1
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
2
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Jamialahamdi T, Eid AH, Nguyen NT, Gadde KM, Sukhorukov VN, Almahmeed W, Kroh M, Sahebkar A. Bariatric Surgery Improves Serum CD40L Levels as a Predictor of Cardiovascular Risk: Systematic Review and Meta-analysis. Obes Surg 2024; 34:1929-1937. [PMID: 38578522 DOI: 10.1007/s11695-024-07210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
CD40 and its ligand have been recently implicated in the pathogenesis of cardiovascular disease (CVD). This meta-analysis examined the effect of bariatric surgery in reducing circulating CD40L levels. A systematic review was performed using Embase, Google Scholar, PubMed, Scopus, and Web of Science. The meta-analysis was provided by Comprehensive Meta-Analysis (CMA) V4 software. The overall effect size was detected by a random-effects meta-analysis and the leave-one-out approach. Random-effects meta-analysis of 7 studies including 191 subjects showed a significant reduction in CD40L after bariatric surgery (standardized mean difference (SMD), - 0.531; 95% CI, - 0.981, - 0.082; p = 0.021; I2, 87.00). Circulating levels of CD40L are decreased after bariatric surgery which may represent a mechanism for improvement of metabolic profile.
Collapse
Affiliation(s)
- Tannaz Jamialahamdi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ninh T Nguyen
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Kishore M Gadde
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Matthew Kroh
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tian S, Wang Y, Wan J, Yang M, Fu Z. Co-stimulators CD40-CD40L, a potential immune-therapy target for atherosclerosis: A review. Medicine (Baltimore) 2024; 103:e37718. [PMID: 38579073 PMCID: PMC10994492 DOI: 10.1097/md.0000000000037718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
The interaction between CD40 and CD40 ligand (CD40L) a crucial co-stimulatory signal for activating adaptive immune cells, has a noteworthy role in atherosclerosis. It is well-known that atherosclerosis is linked to immune inflammation in blood vessels. In atherosclerotic lesions, there is a multitude of proinflammatory cytokines, adhesion molecules, and collagen, as well as smooth muscle cells, macrophages, and T lymphocytes, particularly the binding of CD40 and CD40L. Therefore, research on inhibiting the CD40-CD40L system to prevent atherosclerosis has been ongoing for more than 30 years. However, it's essential to note that long-term direct suppression of CD40 or CD40L could potentially result in immunosuppression, emphasizing the critical role of the CD40-CD40L system in atherosclerosis. Thus, specifically targeting the CD40-CD40L interaction on particular cell types or their downstream signaling pathways may be a robust strategy for mitigating atherosclerosis, reducing potential side effects. This review aims to summarize the potential utility of the CD40-CD40L system as a viable therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Simeng Tian
- Department of Immunology, Basic Medicine College, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufei Wang
- Department of Neurosurgery & Nursing Teaching and Research Office, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Wan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mao Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenkun Fu
- Department of Immunology, Basic Medicine College, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
6
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Chen C, Zheng M, Wang W, Yu W. Elevated circulating inflammatory biomarker levels in the SIRT1-NF-κB-sCD40L pathway in patients with acute myocardial infarction: a case-control study. Ann Med 2023; 55:2284366. [PMID: 37992411 PMCID: PMC11529192 DOI: 10.1080/07853890.2023.2284366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Inflammation plays a key role in atherosclerosis development and progression. However, the role of novel inflammatory biomarker pathways, namely the SIRT1-NF-κB-sCD40L, in the etiopathogenesis of human atherosclerosis remains undefined. This study was designed to evaluate the changes and clinical implications of these inflammatory mediators in the plasma of patients with acute myocardial infarction (AMI). METHODS The peripheral arterial blood of 88 participants (68 patients with AMI and 20 age-matched controls), was drawn prior to performing coronary angiography (CAG). The SIRT1, NF-κB, and sCD40L plasma levels were quantified using ELISA. Spearman's analysis was used to evaluate the correlation between the three inflammatory markers, while Pearson's test assessed their potential correlation with cardiac troponin T (TNT) levels. Sensitivity, specificity, and area under the ROC curve (AUC) were calculated as measures of diagnostic accuracy. RESULTS Patients with AMI showed higher levels of circulating SIRT1, NF-κB, and sCD40L compared to the age-matched controls (p < 0.05). However, the plasma concentrations of these three inflammatory mediators did not differ between the ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) patients. Additionally, in patients with AMI, the SIRT1 level was positively correlated with NF-κB and sCD40L levels (p < 0.001). Likewise, the levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels (p < 0.001). More importantly, the ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels (p < 0.05). CONCLUSIONS The levels of the circulating inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI. These novel biomarkers can improve the diagnostic accuracy of AMI when combined with TNT.KEY MESSAGESAMI is a potentially lethal CAD and is the leading cause of mortality and morbidity worldwide. Inflammation plays a key role in atherosclerosis development and progression. The levels of the circulating novel inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI.The SIRT1 level was positively correlated with NF-κB and sCD40L levels in patients with AMI.The levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels.The ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels.SIRT1/NF-κB/sCD40L axis inhibition is a potential new target for AMI treatment.
