. We review the principles of thermoregulation in homeotherms, endorse a negative feedback system with independent set-points for individual thermo-effectors as its core mechanism, and address the misconceptions about homeothermic set-point. We also explore the concept of set-point range in lizard microclimate selection and conclude that there is substantial convergence between that concept and the set-points of homeothermic thermo-effectors, as thresholds. In neither homeothermic nor lizard thermoregulation is the concept of a unitary set-point appropriate. We review the problems of measuring the set-points for lizard microclimate selection. We do not believe that the set-point concept in thermoregulation should be abandoned just because it has been misinterpreted by some users. It is a valid concept, identifying the threshold body temperatures at which regulatory thermo-effectors will be activated, to aid in attaining thermal equilibrium.
Collapse
Affiliation(s)
- Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, WA, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, L2S 3A1, Canada
| | - Robyn S Hetem
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, WA, Australia
| |
Collapse
|
4
|
Zhang N, Yu M, Zhao Q, Feng B, Deng Y, Bean JC, Liu Q, Eappen BP, He Y, Conde KM, Liu H, Yang Y, Tu L, Wang M, Li Y, Yin N, Liu H, Han J, Threat DA, Xu N, Smiley T, Xu P, Chen L, Zeng T, He Y, Wang C. Altered thermal preference by preoptic estrogen receptor alpha neurons in postpartum females. Mol Metab 2025; 93:102108. [PMID: 39909189 DOI: 10.1016/j.molmet.2025.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE This study aims to investigate how reproductive experience (RE) alters thermal preference and thermoregulation in female mice, with a focus on estrogen receptor alpha (ERα)-expressing neurons in the preoptic area (POA). METHODS Thermal preference and body temperature were measured in female mice with and without RE, and virgin female mice with selective deletion of ERα from the POA (ERαPOA-KO). The number and activity of ERα-expressing POA neurons (ERαPOA) were assessed using immunohistochemistry and in vitro electrophysiology in response to temperature changes and ERα agonist. RESULTS We showed that female mice prefer a cooler environment starting from late pregnancy and persisting long term postpartum. Female mice with RE (>4 weeks post-weaning) displayed lower body temperature and a lower thermal preferred temperature, and lost preference for warm environments (30 °C) but preserved avoidance of cold environments (15 °C). This was associated with a significant decrease in the number of ERαPOA neurons. Importantly, virgin female ERαPOA-KO mice displayed lower thermal preferred temperature and impaired warm preference, mimicking RE mice. We further found that distinct ERαPOA subpopulations can be regulated by temperature changes with or without presynaptic blockers, and by ERα agonist. More importantly, RE decreased the number of warm-activated ERαPOA neurons and reduced the excitatory effects of warmth and estrogen-ERα signaling, while cold-activated ERαPOA neurons were slightly enhanced in female mice with RE. CONCLUSION Our results support that the thermosensing ability and estrogenic effects in ERαPOA neurons are regulated by reproductive experience, altering thermal preference.
Collapse
Affiliation(s)
- Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA; Department of Biological Chemistry, School of Pharmaceutical Sciences, South-central Minzu University, Wuhan, 430074, China
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Yue Deng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Taylor Smiley
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China.
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2025; 28:346-360. [PMID: 39653806 PMCID: PMC11802458 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
6
|
Rastas JP, Zhao Q, Johnson RA. Comparison of two active warming techniques on body temperature in healthy, anesthetized dogs premedicated with acepromazine or dexmedetomidine: A pilot study. PLoS One 2025; 20:e0317997. [PMID: 39883594 PMCID: PMC11781748 DOI: 10.1371/journal.pone.0317997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Temperature regulation in dogs is significantly impaired during general anesthesia. Glabrous skin on paws may facilitate thermoregulation from this area and is a potential target for interventions attenuating hypothermia. This pilot study aimed to compare efficacy of an innovative warming device placed on the front paws (AVAcore; AVA), with no warming methods (NONE) and conventional truncal warming methods (CONV; circulating water blanket/forced air warmer) on rectal temperature and anesthetic recovery times. Dogs were premedicated with acepromazine (ACE) or dexmedetomidine (DEX), induced with intravenous propofol and maintained on isoflurane. The change in rectal temperature was statistically separated into three segments: 15 minutes following premedication, prior to induction (T0-T15), 15 minutes following anesthetic induction into isoflurane maintenance (T15-T30), and >30 minutes of isoflurane maintenance (>T30). Overall, when warming treatments and time points were combined, the decrease in rectal temperature from baseline was significantly greater with ACE than DEX (P < 0.05). When ACE and DEX were analyzed separately, changes in rectal temperatures did not differ between warming techniques at T0-T15 and T15-T30 (P > 0.05). However, at >T30 minutes, slopes of the temperature change differed between all three warming device groups, despite whether ACE or DEX was administered; temperature decreased least in CONV whereas the NONE had the largest decreases (P < 0.05). At >T30, when warming devices were considered separately, slopes of the temperature change in AVA and NONE did not differ between ACE and DEX (P > 0.050). However, in CONV, DEX had a significantly faster increase in slope than did ACE (P < 0.05). No differences in recovery times were observed between techniques or premedications (P > 0.05). Although CONV provided the most stable thermoregulation in anesthetized dogs, the AVAcore also moderated decreases in body temperature associated with general anesthesia despite premedication, providing an additional warming technique in dogs.
Collapse
Affiliation(s)
- Jacob P. Rastas
- Department of Surgical Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Qianqian Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rebecca A. Johnson
- Department of Surgical Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Pertab JL, Merkley TL, Winiarski H, Cramond KMJ, Cramond AJ. Concussion and the Autonomic, Immune, and Endocrine Systems: An Introduction to the Field and a Treatment Framework for Persisting Symptoms. J Pers Med 2025; 15:33. [PMID: 39852225 PMCID: PMC11766534 DOI: 10.3390/jpm15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
A significant proportion of patients who sustain a concussion/mild traumatic brain injury endorse persisting, lingering symptoms. The symptoms associated with concussion are nonspecific, and many other medical conditions present with similar symptoms. Medical conditions that overlap symptomatically with concussion include anxiety, depression, insomnia, chronic pain, chronic fatigue, fibromyalgia, and cervical strain injuries. One of the factors that may account for these similarities is that these conditions all present with disturbances in the optimal functioning of the autonomic nervous system and its intricate interactions with the endocrine system and immune system-the three primary regulatory systems in the body. When clinicians are working with patients presenting with persisting symptoms after concussion, evidence-based treatment options drawn from the literature are limited. We present a framework for the assessment and treatment of persisting symptoms following concussion based on the available evidence (treatment trials), neuroanatomical principles (research into the physiology of concussion), and clinical judgment. We review the research supporting the premise that behavioral interventions designed to stabilize and optimize regulatory systems in the body following injury have the potential to reduce symptoms and improve functioning in patients. Foundational concussion rehabilitation strategies in the areas of sleep stabilization, fatigue management, physical exercise, nutrition, relaxation protocols, and behavioral activation are outlined along with practical strategies for implementing intervention modules with patients.
Collapse
Affiliation(s)
- Jon L. Pertab
- Neurosciences Institute, Intermountain Healthcare, Murray, UT 84107, USA
| | - Tricia L. Merkley
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Holly Winiarski
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
8
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
9
|
Li J, Zhou Z, Wu Y, Zhao J, Duan H, Peng Y, Wang X, Fan Z, Yin L, Li M, Liu F, Yang Y, Du L, Li J, Zhong H, Hou W, Zhang F, Ma H, Zhang X. Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons. Theranostics 2025; 15:1376-1398. [PMID: 39816678 PMCID: PMC11729562 DOI: 10.7150/thno.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS. Methods: Male C57BL/6 mice (6-8 weeks) and male TRPV1-Cre mice (6-8 weeks) were used in our experiments. The EHS model with or without HA training were established for this study. RNA sequencing, qPCR, immunoblot, immunofluorescent assays, calcium imaging, optogenetic/ chemical genetic intervention, virus tracing, patch clamp, and other methods were employed to investigate the molecular mechanism and neural circuit by which HA training improves the function of the medial preoptic area (mPOA) neurons. Furthermore, a novel exosome-based strategy targeting the central nervous system to deliver irisin, a protective peptide generated by HA, was established to protect against EHS. Results: HA-related neurons in the mPOA expressing transient receptor potential vanilloid-1 (TRPV1) were identified as a population whose activation reduces Tb; inversely, dysfunction of these neurons contributes to hyperthermia and EHS. mPOATRPV1 neurons facilitate vasodilation and reduce adipose tissue thermogenesis, which is associated with their inhibitory projection to the raphe pallidus nucleus (RPa) and dorsal medial hypothalamus (DMH) neurons, respectively. Furthermore, HA improves the function of preoptic heat-sensitive neurons by enhancing TRPV1 expression, and Trpv1 ablation reverses the HA-induced heat tolerance. A central nervous system-targeted exosome strategy to deliver irisin, a protective peptide generated by HA, can promote preoptic TRPV1 expression and exert similar protective effects against EHS. Conclusions: Preoptic TRPV1 neurons could be enhanced by HA, actively contributing to heat defense through the mPOA"DMH/RPa circuit during EHS, which results in the suppression of adipose tissue thermogenesis and facilitation of vasodilatation. A delivery strategy of exosomes engineered with RVG-Lamp2b-Irisin significantly improves the function of mPOATRPV1 neurons, providing a promising preventive strategy for EHS in the future.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Ziqing Zhou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China, 100071
| | - You Wu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jianshuai Zhao
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haokai Duan
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yuliang Peng
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xiaoke Wang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lu Yin
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Mengyun Li
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fuhong Liu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yongheng Yang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lixia Du
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jin Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haixing Zhong
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Wugang Hou
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| |
Collapse
|
10
|
Rothwell ES, Viechweg SS, Prokai L, Mong JA, Lacreuse A. Oral administration of ethinyl estradiol and the brain-selective estrogen prodrug DHED in a female common marmoset model of menopause: Effects on cognition, thermoregulation, and sleep. Horm Behav 2025; 167:105670. [PMID: 39721460 DOI: 10.1016/j.yhbeh.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE2, 4 μg/kg/day, p.o.) treatment and after EE2 withdrawal. We also assessed a brain-selective hormonal therapy devoid of estrogenic effects in peripheral tissues on the same measures (cognition, sleep, thermoregulation) after treatment with the estrogen prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED, 100 μg/kg/day, p.o) and DHED withdrawal. Reversal learning performance was improved with EE2 or DHED treatment relative to phases without hormone administration, as indicated by a faster reversal of the stimulus/reward contingencies. Both EE2 and DHED increased non-REM sleep and reduced nighttime awakenings relative to baseline, but to the detriment of REM sleep which was highest at baseline. Nasal temperature in response to mild external warming was highest, and overnight core body temperature lowest, in the DHED treatment phase compared to both the EE2 and baseline phases. These results suggest that low dose estradiol, delivered either peripherally or centrally via DHED, benefits selective aspects of cognition and sleep in a marmoset menopause model. DHED appears a promising therapeutic candidate for alleviating the cognitive and sleep disruptions associated with estrogen deficiency in primates.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Shaun S Viechweg
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
11
|
Wang Z, Li L, Li M, Lu Z, Qin L, Naumann RK, Wang H. Chemogenetic Modulation of Preoptic Gabre Neurons Decreases Body Temperature and Heart Rate. Int J Mol Sci 2024; 25:13061. [PMID: 39684772 DOI: 10.3390/ijms252313061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
The preoptic area of the hypothalamus is critical for regulation of brain-body interaction, including circuits that control vital signs such as body temperature and heart rate. The preoptic area contains approximately 70 molecularly distinct cell types. The Gabre gene is expressed in a subset of preoptic area cell types. It encodes the GABA receptor ε-subunit, which is thought to confer resistance to anesthetics at the molecular level, but the function of Gabre cells in the brain remains largely unknown. We generated and have extensively characterized a Gabre-cre knock-in mouse line and used chemogenetic tools to interrogate the function of Gabre cells in the preoptic area. Comparison with macaque GABRE expression revealed the conserved character of Gabre cells in the preoptic area. In awake mice, we found that chemogenetic activation of Gabre neurons in the preoptic area reduced body temperature, whereas chemogenetic inhibition had no effect. Furthermore, chemogenetic inhibition of Gabre neurons in the preoptic area decreased the heart rate, whereas chemogenetic activation had no effect under isoflurane anesthesia. These findings suggest an important role of preoptic Gabre neurons in maintaining vital signs such as body temperature and heart rate during wakefulness and under anesthesia.