Collapse
Affiliation(s)
- Chunjuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Meiyi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiology, Shantou Central Hospital, Shantou, China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wei Yu
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 2023; 13:2056. [PMID: 37895437 PMCID: PMC10608492 DOI: 10.3390/life13102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity throughout the world, accounting for 16.7 million deaths each year. The underlying pathological process for the majority of cardiovascular diseases is atherosclerosis, a slowly progressing, multifocal, chronic, immune-inflammatory disease that involves the intima of large and medium-sized arteries. The process of atherosclerosis begins in childhood as fatty streaks-an accumulation of lipids, inflammatory cells, and smooth muscle cells in the arterial wall. Over time, a more complex lesion develops into an atheroma and characteristic fibrous plaques. Atherosclerosis alone is rarely fatal; it is the further changes that render fibrous plaques vulnerable to rupture; plaque rupture represents the most common cause of coronary thrombosis. The prevalence of atherosclerosis is increasing worldwide and more than 50% of people with circulatory disease die of it, mostly in modern societies. Epidemiological studies have revealed several environmental and genetic risk factors that are associated with the early formation of a pathogenic foundation for atherosclerosis, such as dyslipidemia, hypertension, diabetes mellitus, obesity, and smoking. The purpose of this review is to bring together the current information concerning the origin and progression of atherosclerosis in childhood as well as the identification of known risk factors for atherosclerotic cardiovascular disease in children.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Simona Georgiana David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Alexandru Gabriel David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana-Alexandra Pădureț
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Heidrun Adumitrăchioaiei
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
9
|
Marengo M, Migliori M, Merlotti G, Fabbrini P, Panichi V, Cantaluppi V. Role of the CD40-CD40 Ligand Pathway in Cardiovascular Events, Neurological Alterations, and Other Clinical Complications of Chronic Hemodialysis Patients: Protective Role of Adsorptive Membranes. Blood Purif 2023; 52 Suppl 1:27-42. [PMID: 37331328 PMCID: PMC10568606 DOI: 10.1159/000530808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2023] [Indexed: 06/20/2023]
Abstract
Despite the recent advances in dialysis technology, mortality rate of chronic uremic patients still remains excessively high: of note, in comparison to age- and sex-matched healthy controls, this frail population shows a higher incidence of infections, cancer, cognitive decline, and, in particular, major adverse cardiovascular events (MACE) that represent nowadays the first cause of mortality. Several traditional and nontraditional factors contribute to this increased risk for MACE and accelerated cellular senescence: among these, inflammation has been shown to play a key role. The costimulatory pathway CD40-CD40 Ligand (CD40L) is harmfully activated during inflammation and uremia-associated clinical complications: in particular, the soluble form of CD40L (sCD40L) can bind to the CD40 receptor triggering a cascade of detrimental pathways in immune and nonimmune cells. In this narrative review, we summarize the current concepts of the biological role of the CD40-CD40L pathway in uremia-associated organ dysfunction, focusing on the above-described main causes of mortality. Moreover, we discuss the interaction of the CD40-CD40L pathway with extracellular vesicles, microparticles recently identified as new uremic toxins. The biological effects of sCD40L in MACE, cognitive decline, infections, and cancer will be also briefly commented. Last, based on recent studies and ongoing clinical trials, we herein describe the modulatory activity of adsorptive dialysis membranes in polymethylmethacrylate on CD40-CD40L detrimental activation.
Collapse
Affiliation(s)
| | | | - Guido Merlotti
- Department of Translational Medicine (DIMET), Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, University of Piemonte Orientale (UPO), Novara, Italy,
| | - Paolo Fabbrini
- Nephrology and Dialysis Unit, ASST Nord Milano, "Bassini" Hospital, Cinisello Balsamo, Italy
| | - Vincenzo Panichi
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine (DIMET), Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
10
|
Joseph S, Carda-Diéguez M, Aduse-Opoku J, Alsam A, Mira A, Curtis M. The Murine Oral Metatranscriptome Reveals Microbial and Host Signatures of Periodontal Disease. J Dent Res 2023; 102:565-573. [PMID: 36883648 PMCID: PMC10152569 DOI: 10.1177/00220345221149675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periodontal disease is accompanied by alterations to cellular profiles and biological activities of both the subgingival microbiome and host tissues. Although significant progress has been made in describing the molecular basis of the homeostatic balance of host-commensal microbe interactions in health compared to the destructive imbalance in disease, particularly with respect to immune and inflammatory systems, few studies have attempted a comprehensive analysis in diverse host models. Here, we describe the development and application of a metatranscriptomic approach to analysis of host-microbe gene transcription in a murine periodontal disease model, based on oral gavage infection using Porphyromonas gingivalis in C57BL6/J mice. We generated 24 metatranscriptomic libraries from individual mouse oral swabs, representing health and disease. On average, 76% ± 11.7% reads in each sample belonged to the murine host genome and the remainder to the microbes. We found 3,468 (2.4% of the total) murine host transcripts differentially expressed between health and disease, of which 76% were overexpressed in periodontitis. Predictably, there were prominent alterations to genes and pathways linked with the host immune compartment in disease-the CD40 signaling pathway being the top enriched biological process in this data set. However, in addition, we observed significant alterations to other biological processes in disease, particularly cellular/metabolic processes and biological regulation. The number of differentially expressed microbial genes particularly indicated shifts in carbon metabolism pathways in disease with potential consequences for metabolic end-product formation. Together, these metatranscriptome data reveal marked changes between the gene expression patterns in both the murine host and microbiota, which may represent signatures of health and disease, providing the basis for future functional studies of prokaryotic and eukaryotic cellular responses in periodontal disease. In addition, the noninvasive protocol developed in this study will enable further longitudinal and interventionist studies of host-microbe gene expression networks.
Collapse
Affiliation(s)
- S. Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - M. Carda-Diéguez
- Oral Microbiome Lab, Department of Health and Genomics, FISABIO foundation, Valencia, Spain
| | - J. Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - A. Alsam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - A. Mira
- Oral Microbiome Lab, Department of Health and Genomics, FISABIO foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - M.A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
11
|
Hernandez L, Ward LJ, Arefin S, Barany P, Wennberg L, Söderberg M, Bruno S, Cantaluppi V, Stenvinkel P, Kublickiene K. Blood–Brain Barrier Biomarkers before and after Kidney Transplantation. Int J Mol Sci 2023; 24:ijms24076628. [PMID: 37047601 PMCID: PMC10095132 DOI: 10.3390/ijms24076628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Kidney transplantation (KT) may improve the neurological status of chronic kidney disease (CKD) patients, reflected by the altered levels of circulating BBB-specific biomarkers. This study compares the levels of neuron specific enolase (NSE), brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), and circulating plasma extracellular vesicles (EVs) in kidney-failure patients before KT and at a two-year follow up. Using ELISA, NSE, BDNF, and NfL levels were measured in the plasma of 74 living-donor KT patients. Plasma EVs were isolated with ultracentrifugation, and characterized for concentration/size and surface protein expression using flow cytometry from a subset of 25 patients. Lower NSE levels, and higher BDNF and NfL were observed at the two-year follow-up compared to the baseline (p < 0.05). Male patients had significantly higher BDNF levels compared to those of females. BBB biomarkers correlated with the baseline lipid profile and with glucose, vitamin D, and inflammation markers after KT. BBB surrogate marker changes in the microcirculation of early vascular aging phenotype patients with calcification and/or fibrosis were observed only in NSE and BDNF. CD31+ microparticles from endothelial cells expressing inflammatory markers such as CD40 and integrins were significantly reduced after KT. KT may, thus, improve the neurological status of CKD patients, as reflected by changes in BBB-specific biomarkers.