Collapse
Affiliation(s)
- Ziyue Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lanxiang Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Zhonghua Lu
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Robert Konrad Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
12
|
Yoshimura Y, Watanabe T, Nakamura K, Futatsugi A, Mikoshiba K, Hiyama TY. High-temperature exposure during the early embryonic stage lowers core body temperature after growth via a hypothalamic Igfbp2-dependent mechanism. Sci Rep 2024; 14:29586. [PMID: 39627352 PMCID: PMC11615319 DOI: 10.1038/s41598-024-80252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The mechanisms underlying individual differences in core body temperature (Tc) are unexplained by genetic factors and poorly understood. Here, we investigated whether the environmental temperature during early development affects postnatal Tc. Mouse embryos were cultured from pronuclear to blastocyst stage in either standard (37 °C) or high (38 °C) temperature, and the Tc of each grown-up adult was measured. The adult 38 °C-incubated mice showed lower Tc than the 37 °C group without changes in activity levels. In the hypothalamus of the 38 °C group, insulin-like growth factor 1 (Igf1) and IGF binding protein 2 (Igfbp2) gene expression increased. The decrease in Tc in the wild-type 38 °C group was alleviated by brain neuron-specific Igfbp2 knockout. This suggests that IGFBP2 binds to IGF-1 and, inhibits its binding to the receptor, thereby interfering with the thermogenic signaling of IGF-1. These results suggest that one of the factors determining individual postnatal Tc is the ambient temperature of embryos at an early developmental stage, which could affect epigenetic changes, such as DNA methylation, leading to alterations in the Igf1 and Igfbp2 gene expressions in adulthood.
Collapse
Affiliation(s)
- Yuki Yoshimura
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Tatsuo Watanabe
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Akira Futatsugi
- Department of Basic Medical Sciences, Kobe City College of Nursing, 3-4 Gakuen-nishi-machi, Nishi-ku, Kobe, Hyogo, 651-2103, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- International Platform for Dryland Research and Education, Tottori University, 1390 Hamasaka, Tottori, Tottori, 680-0001, Japan.
| |
Collapse
|
13
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
14
|
Lam B, Kajderowicz KM, Keys HR, Roessler JM, Frenkel EM, Kirkland A, Bisht P, El-Brolosy MA, Jaenisch R, Bell GW, Weissman JS, Griffith EC, Hrvatin S. Multi-species genome-wide CRISPR screens identify conserved suppressors of cold-induced cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605098. [PMID: 39091747 PMCID: PMC11291167 DOI: 10.1101/2024.07.25.605098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cells must adapt to environmental changes to maintain homeostasis. One of the most striking environmental adaptations is entry into hibernation during which core body temperature can decrease from 37°C to as low at 4°C. How mammalian cells, which evolved to optimally function within a narrow range of temperatures, adapt to this profound decrease in temperature remains poorly understood. In this study, we conducted the first genome-scale CRISPR-Cas9 screen in cells derived from Syrian hamster, a facultative hibernator, as well as human cells to investigate the genetic basis of cold tolerance in a hibernator and a non-hibernator in an unbiased manner. Both screens independently revealed glutathione peroxidase 4 (GPX4), a selenium-containing enzyme, and associated proteins as critical for cold tolerance. We utilized genetic and pharmacological approaches to demonstrate that GPX4 is active in the cold and its catalytic activity is required for cold tolerance. Furthermore, we show that the role of GPX4 as a suppressor of cold-induced cell death extends across hibernating species, including 13-lined ground squirrels and greater horseshoe bats, highlighting the evolutionary conservation of this mechanism of cold tolerance. This study identifies GPX4 as a central modulator of mammalian cold tolerance and advances our understanding of the evolved mechanisms by which cells mitigate cold-associated damage-one of the most common challenges faced by cells and organisms in nature.
Collapse
|
15
|
Costa LHA, Trajano IP, Passaglia P, Branco LGS. Thermoregulation and survival during sepsis: insights from the cecal ligation and puncture experimental model. Intensive Care Med Exp 2024; 12:100. [PMID: 39522078 PMCID: PMC11551088 DOI: 10.1186/s40635-024-00687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sepsis remains a major global health concern due to its high prevalence and mortality. Changes in body temperature (Tb), such as hypothermia or fever, are diagnostic indicators and play a crucial role in the pathophysiology of sepsis. This study aims to characterize the thermoregulatory mechanisms during sepsis using the cecal ligation and puncture (CLP) model and explore how sepsis severity and ambient temperature (Ta) influence Tb regulation and mortality. Rats were subjected to mild or severe sepsis by CLP while housed at thermoneutral (28 °C) or subthermoneutral (22 °C) Ta, and their Tb was monitored for 12 h. Blood and hypothalamus were collected for cytokines and prostaglandin E2 (PGE2) analysis. RESULTS At 28 °C, febrile response magnitude correlated with sepsis severity and inflammatory response, with tail vasoconstriction as the primary heat retention mechanism. At 22 °C, Tb was maintained during mild sepsis but dropped during severe sepsis, linked to reduced UCP1 expression in brown adipose tissue and less effective vasoconstriction. Despite differences in thermoregulatory responses, both Ta conditions induced a persistent inflammatory response and increased hypothalamic PGE2 production. Notably, mortality in severe sepsis was significantly higher at 28 °C (80%) compared to 22 °C (0%). CONCLUSIONS Our findings reveal that ambient temperature and the inflammatory burden critically influence thermoregulation and survival during early sepsis. These results emphasize the importance of considering environmental factors in preclinical sepsis studies. Although rodents in experimental settings are often adapted to cold environments, these conditions may not fully translate to human sepsis, where cold adaptation is rare. Thus, researchers should carefully consider these variables when designing experiments and interpreting translational implications.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Isis P Trajano
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia Passaglia
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Karpęcka-Gałka E, Frączek B. Nutrition, hydration and supplementation considerations for mountaineers in high-altitude conditions: a narrative review. Front Sports Act Living 2024; 6:1435494. [PMID: 39584049 PMCID: PMC11582915 DOI: 10.3389/fspor.2024.1435494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024] Open
Abstract
Staying and climbing in high mountains (>2,500 m) involves changes in diet due to poor access to fresh food, lack of appetite, food poisoning, environmental conditions and physiological changes. The purpose of this review is to summarize the current knowledge on the principles of nutrition, hydration and supplementation in high-altitude conditions and to propose practical recommendations/solutions based on scientific literature data. Databases such as Pubmed, Scopus, ScienceDirect and Google Scholar were searched to find studies published from 2000 to 2023 considering articles that were randomized, double-blind, placebo-controlled trials, narrative review articles, systematic reviews and meta-analyses. The manuscript provides recommendations for energy supply, dietary macronutrients and micronutrients, hydration, as well as supplementation recommendations and practical tips for mountaineers. In view of the difficulties of being in high mountains and practicing alpine climbing, as described in the review, it is important to increase athletes' awareness of nutrition and supplementation in order to improve well-being, physical performance and increase the chance of achieving a mountain goal, and to provide the appropriate dietary care necessary to educate mountaineers and personalize recommendations to the needs of the individual.
Collapse
Affiliation(s)
- Ewa Karpęcka-Gałka
- Doctoral School of Physical Culture Sciences, University of Physical Education in Krakow, Cracow, Poland
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education in Krakow, Cracow, Poland
| |
Collapse
|
17
|
Bechtel W, Bich L. Situating homeostasis in organisms: maintaining organization through time. J Physiol 2024; 602:6003-6020. [PMID: 39383321 DOI: 10.1113/jp286883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
Since it was inspired by Bernard and developed and named by Cannon, the concept of homeostasis has been invoked by many as the central theoretical framework for physiology. It has also been the target of numerous criticisms that have elicited the introduction of a plethora of alternative concepts. We argue that many of the criticisms actually target the more restrictive account of homeostasis advanced by the cyberneticists. What was crucial to Bernard and Cannon was a focus on the maintenance of the organism as the goal of physiological regulation. We analyse how Bernard's and Cannon's broad conception of what was required to maintain the organism was narrowed to negative feedback, characterized in terms of setpoints, by the cyberneticists and demonstrate how many of the alternative concepts challenge the role of setpoints - treating them as variable in light of circumstances or in anticipation of future circumstances, or as dispensable altogether. To support our analysis, we draw on the experimental and theoretical work on thermoregulation, a phenomenon that has been considered as a paradigmatic example of homeostasis and has been a common focus of those advancing alternative concepts. To integrate the insights advanced by the original proponents of homeostasis and the theorists proposing replacement notions we advance a framework in which regulation is viewed from the perspective of maintaining the organism.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California, San Diego, CA, USA
| | - Leonardo Bich
- Department of Philosophy, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
18
|
Tachi A, Takahashi Y, Kotani T. Association between combined use of epidural analgesia and oxytocin administration during labor and offspring outcomes: a narrative review and proposal. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:549-563. [PMID: 39780929 PMCID: PMC11704772 DOI: 10.18999/nagjms.86.4.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 01/11/2025]
Abstract
Studies have suggested that the administration of epidural analgesia (Epi) and oxytocin (OT) during labor affects offspring outcomes. However, the effects of their combined use remain unclear. This article aimed to review the outcomes of offspring exposed to Epi and OT, identify research gaps, and discuss future research directions. We searched the MEDLINE/PubMed, Web of Science, and Cochrane Library databases to identify studies describing offspring outcomes in the Epi, OT, Epi-OT, and control groups. We included one systematic review, six cohort studies, and one case-control study. The offspring outcomes at birth did not differ between the Epi-OT and Epi groups. In the first hour of life, the pre-feeding and sucking behaviors of the Epi-OT group showed an inverse correlation. At 2 days of age, the breastfeeding behavior and skin temperature patterns differed significantly between the Epi-OT and other groups. At 4 days of age, hyperbilirubinemia was more prevalent in the Epi-OT versus control group. Behavioral scores at 1 month differed little among the Epi-OT, Epi, and control groups. No eligible studies examined 1 month to 1 year of life. From 1 to >13 years of age, the risk of autism spectrum disorder was higher in the Epi and Epi-OT groups versus the control group. Most eligible studies were small and observational without randomization, and the results were inconsistent. Additional large cohort studies of various aspects of offspring development are required to assess the long-term effects of Epi-OT administration.
Collapse
Affiliation(s)
- Asuka Tachi
- Department of Obstetrics and Gynecology, Inuyama Chuo General Hospital, Inuyama, Japan
| | - Yuki Takahashi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Jaswal P, Bansal S, Chaudhary R, Basu J, Bansal N, Kumar S. Nitric oxide: Potential therapeutic target in Heat Stress-induced Multiple Organ Dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03556-z. [PMID: 39466442 DOI: 10.1007/s00210-024-03556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
As climate change intensifies, urgent action is needed to address global warming and its associated health risks, particularly in vulnerable regions. Rising global temperature and increasing frequency of heatwaves present a hidden health risk, disrupting the body's temperature regulation and leading to severe consequences such as heat stress-induced multiple organ dysfunction (HS-MOD). Multiple organ injury triggered by heat stress involves complex molecular pathways such as nitric oxide dysregulation, inflammation, oxidative stress, mitochondrial dysfunction, calcium homeostasis disruption, and autophagy impairment that contribute to cellular damage. Understanding these molecular pathways is crucial for developing targeted therapeutic interventions to alleviate the impact of heat stress (HS). As we explore numerous therapeutic strategies, a remarkable molecule captures our attention: nitric oxide (NO). This colorless gas, mainly produced by nitric oxide synthase (NOS) enzymes, plays crucial roles in various body functions. From promoting vasodilation and neurotransmission to regulating the immune response, platelet function, cell signaling, and reproductive health, NO stands out for its versatility. Exploring it as a promising treatment for heat stress-induced multiple organ injury highlights its distinctive features in the journey towards effective therapeutic interventions. This involves exploring both pharmacological avenues, considering the use of NO donors and antioxidants, and non-pharmacological strategies, such as adopting nitrate-rich diets and engaging in exercise regimens. This review highlights the concept of heat stress, the molecular framework of the disease, and treatment options based upon some new interventions.