Collapse
Affiliation(s)
- Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Liam J. Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Magnus Söderberg
- Department of Pathology, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, 431 83 Gothenburg, Sweden
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10124 Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), “Maggiore della Carita” University Hospital, 28100 Novara, Italy
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Gerasimova EV, Popkova TV, Gerasimova DA, Markina YV, Kirichenko TV. Subclinical Carotid Atherosclerosis in Patients with Rheumatoid Arthritis at Low Cardiovascular Risk. Biomedicines 2023; 11:biomedicines11030974. [PMID: 36979953 PMCID: PMC10046543 DOI: 10.3390/biomedicines11030974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To evaluate the rate of subclinical carotid atherosclerosis and clinical significance of immunoinflammatory markers in patients with rheumatoid arthritis (RA) at low cardiovascular risk. MATERIALS AND METHODS The study included 275 RA patients and a control group of 100 participants without autoimmune diseases. All study participants were at low cardiovascular risk, calculated by the QRISK3 scale (<20%), and free of cardiovascular disease. Ultrasound examination of carotid arteries was performed to measure cIMT and to detect atherosclerotic plaques (ASP) in carotid arteries. sIСАМ-1, sVСАМ, and sCD40L levels were determined by enzyme immunoassay. RESULTS Carotid ASP was observed more frequently in RA patients (27%) than in the control group (17%), p = 0.03. The frequency of ASP in RA patients did not depend on the disease's stage or activity. There was a significant correlation between cIMT and age, cardiovascular risk determined by QRISK3, level of total cholesterol, LDL, and blood pressure in RA patients, p < 0.05 in all cases. No correlation between cIMT and blood levels of sCD40L, sVCAM, and sICAM was found. In RA patients, a higher concentration of sVCAM was detected in the carotid ASP group compared to the non-atherosclerotic group. sCD40L was associated with cIMT and total cholesterol in the ASP group and with total cholesterol and blood pressure in non-atherosclerotic patients. CONCLUSIONS Subclinical atherosclerotic lesions of the carotid arteries were observed significantly more frequently in RA patients with low cardiovascular risk than in the control group. The results of the study demonstrate the association between cIMT, traditional cardiovascular risk factors, and immunoinflammatory markers in RA patients.
Collapse
Affiliation(s)
| | - Tatiana V Popkova
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
| | - Daria A Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Yuliya V Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Tatiana V Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| |
Collapse
|
13
|
Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol 2023; 11:971091. [PMID: 36910156 PMCID: PMC9997679 DOI: 10.3389/fcell.2023.971091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|
15
|
Bosmans LA, van Tiel CM, Aarts SABM, Willemsen L, Baardman J, van Os BW, den Toom M, Beckers L, Ahern DJ, Levels JHM, Jongejan A, Moerland PD, Verberk SGS, van den Bossche J, de Winther MMPJ, Weber C, Atzler D, Monaco C, Gerdes N, Shami A, Lutgens E. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res 2022; 119:1146-1160. [PMID: 35587037 DOI: 10.1093/cvr/cvac084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Baardman
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Johannes H M Levels
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan van den Bossche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Walter-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Germany
| | - Annelie Shami
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Experimental Cardiovascular Immunology Laboratory, Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
17
|
Gissler MC, Scherrer P, Anto-Michel N, Pennig J, Hoppe N, Füner L, Härdtner C, Stachon P, Li X, Mitre LS, Marchini T, Madl J, Wadle C, Hilgendorf I, von Zur Mühlen C, Bode C, Weber C, Lutgens E, Wolf D, Gerdes N, Zirlik A, Willecke F. Deficiency of Endothelial CD40 Induces a Stable Plaque Phenotype and Limits Inflammatory Cell Recruitment to Atherosclerotic Lesions in Mice. Thromb Haemost 2021; 121:1530-1540. [PMID: 33618394 DOI: 10.1055/a-1397-1858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The co-stimulatory CD40L-CD40 dyad exerts a critical role in atherosclerosis by modulating leukocyte accumulation into developing atherosclerotic plaques. The requirement for cell-type specific expression of both molecules, however, remains elusive. Here, we evaluate the contribution of CD40 expressed on endothelial cells (ECs) in a mouse model of atherosclerosis. METHODS AND RESULTS Atherosclerotic plaques of apolipoprotein E-deficient (Apoe -/- ) mice and humans displayed increased expression of CD40 on ECs compared with controls. To interrogate the role of CD40 on ECs in atherosclerosis, we induced EC-specific (BmxCreERT2-driven) deficiency of CD40 in Apoe -/- mice. After feeding a chow diet for 25 weeks, EC-specific deletion of CD40 (iEC-CD40) ameliorated plaque lipid deposition and lesional macrophage accumulation but increased intimal smooth muscle cell and collagen content, while atherosclerotic lesion size did not change. Leukocyte adhesion to the vessel wall was impaired in iEC-CD40-deficient mice as demonstrated by intravital microscopy. In accord, expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in the vascular endothelium declined after deletion of CD40. In vitro, antibody-mediated inhibition of human endothelial CD40 significantly abated monocyte adhesion on ECs. CONCLUSION Endothelial deficiency of CD40 in mice promotes structural features associated with a stable plaque phenotype in humans and decreases leukocyte adhesion. These results suggest that endothelial-expressed CD40 contributes to inflammatory cell migration and consecutive plaque formation in atherogenesis.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Scherrer
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Pennig
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Füner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Germany
| | - Carolin Wadle
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Klinik für Allgemeine und Interventionelle Kardiologie/Angiologie, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
18
|
Lutgens E, Joffre J, van Os B, Ait-Oufella H. Targeting cytokines and immune checkpoints in atherosclerosis with monoclonal antibodies. Atherosclerosis 2021; 335:98-109. [PMID: 34593238 DOI: 10.1016/j.atherosclerosis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Over the past fifteen years, treatments using monoclonal antibodies specifically targeting cytokines have been developed to treat chronic inflammatory diseases, including rheumatoid arthritis or psoriasis, both associated with increased cardiovascular risk. The cardiovascular impact of these therapies allows us to validate the clinical relevance of the knowledge acquired from experimental studies about the role of cytokines in atherosclerosis. Several clinical studies have confirmed the protective effects of anti-TNFα and anti-IL-6R monoclonal antibodies against athero-thrombotic cardiovascular risk in patients with chronic inflammatory diseases. Yet, caution is needed since anti-TNFα treatment can aggravate chronic heart failure. More recently, the CANTOS study showed for the first time that an anti-inflammatory treatment using anti-IL-1β monoclonal antibody in coronary artery disease patients significantly reduced cardiovascular events. The effects of IL-23/IL-17 axis blockade on cardiovascular risk in patients with psoriasis or arthritis remain controversial. Several monoclonal antibodies targeting costimulatory molecules have also been developed, a direct way to confirm their involvement in atherothrombotic cardiovascular diseases. Blocking the CD28-CD80/86 axis with Abatacept has been shown to reduce cardiovascular risk. In contrast, the treatment of cancer patients with antibodies blocking immune checkpoint inhibitory receptors, such as CTLA-4, PD1, or PDL1, could worsen the risk of atherothrombotic events. In the future, cardiologists will be increasingly solicited to assess the cardiovascular risk of patients suffering from chronic inflammatory diseases or cancer and participate in choosing the most appropriate treatment. At the same time, immunomodulatory approaches directly targeting cardiovascular diseases will be developed as a complement to the usual treatment strategies.