Collapse
Affiliation(s)
- Priya Jaswal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Seema Bansal
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Rishabh Chaudhary
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jhilli Basu
- Department of Pharmacology, Institute of Medical Sciences Krishnanagar, Naida, West Bengal, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, India
| | - Subodh Kumar
- Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Sciences and Research (PGIMER), Chandigarh, India
| |
Collapse
|
20
|
Aitken TJ, Liu Z, Ly T, Shehata S, Sivakumar N, La Santa Medina N, Gray LA, Zhang J, Dundar N, Barnes C, Knight ZA. Negative feedback control of hypothalamic feeding circuits by the taste of food. Neuron 2024; 112:3354-3370.e5. [PMID: 39153476 PMCID: PMC11591316 DOI: 10.1016/j.neuron.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhengya Liu
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingkun Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Pappalettera C, Mansi SA, Arnesano M, Vecchio F. Decoding influences of indoor temperature and light on neural activity: entropy analysis of electroencephalographic signals. Pflugers Arch 2024; 476:1539-1554. [PMID: 39012352 DOI: 10.1007/s00424-024-02988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Understanding the neural responses to indoor characteristics like temperature and light is crucial for comprehending how the physical environment influences the human brain. Our study introduces an innovative approach using entropy analysis, specifically, approximate entropy (ApEn), applied to electroencephalographic (EEG) signals to investigate neural responses to temperature and light variations in indoor environments. By strategically placing electrodes over specific brain regions linked to temperature and light processing, we show how ApEn can be influenced by indoor factors. We also integrate heart indices from a multi-sensor bracelet to create a machine learning classifier for temperature conditions. Results showed that in anterior frontal and temporoparietal areas, neutral temperature conditions yield higher ApEn values. The anterior frontal area showed a trend of gradually decreasing ApEn values from neutral to warm conditions, with cold being in an intermediate position. There was a significant interaction between light and site factors, only evident in the temporoparietal region. Here, the neutral light condition had higher ApEn values compared to blue and red light conditions. Positive correlations between anterior frontal ApEn and thermal comfort scores suggest a link between entropy and perceived thermal comfort. Our quadratic SVM classifier, incorporating entropy and heart features, demonstrates strong performance (until 90% in terms of AUC, accuracy, sensitivity, and specificity) in classifying temperature sensations. This study offers insights into neural responses to indoor factors and presents a novel approach for temperature classification using EEG entropy and heart features.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Silvia Angela Mansi
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Marco Arnesano
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy.
| |
Collapse
|
22
|
Yadav A, Kumar R, Vaish V, Malik S, Rani S. Rising global temperatures and its impact on sleep behavior of male redheaded bunting (Emberiza bruniceps). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60108-60125. [PMID: 39369354 DOI: 10.1007/s11356-024-35160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Anthropogenic global warming is one of the most pervasive threats to nature and biodiversity. The magnitude with which earths' temperature is rising is affecting every lifeform uniquely; however, the studies highlighting the impacts of global warming on avian sleep are scarce. To this end, the present study was aimed at analyzing the impact of global warming on sleep behavior of a nocturnal migrant, Emberiza bruniceps. For this purpose, the birds were divided into two groups (N = 15 each), subjected to high (35 ± 1 °C) and low (19 ± 1 °C) temperature schedule with concurrent exposure to 8L:16D (short day; SD) photoperiod followed by 13L:11D (long day; LD). The experiment continued till 7 cycles of zugunruhe (LD) in birds. The results reveal significant impact of temperature treatment on initiation and quality of zugunruhe. Temporal distribution of activity and rest varied according to the temperature provided. Focusing on rest and specifically on sleep of birds, high ambient temperatures resulted in greater sleep fragmentation (evident by increased awakenings during night), whereas low temperature created a sleep conducive environment (evident by abundance of back sleep). Besides postural differences, high temperature resulted in reduced sleep duration, sleep onset latency and circulating plasma melatonin levels in comparison with low temperature suggesting the negative impact of high temperature on different sleep attributes. Not only sleep, seasonal physiology of birds such as hyperphagia, gain in body mass, and fat stores showed significant reduction in high temperature condition. Besides behavioral and physiological alterations, high ambient temperature led to elevated expression of temperature sensitive (trpv4, trpm8, hspa8, and hsp70) genes. Enhanced expression of chrm3 (responsible for wakefulness) also affirms sleep fragmentation in response to high temperature. Thus, the study highlights the negative impact of high temperature on birds' sleep behavior and seasonal physiology.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- CSIR-Central Drug Research Institute, Lucknow, India
| | - Raj Kumar
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Dr. B.R. Ambedkar Government Girls P.G. College Fatehpur, Prayagraj, UP, India
| | - Vaibhav Vaish
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shalie Malik
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sangeeta Rani
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
23
|
Romano MR, Barachetti L, Ferrara M, Mauro A, Crepaldi L, Bronzo V, Franzo G, Ravasio G, Giudice C. Temperature control during pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06631-6. [PMID: 39249514 DOI: 10.1007/s00417-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE To evaluate the impact of temperature-controlled pars plana vitrectomy (PPV) on structural and functional outcomes in a rabbit eye model in vivo. METHODS Ten healthy New Zealand White rabbits underwent temperature-controlled PPV in the right eye (group A), using a device specifically designed to heat the infusion fluid/air and integrated into the vitrectomy machine, and conventional PPV in the left eye (group B). Both eyes received ophthalmic examination and electroretinography (ERG) before and 1 week postoperatively. After 1-week ERG, rabbits were enucleated and then sacrificed. Histological and immunohistochemical examinations were performed on enucleated eyes and expression of glial fibrillary acidic protein (GFAP) and vimentin investigated. RESULTS Postoperatively, only group B showed significantly decreased amplitude and increased latency of a-wave at 3 cd·s/m2 (p = 0.001 and 0.005, respectively). Significant increase of b-wave latency at 0.01 cd·s/m2 was detected in both groups (p = 0.019 and 0.023, respectively). Postoperatively, amplitude of oscillatory potentials (OPs) increased significantly in group A (p = 0.023) and decreased in group B. In both groups, OPs latency significantly increased at 1-week test (P < 0.05). A greater number of eyes without structural retinal alterations was detected in group A compared to group B (6 vs 5, respectively). GFAP expression was higher in group B than group A, even if the difference was not statistically significant. CONCLUSION Temperature-controlled PPV resulted in more favorable functional and structural outcomes in rabbit eyes compared with conventional PPV, supporting the potential beneficial role of the intraoperative management of intraocular temperature in vitreoretinal surgery.
Collapse
Affiliation(s)
- Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Moltalcini 4, 20072, Pieve Emanuele-Milano, Italy.