Collapse
Affiliation(s)
- Esther Lutgens
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, 80336, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Pettenkoferstraße 8a & 9, 80336, Munich, Germany.
| | - Jeremie Joffre
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France; Department of Anesthesia and Perioperative Care, UCSF School of Medicine, San Francisco, CA, USA
| | - Bram van Os
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands
| | - Hafid Ait-Oufella
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France.
| |
Collapse
|
19
|
Bonfiglio CA, Weber C, Atzler D, Lutgens E. Immunotherapy and cardiovascular diseases (CVD): novel avenues for immunotherapeutic approaches. QJM 2021; 116:271-278. [PMID: 34293177 DOI: 10.1093/qjmed/hcab207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/27/2021] [Indexed: 12/20/2022] Open
Abstract
As current therapies for cardiovascular disease (CVD), predominantly based on lipid lowering, still face an unacceptable residual risk, novel treatment strategies are being explored. Besides lipids, inflammatory processes play a major role in the pathogenesis of atherosclerosis, the underlying cause of the majority of CVD. The first clinical trials targeting the interleukin-1β-inflammasome axis have shown that targeting this pathway is successful in reducing cardiovascular events but did not decrease overall CVD mortality. Hence, novel and improved immunotherapeutics to treat CVD are being awaited. In this review we highlight novel immunotherapeutic approaches in CVD as well as future challenges ahead.
Collapse
Affiliation(s)
- Cecilia Assunta Bonfiglio
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 ER, Maastricht University, Maastricht, the Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33D, Munich, 80336, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Room K1-110, Meibergdreef 15, AZ Amsterdam, 1105, The Netherlands
| |
Collapse
|
20
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Pattarabanjird T, Li C, McNamara C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. ACTA ACUST UNITED AC 2021; 6:546-563. [PMID: 34222726 PMCID: PMC8246059 DOI: 10.1016/j.jacbts.2021.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
B cells regulate atherosclerotic plaque formation through production of antibodies and cytokines, and effects are subset specific (B1 and B2). Putative human atheroprotective B1 cells function similarly to murine B1 in their spontaneous IgM antibody production. However, marker strategies in identifying human and murine B1 are different. IgM antibody to oxidation specific epitopes produced by B1 cells associate with human coronary artery disease. Neoantigen immunization may be a promising strategy for atherosclerosis vaccine development, but further study to determine relevant antigens still need to be done. B-cell–targeted therapies, used in treating autoimmune diseases as well as lymphoid cancers, might have potential applications in treating cardiovascular diseases. Short- and long-term cardiovascular effects of these agents need to be assessed.
Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell–linked therapeutic approaches, including immunization and B cell–targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.
Collapse
Key Words
- APRIL, A proliferation−inducing ligand
- ApoE, apolipoprotein E
- B-cell
- BAFF, B-cell–activating factor
- BAFFR, B-cell–activating factor receptor
- BCMA, B-cell maturation antigen
- BCR, B-cell receptor
- Breg, regulatory B cell
- CAD, coronary artery disease
- CTLA4, cytotoxic T-lymphocyte–associated protein 4
- CVD, cardiovascular disease
- CXCR4, C-X-C motif chemokine receptor 4
- GC, germinal center
- GITR, glucocorticoid-induced tumor necrosis factor receptor–related protein
- GITRL, glucocorticoid-induced tumor necrosis factor receptor–related protein ligand
- GM-CSF, granulocyte-macrophage colony–stimulating factor
- ICI, immune checkpoint inhibitor
- IFN, interferon
- IL, interleukin
- IVUS, intravascular ultrasound
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- MDA-LDL, malondialdehyde-modified low-density lipoprotein
- MI, myocardial infarction
- OSE, oxidation-specific epitope
- OxLDL, oxidized low-density lipoprotein
- PC, phosphorylcholine
- PD-1, programmed cell death protein 1
- PD-L2, programmed death ligand 2
- PDL1, programmed death ligand 1
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- TACI, transmembrane activator and CAML interactor
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- atherosclerosis
- immunoglobulins
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Cynthia Li
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Coleen McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12:3754. [PMID: 34145241 PMCID: PMC8213756 DOI: 10.1038/s41467-021-23909-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.
Collapse
|
23
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
24
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
25
|
Voutyritsa E, Kyriakos G, Patsouras A, Damaskos C, Garmpi A, Diamantis E, Garmpis N, Savvanis S. Experimental Agents for the Treatment of Atherosclerosis: New Directions. J Exp Pharmacol 2021; 13:161-179. [PMID: 33633471 PMCID: PMC7901406 DOI: 10.2147/jep.s265642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular and related metabolic disorders constitute a worldwide health challenge. Atherosclerosis is a chronic inflammatory condition based on both dyslipidemia and inflammation. Therefore, even when dyslipidemia is controlled, the risk of atherosclerosis remains. Among the most efficient inflammatory mediators used as therapeutic tools in cardiovascular disease are the interleukins, which are pro-inflammatory mediators like cytokines. Moreover, a protein kinase inhibitors, p38 mitogen-activated protein kinase (MAPK) inhibitor, and an inhibitor of a leukocyte adhesion molecule, P-Selectin, have also presented therapeutic potential for this disorder. Colchicine, being an inexpensive therapeutic option, has been proved to be suitable for the prevention of atherosclerosis. In this review, we summarize all the studies, from 2010 to 2020, in which treatment approaches based on the agents mentioned above are evaluated in the management of atherosclerosis.
Collapse
Affiliation(s)
- Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kyriakos
- Sección de Endocrinología y Nutrición, Hospital General Universitario Santa Lucia, Cartagena, Spain
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Renal Transplantation Unit, Laiko General Hospital, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Savvanis
- Internal Medicine Department, Elpis General Hospital, Athens, Greece
| |
Collapse
|
26
|
Lutgens E, Atzler D, Döring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J 2020; 40:3937-3946. [PMID: 31121017 DOI: 10.1093/eurheartj/ehz283] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
The outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial have unequivocally proven that inflammation is a key driver of atherosclerosis and that targeting inflammation, in this case by using an anti-interleukin-1β antibody, improves cardiovascular disease (CVD) outcomes. This is especially true for CVD patients with a pro-inflammatory constitution. Although CANTOS has epitomized the importance of targeting inflammation in atherosclerosis, treatment with canakinumab did not improve CVD mortality, and caused an increase in infections. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways and exhibit limited immune-suppressive side effects, as pursued in our collaborative research centre, are required to optimize immunotherapy for CVD. In this review, we will highlight the potential of novel immunotherapeutic targets that are currently considered to become a future treatment for CVD.
Collapse
Affiliation(s)
- Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33, Munich 80336, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitsingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
27
|
Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020; 309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
The association between thrombosis and acute coronary syndromes is well established. Inflammation and activation of innate and adaptive immunity are another important factor implicated in atherosclerosis. However, the exact interactions between thrombosis and inflammation in atherosclerosis are less well understood. Accumulating data suggest a firm interaction between these two key pathophysiologic processes. Pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and interleukin-1, have been implicated in the thrombotic cascade following plaque rupture and myocardial infarction. Furthermore, cell adhesion molecules accelerate not only atheromatosis but also thrombosis formation while activated platelets are able to trigger leukocyte adhesion and accumulation. Additionally, tissue factor, thrombin, and activated coagulation factors induce the release of pro-inflammatory cytokines such as prostaglandin and C reactive protein, which may further induce von Willebrand factor secretion. Treatments targeting immune activation (i.e. interleukin-1 inhibitors, colchicine, statins, etc.) may also beneficially modulate platelet activation while common anti-thrombotic therapies appear to attenuate the inflammatory process. Taken together in the context of cardiovascular diseases, thrombosis and inflammation should be studied and managed as a common entity under the concept of thrombo-inflammation.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Marianna Leopoulou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasiliki Chara Mystakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
28
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
29
|
Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. J Cardiovasc Transl Res 2020; 14:13-22. [PMID: 32222950 PMCID: PMC7892683 DOI: 10.1007/s12265-020-09994-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis. Despite optimal treatment of classical cardiovascular risk factors, a substantial portion of the population has elevated inflammatory biomarkers and develops atherosclerosis-related complications, indicating that a residual inflammatory risk drives atherosclerotic cardiovascular disease in these patients. Additional anti-inflammatory therapeutic strategies are therefore required. The co-stimulatory molecule CD40 and its ligand CD40L (CD154) have a central role in the regulation of the inflammatory response during the development of atherosclerosis by modulating the interaction between immune cells and between immune cells and non-immune cells. In this review, we discuss the role of the CD40-CD40L dyad in atherosclerosis, and we discuss recent studies on the therapeutic potential of novel CD40-CD40L targeting strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Lena Bosch
- Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Li G, Yang L, Li D, Zhang J, Du L, Xia L, Liu Y, Hu W. Effects of combined treatment with PD‑L1 Ig and CD40L mAb on immune tolerance in the CBA/J x DBA/2 mouse model. Mol Med Rep 2020; 21:1789-1798. [PMID: 32319625 PMCID: PMC7057827 DOI: 10.3892/mmr.2020.10977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/01/2020] [Indexed: 12/31/2022] Open
Abstract
The embryo is a natural allograft and is the only exception to immune rejection, which reflects maternal immune tolerance towards the embryo. However, pregnancy loss is primarily caused by maternal immune rejection of the embryo. The aim of the present study was to explore the effects of combined treatment of programmed death-ligand 1 (PD-L1) immunoglobulin (Ig) and CD40-ligand (CD40L) monoclonal antibody (mAb) on immune tolerance in an abortion-prone mating model. Mice were divided into the normal, spontaneous abortion, PD-L1 Ig, CD40L mAb and the PD-L1 Ig + CD40L mAb groups. On day 14 of gestation, the embryo resorption abortion rates of all the groups was observed. The maternal hypo-responsiveness to paternal antigens was determined using a mixed lymphocyte response and the splenic CD4+CD25+ T-cell population, major histocompatibility complex (MHC)-II+, CD80+ and CD86+ cell populations in pregnant female CBA/J mice were analyzed using flow cytometry. The expression levels of intracellular cytokines in the splenic tissues of pregnant CBA/J female mice were analyzed using western blotting. The PD-L1 Ig + CD40L group displayed the lowest resorption rate compared with the other groups. A significant decrease in the proliferative response of maternal splenic immunocompetent cells against paternal antigens, and a significant increase in the proliferative response of maternal splenic CD4+CD25+ T cells was observed in the PD-L1 Ig + CD40L group compared with the spontaneous abortion group. The number of MHC-II+, CD80+ and CD86+ bone marrow-derived dendritic cells (DCs) generated by female mice, and the levels of tumor necrosis factor-α and interferon-γ in the spleens of female mice were significantly decreased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. By contrast, interleukin-4 levels were significantly increased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. The results suggested that the administration of PD-L1 Ig + CD40L mAb on day 4 of gestation, the period of peri-implantation, may induce paternal antigen-specific immunotolerance, leading to the embryo resorption rate of the abortion-prone model being similar to that of the normal pregnancy model. The results indicate that the combined treatment of PD-L1 Ig and anti-CD40L mAbs may serve as a potential therapeutic for pregnancy loss.