- Department of Ophthalmology, Humanitas Gavazzeni-Castelli, Bergamo, Italy.
| | - Laura Barachetti
- Polo Oculistico Veterinario, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Mariantonia Ferrara
- Eye Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- School of Medicine, University of Malaga, Malaga, Spain
| | - Alessandro Mauro
- Department of Engineering, University of Naples "Parthenope", Naples, Italy
| | - Lorenzo Crepaldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Moltalcini 4, 20072, Pieve Emanuele-Milano, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, Padua University, Padua, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Chiara Giudice
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
24
|
Yu P, Li Y, Fu W, Yu X, Sui D, Xu H, Sun W. Microglia Caspase11 non-canonical inflammasome drives fever. Acta Physiol (Oxf) 2024; 240:e14187. [PMID: 38864370 DOI: 10.1111/apha.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
AIM Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
26
|
Yoshida N, Daikoku T, Nagai Y, Kuniyoshi Y. Emergence of integrated behaviors through direct optimization for homeostasis. Neural Netw 2024; 177:106379. [PMID: 38762941 DOI: 10.1016/j.neunet.2024.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Homeostasis is a self-regulatory process, wherein an organism maintains a specific internal physiological state. Homeostatic reinforcement learning (RL) is a framework recently proposed in computational neuroscience to explain animal behavior. Homeostatic RL organizes the behaviors of autonomous embodied agents according to the demands of the internal dynamics of their bodies, coupled with the external environment. Thus, it provides a basis for real-world autonomous agents, such as robots, to continually acquire and learn integrated behaviors for survival. However, prior studies have generally explored problems pertaining to limited size, as the agent must handle observations of such coupled dynamics. To overcome this restriction, we developed an advanced method to realize scaled-up homeostatic RL using deep RL. Furthermore, several rewards for homeostasis have been proposed in the literature. We identified that the reward definition that uses the difference in drive function yields the best results. We created two benchmark environments for homeostasis and performed a behavioral analysis. The analysis showed that the trained agents in each environment changed their behavior based on their internal physiological states. Finally, we extended our method to address vision using deep convolutional neural networks. The analysis of a trained agent revealed that it has visual saliency rooted in the survival environment and internal representations resulting from multimodal input.
Collapse
Affiliation(s)
- Naoto Yoshida
- Graduate School of Information Science and Technology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Tatsuya Daikoku
- International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Kuniyoshi
- Graduate School of Information Science and Technology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
27
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. eLife 2024; 13:RP98677. [PMID: 39207910 PMCID: PMC11361704 DOI: 10.7554/elife.98677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.
Collapse
|
28
|
Andrikopoulos D, Vassiliou G, Fatouros P, Tsirmpas C, Pehlivanidis A, Papageorgiou C. Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study. BMC Psychiatry 2024; 24:547. [PMID: 39103819 PMCID: PMC11302198 DOI: 10.1186/s12888-024-05987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifaceted neurodevelopmental psychiatric condition that typically emerges during childhood but often persists into adulthood, significantly impacting individuals' functioning, relationships, productivity, and overall quality of life. However, the current diagnostic process exhibits limitations that can significantly affect its overall effectiveness. Notably, its face-to-face and time-consuming nature, coupled with the reliance on subjective recall of historical information and clinician subjectivity, stand out as key challenges. To address these limitations, objective measures such as neuropsychological evaluations, imaging techniques and physiological monitoring of the Autonomic Nervous System functioning, have been explored. METHODS The main aim of this study was to investigate whether physiological data (i.e., Electrodermal Activity, Heart Rate Variability, and Skin Temperature) can serve as meaningful indicators of ADHD, evaluating its utility in distinguishing adult ADHD patients. This observational, case-control study included a total of 76 adult participants (32 ADHD patients and 44 healthy controls) who underwent a series of Stroop tests, while their physiological data was passively collected using a multi-sensor wearable device. Univariate feature analysis was employed to identify the tests that triggered significant signal responses, while the Informative k-Nearest Neighbors (KNN) algorithm was used to filter out less informative data points. Finally, a machine-learning decision pipeline incorporating various classification algorithms, including Logistic Regression, KNN, Random Forests, and Support Vector Machines (SVM), was utilized for ADHD patient detection. RESULTS Results indicate that the SVM-based model yielded the optimal performance, achieving 81.6% accuracy, maintaining a balance between the experimental and control groups, with sensitivity and specificity of 81.4% and 81.9%, respectively. Additionally, integration of data from all physiological signals yielded the best results, suggesting that each modality captures unique aspects of ADHD. CONCLUSIONS This study underscores the potential of physiological signals as valuable diagnostic indicators of adult ADHD. For the first time, to the best of our knowledge, our findings demonstrate that multimodal physiological data collected via wearable devices can complement traditional diagnostic approaches. Further research is warranted to explore the clinical applications and long-term implications of utilizing physiological markers in ADHD diagnosis and management.
Collapse
Affiliation(s)
| | - Georgia Vassiliou
- First Department of Psychiatry, Eginition Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Artemios Pehlivanidis
- First Department of Psychiatry, Eginition Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Charalabos Papageorgiou
- First Department of Psychiatry, Eginition Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece
- Neurosciences and Precision Medicine Research Institute "Costas Stefanis", University Mental Health, Athens, Greece
| |
Collapse
|
29
|
Anatychuk L, Kobylianskyi R, Zadorozhnyy O, Kustryn T, Nasinnyk I, Korol A, Pasyechnikova N. Ocular surface heat flux density as a biomarker related to diabetic retinopathy (pilot study). ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:107-111. [PMID: 38826853 PMCID: PMC11143892 DOI: 10.1016/j.aopr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024]
Affiliation(s)
- Lukyan Anatychuk
- Institute of Thermoelectricity of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Chernivtsi, Ukraine
- Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Roman Kobylianskyi
- Institute of Thermoelectricity of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Chernivtsi, Ukraine
- Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Oleg Zadorozhnyy
- State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine", Odesa, Ukraine
| | - Taras Kustryn
- State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine", Odesa, Ukraine
| | - Illia Nasinnyk
- State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine", Odesa, Ukraine
| | - Andrii Korol
- State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine", Odesa, Ukraine
| | - Nataliya Pasyechnikova
- State Institution "The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine", Odesa, Ukraine
| |
Collapse
|
30
|
Stevenson TJ. Defining the brain control of physiological stability. Horm Behav 2024; 164:105607. [PMID: 39059231 DOI: 10.1016/j.yhbeh.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The last few decades have seen major advances in neurobiology and uncovered novel genetic and cellular substrates involved in the control of physiological set points. In this Review, I discuss the limitations in the definition of homeostatic set points established by Walter B Canon and highlight evidence that two other physiological systems, namely rheostasis and allostasis provide distinct inputs to independently modify set-point levels. Using data collected over the past decade, the hypothalamic and genetic basis of regulated changes in set-point values by rheostatic mechanisms are described. Then, the role of higher-order brain regions, such as hippocampal circuits, for experience-dependent, allostatic induced changes in set-points are outlined. I propose that these systems provide a hierarchical organization of physiological stability that exists to maintain set-point values. The hierarchical organization of physiology has direct implications for basic and medical research, and clinical practice.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
31
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
32
|
Kisliouk T, Ravi PM, Rosenberg T, Meiri N. Embryonic manipulations shape life-long, heritable stress responses through complex epigenetic mechanisms: a review. Front Neurosci 2024; 18:1435065. [PMID: 39099633 PMCID: PMC11294202 DOI: 10.3389/fnins.2024.1435065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing an organism's likelihood of survival hinges on fostering a balanced and adaptable development of robust stress response systems. This critical process is significantly influenced by the embryonic environment, which plays a pivotal role in shaping neural circuits that define the stress response set-point. While certain embryonic conditions offer advantageous outcomes, others can lead to maladaptive responses. The establishment of this response set-point during embryonic development can exert life-long and inheritable effects on an organism's physiology and behavior. This review highlights the significance of multilevel epigenetic regulation and the intricate cross-talk among these layers in response to heat stress during the embryonic period, with a particular focus on insights gained from the avian model.