Collapse
Affiliation(s)
- Guanfei Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lihua Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Dan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinhong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Du
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Libin Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yunhua Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wanqin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
31
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
32
|
Wang B, Cai W, Ai D, Zhang X, Yao L. The Role of Deubiquitinases in Vascular Diseases. J Cardiovasc Transl Res 2019; 13:131-141. [DOI: 10.1007/s12265-019-09909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
33
|
Gergei I, Kälsch T, Scharnagl H, Kleber ME, Zirlik A, März W, Krämer BK, Kälsch AI. Association of soluble CD40L with short-term and long-term cardiovascular and all-cause mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Atherosclerosis 2019; 291:127-131. [PMID: 31558283 DOI: 10.1016/j.atherosclerosis.2019.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The CD40-CD40 Ligand (CD40L) system has an important role in vascular inflammation. For this reason, we assessed the association of soluble CD40L with cardiovascular and all-cause mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. METHODS Plasma levels of sCD40L were determined in 2759 persons using an enzyme immunoassay. Cox proportional hazard regressions were performed to evaluate the association between plasma concentration of sCD40 ligand and short-term (12 months) and long-term (10 years) mortality. Subpopulation analyses were conducted in seven different risk groups. Cox regression models were adjusted for traditional risk factors. RESULTS The present study did not reveal significant association between sCD40L plasma levels and all-cause mortality, as well as cardiovascular mortality at one-year follow-up. In selected subgroups only, significant association between elevated sCD40L plasma levels and short-term all-cause and cardiovascular mortality could be observed. With regard to long-term all-cause and cardiovascular mortality analyses, no significant correlation with increased plasma levels of sCD40L could be detected, neither overall nor in any subgroup. CONCLUSIONS Soluble sCD40L is not associated with cardiovascular and all-cause mortality in this large cohort. Only in selected patient subgroups elevated levels of sCD40L correlate with short-term mortality but this correlation disappears in long-term analysis.
Collapse
Affiliation(s)
- Ingrid Gergei
- 5th Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Thorsten Kälsch
- Medical Practice Brühler Internisten, Brühl, Germany and Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Marcus E Kleber
- 5th Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Andreas Zirlik
- Department of Cardiology, Medical University of Graz, Austria
| | - Winfried März
- 5th Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria; SYNLAB Academy, SYNLAB Holding Deutschland, Mannheim and Augsburg, Germany
| | - Bernhard K Krämer
- 5th Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Anna-Isabelle Kälsch
- 5th Medical Department, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany.
| |
Collapse
|
34
|
Seijkens TTP, van Tiel CM, Kusters PJH, Atzler D, Soehnlein O, Zarzycka B, Aarts SABM, Lameijer M, Gijbels MJ, Beckers L, den Toom M, Slütter B, Kuiper J, Duchene J, Aslani M, Megens RTA, van 't Veer C, Kooij G, Schrijver R, Hoeksema MA, Boon L, Fay F, Tang J, Baxter S, Jongejan A, Moerland PD, Vriend G, Bleijlevens B, Fisher EA, Duivenvoorden R, Gerdes N, de Winther MPJ, Nicolaes GA, Mulder WJM, Weber C, Lutgens E. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J Am Coll Cardiol 2019; 71:527-542. [PMID: 29406859 PMCID: PMC5800892 DOI: 10.1016/j.jacc.2017.11.055] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023]
Abstract
Background Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. Objectives This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. Methods The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe−/−) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. Results TRAF-STOP treatment of young Apoe−/− mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe−/− mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair “classical” immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe−/− mice. Conclusions TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.
Collapse
Affiliation(s)
- Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Barbara Zarzycka
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marnix Lameijer
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marion J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Roy Schrijver
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Marten A Hoeksema
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | | | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Tang
- Bioceros BV, Utrecht, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samantha Baxter
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Bleijlevens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
| | - Raphael Duivenvoorden
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Gerry A Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Willem J M Mulder
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
35
|
Abstract
Innate and adaptive immune effector mechanisms, in conjunction with hyperlipidemia, are important drivers of atherosclerosis. The interaction between the different immune cells and the secretion of cytokines and chemokines determine the progression of atherosclerosis. The activation or dampening of the immune response is tightly controlled by immune checkpoints. Costimulatory and coinhibitory immune checkpoints represent potential targets for immune modulatory therapies for atherosclerosis. This review will discuss the current knowledge on immune checkpoints in atherosclerosis and the clinical potential of immune checkpoint targeted therapy for atherosclerosis.
Collapse
Affiliation(s)
- Ellen Rouwet
- From the Department of Surgery and Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (E.R.)
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology Laboratory, Academic Medical Center, Amsterdam, The Netherlands (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany (E.L.)
| |
Collapse
|
36
|
Lameijer M, Binderup T, van Leent MMT, Senders ML, Fay F, Malkus J, Sanchez-Gaytan BL, Teunissen AJP, Karakatsanis N, Robson P, Zhou X, Ye Y, Wojtkiewicz G, Tang J, Seijkens TTP, Kroon J, Stroes ESG, Kjaer A, Ochando J, Reiner T, Pérez-Medina C, Calcagno C, Fisher EA, Zhang B, Temel RE, Swirski FK, Nahrendorf M, Fayad ZA, Lutgens E, Mulder WJM, Duivenvoorden R. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat Biomed Eng 2018; 2:279-292. [PMID: 30936448 PMCID: PMC6447057 DOI: 10.1038/s41551-018-0221-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Macrophage accumulation in atherosclerosis is directly linked to the destabilization and rupture of plaque, causing acute atherothrombotic events. Circulating monocytes enter the plaque and differentiate into macrophages, where they are activated by CD4+ T lymphocytes through CD40-CD40 ligand signalling. Here, we report the development and multiparametric evaluation of a nanoimmunotherapy that moderates CD40-CD40 ligand signalling in monocytes and macrophages by blocking the interaction between CD40 and tumour necrosis factor receptor-associated factor 6 (TRAF6). We evaluated the biodistribution characteristics of the nanoimmunotherapy in apolipoprotein E-deficient (Apoe-/-) mice and in non-human primates by in vivo positron-emission tomography imaging. In Apoe-/- mice, a 1-week nanoimmunotherapy treatment regimen achieved significant anti-inflammatory effects, which was due to the impaired migration capacity of monocytes, as established by a transcriptome analysis. The rapid reduction of plaque inflammation by the TRAF6-targeted nanoimmunotherapy and its favourable toxicity profiles in both mice and non-human primates highlights the translational potential of this strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marnix Lameijer
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Tina Binderup
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mandy M T van Leent
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Max L Senders
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joost Malkus
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brenda L Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Karakatsanis
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Robson
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxiang Ye
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Andreas Kjaer
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan E Temel
- Saha Cardiovascular Research Center and Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| | - Raphaël Duivenvoorden
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands.
- Department of Nephrology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Söderström LÅ, Tarnawski L, Olofsson PS. CD137: A checkpoint regulator involved in atherosclerosis. Atherosclerosis 2018; 272:66-72. [PMID: 29571029 DOI: 10.1016/j.atherosclerosis.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with atherosclerotic plaque development and precipitation of myocardial infarction and stroke, and anti-inflammatory therapy may reduce disease severity. Costimulatory molecules are key regulators of immune cell activity and inflammation, and are associated with disease development in atherosclerosis. Accumulating evidence indicates that a costimulatory molecule of the Tumor Necrosis Factor Receptor superfamily, the checkpoint regulator CD137, promotes atherosclerosis and vascular inflammation in experimental models. In light of the burgeoning consideration of CD137-targeted therapy in the clinic, it will be important to better understand costimulator immunobiology in development of cardiovascular disease. Here, we review available data on the costimulator CD137 and its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Leif Å Söderström
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Tarnawski
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder S Olofsson
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
38
|
Maracle CX, Agca R, Helder B, Meeuwsen JAL, Niessen HWM, Biessen EAL, de Winther MPJ, de Jager SCA, Nurmohamed MT, Tas SW. Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis 2018; 270:33-41. [PMID: 29407886 DOI: 10.1016/j.atherosclerosis.2018.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/31/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Neovascularization is associated with atherosclerotic plaque instability and increased chance of myocardial infarction (MI). Patients with chronic inflammatory diseases (CID) have increased risk of atherosclerosis, and evidence demonstrates that NF-κB inducing kinase (NIK)-mediated noncanonical NF-κB signaling in endothelial cells (EC) is linked to inflammation and angiogenesis. Here, we hypothesized NIK may also be activated in EC of atherosclerotic lesion microvessels. METHODS Using cohorts of atherosclerotic lesions from coronary and carotid arteries, we quantified NIK expression in plaque microvessels and compared it to pathological markers, including inflammatory cell content, plaque characteristics and MI. Differences in gene transcripts were evaluated between stable and ruptured lesions. RESULTS NIK+EC were present in both coronary and carotid lesions. In CID patients, plaques with stenosis >40% had an increased number of NIK+EC and higher content of immune cells (p < .05) as compared to controls. Immune cells per NIK+EC were also greater in CID patients (p < .05), with pronounced differences as stenosis increased. In unstable lesions, NIK+EC were elevated as were EC expressing CXCL12 (p < .05). NIK+EC were increased in lesions with lipid content >40% (p < .05) and more abundant in coronary artery lesions implicated in MI (p < .05). These vessels also associated with atheromatous rather than fibrous plaque morphology (p < .05). Transcriptomic profiling demonstrated components of noncanonical NF-κB pathway were also upregulated in ruptured plaques (p < .05). CONCLUSIONS NIK+EC associate with chronic inflammation in advanced lesions and are linked to markers of local inflammation, lipid content, unstable plaque phenotype and development of MI. Therefore, targeting noncanonical NF-κB signaling may hold therapeutic potential for patients with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Chrissta X Maracle
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Rabia Agca
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Boy Helder
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - John A L Meeuwsen
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Hans W M Niessen
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik A L Biessen
- Department of Experimental Vascular Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Mike T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Pirillo A, Bonacina F, Norata GD, Catapano AL. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr Atheroscler Rep 2018; 20:12. [PMID: 29445885 DOI: 10.1007/s11883-018-0715-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is an inflammatory disorder of the arterial wall, in which several players contribute to the onset and progression of the disease. Besides the well-established role of lipids, specifically cholesterol, and immune cell activation, new insights on the molecular mechanisms underlying the atherogenic process have emerged. RECENT FINDINGS Meta-inflammation, a condition of low-grade immune response caused by metabolic dysregulation, immunological memory of innate immune cells (referred to as "trained immunity"), cholesterol homeostasis in dendritic cells, and immunometabolism, i.e., the interplay between immunological and metabolic processes, have all emerged as new actors during atherogenesis. These observations reinforced the interest in directly targeting inflammation to reduce cardiovascular disease. The novel acquisitions in pathophysiology of atherosclerosis reinforce the tight link between lipids, inflammation, and immune response, and support the benefit of targeting LDL-C as well as inflammation to decrease the CVD burden. How this will translate into the clinic will depend on the balance between costs (monoclonal antibodies either to PCSK9 or to IL-1ß), side effects (increased incidence of death due to infections for anti-IL-1ß antibody), and the benefits for patients at high CVD risk.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, 9, 20133, Milan, Italy.
| |
Collapse
|
40
|
Jin R, Xiao AY, Song Z, Yu S, Li J, Cui MZ, Li G. Platelet CD40 Mediates Leukocyte Recruitment and Neointima Formation after Arterial Denudation Injury in Atherosclerosis-Prone Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:252-263. [PMID: 29037856 PMCID: PMC5745524 DOI: 10.1016/j.ajpath.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The role of platelets in the development of thrombosis and abrupt closure after angioplasty is well recognized. However, the direct impact of platelets on neointima formation after arterial injury remains undetermined. Herein, we show that neointima formation after carotid artery wire injury reduces markedly in CD40-/- apolipoprotein E-deficient (apoE-/-) mice but only slightly in CD40 ligand-/-apoE-/- mice, compared with apoE-/- mice. Wild-type and CD40-deficient platelets were isolated from blood of apoE-/- and CD40-/-apoE-/- mice, respectively. The i.v. injection of thrombin-activated platelets into CD40-/-apoE-/- mice was performed every 5 days, starting at 2 days before wire injury. Injection of wild-type platelets promoted neointima formation, which was associated with increased inflammation by stimulating leukocyte recruitment via up-regulation of circulating platelet surface P-selectin expression and the formation of platelet-leukocyte aggregates. It was also associated with further promoting the luminal deposition of platelet-derived regulated on activation normal T cell expressed and secreted/chemokine (C-C motif) ligand 5 and expression of monocyte chemoattractant protein-1 and vascular cell adhesion molecule 1 in wire-injured carotid arteries. Remarkably, all these inflammatory actions by activated platelets were abrogated by lack of CD40 on injected platelets. Moreover, injection of wild-type platelets inhibited endothelial recovery in wire-injured carotid arteries, but this effect was also abrogated by lack of CD40 on injected platelets. Results suggest that platelet CD40 plays a pivotal role in neointima formation after arterial injury and might represent an attractive target to prevent restenosis after vascular interventions.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Zifang Song
- Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shiyong Yu
- Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jarvis Li
- Caddo Magnet High School, Shreveport, Louisiana
| | - Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Guohong Li
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.