Collapse
Affiliation(s)
- Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Padma Malini Ravi
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| | - Tali Rosenberg
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon Leziyyon, Israel
| |
Collapse
|
33
|
Suito T, Tominaga M. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits 2024; 18:1435757. [PMID: 39045140 PMCID: PMC11263211 DOI: 10.3389/fncir.2024.1435757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, Drosophila melanogaster. Studies of Drosophila thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or Drosophila melanogaster.
Collapse
Affiliation(s)
- Takuto Suito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
34
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
35
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet 2024; 20:e1011036. [PMID: 38968323 PMCID: PMC11253941 DOI: 10.1371/journal.pgen.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/17/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
36
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
37
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
38
|
Sur S, Sharma A. Understanding the role of temperature in seasonal timing: Effects on behavioural, physiological and molecular phenotypes. Mol Ecol 2024:e17447. [PMID: 38946196 DOI: 10.1111/mec.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Organisms adapt to daily and seasonal environmental changes to maximise their metabolic and reproductive fitness. For seasonally breeding animals, photoperiod is considered the most robust cue to drive these changes. It, however, does not explain the interannual variations in different seasonal phenotypes. Several studies have repeatedly shown the influence of ambient temperature on the timing of different seasonal physiologies including the timing of migration, reproduction and its associated behaviours, etc. In the present review, we have discussed the effects of changes in ambient temperature on different seasonal events in endotherms with a focus on migratory birds as they have evolved to draw benefits from distinct but largely predictable seasonal patterns of natural resources. We have further discussed the physiological and molecular mechanisms by which temperature affects seasonal timings. The primary brain area involved in detecting temperature changes is the hypothalamic preoptic area. This area receives thermal inputs via sensory neurons in the peripheral ganglia that measure changes in thermoregulatory tissues such as the skin and spinal cord. For the input signals, several thermal sensory TRP (transient receptor potential ion channels) channels have been identified across different classes of vertebrates. These channels are activated at specific thermal ranges. Once perceived, this information should activate an effector function. However, the link between temperature sensation and the effector pathways is not properly understood yet. Here, we have summarised the available information that may help us understand how temperature information is translated into seasonal timing.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Aakansha Sharma
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
39
|
Kishimoto A, Komiyama M, Wada H, Satoh-Asahara N, Yamakage H, Ajiro Y, Aoyama H, Katsuura Y, Imaizumi A, Hashimoto T, Sunagawa Y, Morimoto T, Kanai M, Kakeya H, Hasegawa K. Efficacy of highly bioavailable oral curcumin in asymptomatic or mild COVID-19 patients: a double-blind, randomized, placebo-controlled trial. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:93. [PMID: 38915116 PMCID: PMC11197342 DOI: 10.1186/s41043-024-00584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Even after the peak of the COVID-19 pandemic, the number of mild cases remains high, requiring continuous control. Curcumin, owing to its anti-inflammatory properties, can suppress vital proliferation and cytokine secretion in animal models. We developed a highly absorbable curcumin, curcuRouge® (cR), which is approximately 100 times more orally bioavailable than conventional curcumin. We evaluated the effect of cR on the inhibition of disease progression in asymptomatic or mildly symptomatic COVID-19 patients. METHODS This study evaluated the effect of 7-day oral intake of cR (360 mg twice daily). Patients within 5 days of COVID-19 diagnosis were randomly assigned to a placebo or cR group in a double-blind manner. RESULTS Primary endpoint events [body temperature (BT) ≥ 37.5 °C and saturation of percutaneous oxygen (SpO2) < 96%] were fewer than expected, and the rate of these events was 2.8% in the cR group (2/71) and 6.0% in the placebo group (4/67); hazard ratio (HR) = 0.532, 95% confidence interval (CI) 0.097-2.902. Patients receiving cR tended to take fewer antipyretic medications than those receiving placebo (HR = 0.716, 95% CI 0.374-1.372). Among patients with a normal range of BT at baseline, the BT change rate was significantly (p = 0.014) lower in the cR group (- 0.34%) versus placebo (- 0.01%). CONCLUSION The relative suppression of event rates and antipyretic medications taken, and significant decrease of subclinical BT support the anti-inflammatory effects of cR in asymptomatic or mildly symptomatic patients with COVID-19. TRIAL REGISTRATION Japan Registry of Clinical Trials (CRB5200002).
Collapse
Affiliation(s)
- Atsuhiro Kishimoto
- Therabiopharma Inc., Kawasaki City, Kanagawa, Japan
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
| | - Maki Komiyama
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya City, Aichi, Japan
| | - Hajime Yamakage
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
| | - Yoichi Ajiro
- Niijuku Co-Op Clinic, Tokyo, Japan
- Division of Clinical Research, National Hospital Organization Yokohama Medical Center, Yokohama City, Kanagawa, Japan
| | | | | | | | | | - Yoichi Sunagawa
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
| | - Tatsuya Morimoto
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
| | - Masashi Kanai
- Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto City, Kyoto, Japan
| | - Koji Hasegawa
- Clinical Research Institute, NHO Kyoto Medical Center, Kyoto City, Kyoto, Japan.
- Division of Clinical Research, National Hospital Organization Yokohama Medical Center, Yokohama City, Kanagawa, Japan.
| |
Collapse
|
40
|
Yuan C, Lü X, Bao W. Thermal Protection Performance of Biomimetic Flexible Skin for Deformable High-Speed Vehicles (DHSV-bio-FS) under Uniaxial Tensile Strain. RESEARCH (WASHINGTON, D.C.) 2024; 7:0394. [PMID: 38840900 PMCID: PMC11152053 DOI: 10.34133/research.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Vehicle skin is the key component in maintaining the aerodynamic shape of the vehicle. A deformable high-speed vehicle needs to adjust its shape in real time to realize optimum aerodynamic efficiency and to withstand extreme heat flow induced by high-speed flight, which requires the skin to possess large strain and high-temperature resistance. Traditional vehicle skin cannot satisfy both of the requirements. Biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) combines flexible material fabrication with transpiration cooling technology, which can simulate human skin sweat cooling, and has the characteristics of large strain and high-temperature resistance. The thermal protection performance of the prepared prototype of DHSV-bio-FS was evaluated by simulation and wind tunnel experiments at 40% tensile strain with liquid water as coolant. Simulation results suggest that the surface temperature of the DHSV-bio-FS at 40% tensile strain is consistent with the temperature of the coolant (350 K) in a 3,000 K high-temperature gas environment. In addition, the prepared prototype DHSV-bio-FS survived for 1,200 s in a high-temperature gas environment of 200 kW/m2 in wind tunnel experiments. This paper verifies the reliability of DHSV-bio-FS in a high-temperature gas environment and can be deployed in applications of flexible skin for deformable high-speed vehicles (DHSV-FS).
Collapse
Affiliation(s)
- Chao Yuan
- School of Aerospace Science and Technology,
Xidian University, Xi’an 710071, China
| | - Xiaozhou Lü
- School of Aerospace Science and Technology,
Xidian University, Xi’an 710071, China
| | - Weimin Bao
- School of Aerospace Science and Technology,
Xidian University, Xi’an 710071, China
| |
Collapse
|
41
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
43
|
Gao Z, Santos RB, Rupert J, Van Drunen R, Yu Y, Eckel‐Mahan K, Kolonin MG. Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging. Aging Cell 2024; 23:e14138. [PMID: 38475941 PMCID: PMC11296101 DOI: 10.1111/acel.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rafael Bravo Santos
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph Rupert
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rachel Van Drunen
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Kristin Eckel‐Mahan
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| |
Collapse
|
44
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
45
|
Vöröslakos M, Zhang Y, McClain K, Huszár R, Rothstein A, Buzsáki G. ThermoMaze: A behavioral paradigm for readout of immobility-related brain events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550518. [PMID: 37546818 PMCID: PMC10402115 DOI: 10.1101/2023.07.25.550518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism's responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal's natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, mice avoid the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of the animal. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory-consummatory transitions and open new options for studying behavior-mediated temperature homeostasis.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Yunchang Zhang
- Neuroscience Institute and New York University, New York, NY 10016, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Kathryn McClain
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Roman Huszár
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Aryeh Rothstein
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute and New York University, New York, NY 10016, USA
- Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
46
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
47
|
Versteeg N, Wellauer V, Wittenwiler S, Aerenhouts D, Clarys P, Clijsen R. Short-term cutaneous vasodilatory and thermosensory effects of topical methyl salicylate. Front Physiol 2024; 15:1347196. [PMID: 38706945 PMCID: PMC11066213 DOI: 10.3389/fphys.2024.1347196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Methyl salicylate, the main compound of wintergreen oil, is widely used in topical applications. However, its vascular and thermosensory effects are not fully understood. The primary aim was to investigate the effects of topical methyl salicylate on skin temperature (Tskin), skin microcirculation (MCskin) and muscle oxygen saturation (SmO2) compared to a placebo gel. The secondary aim was to assess thermosensory responses (thermal sensation, thermal comfort) and to explore to which extent these sensations correspond to the physiological responses over time. Methods 21 healthy women (22.2 ± 2.9 years) participated in this single-blind, randomized controlled trial. Custom-made natural wintergreen oil (12.9%), containing methyl salicylate (>99%) and a placebo gel, 1 g each, were applied simultaneously to two paravertebral skin areas (5 cm × 10 cm, Th4-Th7). Tskin (infrared thermal imaging), MCskin (laser speckle contrast imaging) and SmO2 (deep tissue oxygenation monitoring) and thermosensation (Likert scales) were assessed at baseline (BL) and at 5-min intervals during a 45 min post-application period (T0-T45). Results Both gels caused an initial decrease in Tskin, with Tskin(min) at T5 for both methyl salicylate (BL-T5: Δ-3.36°C) and placebo (BL-T5: Δ-3.90°C), followed by a gradual increase (p < .001). Methyl salicylate gel resulted in significantly higher Tskin than placebo between T5 and T40 (p < .05). For methyl salicylate, MCskin increased, with MCskin(max) at T5 (BL-T5: Δ88.7%). For placebo, MCskin decreased (BL-T5: Δ-17.5%), with significantly lower values compared to methyl salicylate between T0 and T45 (p < .05). Both gels had minimal effects on SmO2, with no significant differences between methyl salicylate and placebo (p > .05). Thermal sensation responses to topical methyl salicylate ranged from "cool" to "hot", with more intense sensations reported at T5. Discussion The findings indicate that topical methyl salicylate induces short-term cutaneous vasodilation, but it may not enhance skeletal muscle blood flow. This study highlights the complex sensory responses to its application, which may be based on the short-term modulation of thermosensitive transient receptor potential channels.
Collapse
Affiliation(s)
- Ninja Versteeg
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Vanessa Wellauer
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Selina Wittenwiler
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Dirk Aerenhouts
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
48
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589556. [PMID: 38659782 PMCID: PMC11042348 DOI: 10.1101/2024.04.15.589556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (PACAP) neurons firing activity. GABA-A receptor antagonist or genetic deletion of VGAT in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking VGAT resulted in excitation of PACAP neurons and hypothermia. Mice lacking VGAT expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5 °C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic PACAP neurons. Taken together our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic PACAP neurons is the cellular mechanism that triggers this response.
Collapse
|
49
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
50
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state (TLS) in mice slows blood epigenetic aging and prolongs healthspan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585828. [PMID: 38585858 PMCID: PMC10996477 DOI: 10.1101/2024.03.20.585828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that Tb is an important mediator of aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Present address: Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|