| |
Collapse
|
41
|
Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie 2017; 34:63-71. [DOI: 10.5482/hamo-13-09-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
SummaryThroughout the last two decades inflammation has been recognized as the central mechanism underlying atherogenesis. A multitude of basic science work demonstrates the pivotal role of inflammatory processes during every step of atherosclerotic plaque formation: From initiation via propagation to complication.This review describes some of the key mechanisms involved with a particular focus on the diverse group of inflammatory cells and their subsets that distinctly contribute to atherogenic and anti-atherogenic phenomena. Furthermore, we summarize the controlling action of a tight network of co-stimulatory molecules and cytokines orchestrating the inflammatory and anti-inflammatory effector functions. Finally, the current status of clinical trials evaluating anti-inflammatory/ immune-modulatory treatment strategies is summarized and an outlook for future therapeutic implications is provided.
Collapse
|
42
|
Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation – tipping the balance in atherosclerosis? Thromb Haemost 2017; 106:804-13. [DOI: 10.1160/th11-09-0605] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryA plethora of basic laboratory and clinical studies has uncovered the chronic inflammatory nature of atherosclerosis. The adaptive immune system with its front-runner, the T cell, drives the atherogenic process at all stages. T cell function is dependent on and controlled by a variety of either co-stimulatory or co-inhibitory signals. In addition, many of these proteins enfold T cell-independent pro-atherogenic functions on a variety of cell types. Accordingly they represent potential targets for immune- modulatory and/or anti-inflammatory therapy of atherosclerosis. This review focuses on the diverse role of co-stimulatory molecules of the B7 and tumour necrosis factor (TNF)-superfamily and their downstream signalling effectors in atherosclerosis. In particular, the contribution of CD28/CD80/CD86/CTLA4, ICOS/ICOSL, PD-1/PDL-1/2, TRAF, CD40/CD154, OX40/OX40L, CD137/CD137L, CD70/CD27, GITR/GITRL, and LIGHT to arterial disease is reviewed. Finally, the potential for a therapeutic exploitation of these molecules in the treatment of atherosclerosis is discussed.
Collapse
|
43
|
Kusters P, Seijkens T, Bürger C, Legein B, Winkels H, Gijbels M, Barthels C, Bennett R, Beckers L, Atzler D, Biessen E, Brocker T, Weber C, Gerdes N, Lutgens E. Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by Provoking Inflammatory Bowel Disease and Ensuing Cholesterol Malabsorption. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2912-2919. [PMID: 28935569 DOI: 10.1016/j.ajpath.2017.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The costimulatory molecule CD40 is a major driver of atherosclerosis. It is expressed on a wide variety of cell types, including mature dendritic cells (DCs), and is required for optimal T-cell activation and expansion. It remains undetermined whether and how CD40 on DCs impacts the pathogenesis of atherosclerosis. Here, the effects of constitutively active CD40 in DCs on atherosclerosis were examined using low-density lipoprotein-deficient (Ldlr-/-) bone marrow chimeras that express a transgene containing an engineered latent membrane protein 1 (LMP)/CD40 fusion protein conferring constitutive CD40 signaling under control of the DC-specific CD11c promoter (DC-LMP1/CD40). As expected, DC-LMP1/CD40/Ldlr-/- chimeras (DC-LMP1/CD40) showed increased antigen-presenting capacity of DCs and increased T-cell numbers. However, the mice developed extensive neutrophilia compared to CD40wt/Ldlr-/- (CD40wt) chimeras. Despite overt T-cell expansion and neutrophilia, a reduction in conventional DC frequency and a dramatic (approximately 80%) reduction in atherosclerosis was observed. Further analyses revealed that cholesterol and triglyceride levels had decreased by 37% and 60%, respectively, in DC-LMP1/CD40 chimeras. Moreover, DC-LMP1/CD40 chimeras developed inflammatory bowel disease characterized by massive transmural influx of leukocytes and lymphocytes, resulting in villous degeneration and lipid malabsorption. Constitutive activation of CD40 in DCs results in inflammation of the gastrointestinal tract, thereby impairing lipid uptake, which consequently results in attenuated atherosclerosis.
Collapse
Affiliation(s)
- Pascal Kusters
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom Seijkens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Bart Legein
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Marion Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Christian Barthels
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Remy Bennett
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig Maximilians University, Munich, Germany
| | - Erik Biessen
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), Klinikum RWTH Aachen, Aachen, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Ley K, Gerdes N, Winkels H. ATVB Distinguished Scientist Award: How Costimulatory and Coinhibitory Pathways Shape Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:764-777. [PMID: 28360089 PMCID: PMC5424816 DOI: 10.1161/atvbaha.117.308611] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Immune cells play a critical role in atherosclerosis. Costimulatory and coinhibitory molecules of the tumor necrosis factor receptor and CD28 immunoglobulin superfamilies not only shape T-cell and B-cell responses but also have a major effect on antigen-presenting cells and nonimmune cells. APPROACH AND RESULTS Pharmacological inhibition or activation of costimulatory and coinhibitory molecules and genetic deletion demonstrated their involvement in atherosclerosis. This review highlights recent advances in understanding how costimulatory and coinhibitory pathways shape the immune response in atherosclerosis. CONCLUSIONS Insights gained from costimulatory and coinhibitory molecule function in atherosclerosis may inform future therapeutic approaches.
Collapse
Affiliation(s)
- Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.).
| | - Norbert Gerdes
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| | - Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| |
Collapse
|
46
|
Zirlik A, Lutgens E. An inflammatory link in atherosclerosis and obesity. Co-stimulatory molecules. Hamostaseologie 2016. [PMID: 26225729 DOI: 10.5482/hamo-14-12-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and obesity-induced metabolic dysfunction are lipid-driven inflammatory pathologies responsible for a major part of cardiovascular complications. Immune cell activation as well as interactions between the different immune cells is dependent on and controlled by a variety of co-stimulatory signals. These co-stimulatory signals can either aggravate or ameliorate the disease depending on the stage of the disease, the cell-types involved and the signal transduction cascades initiated. This review focuses on the diverse roles of the most established co-stimulatory molecules of the B7 and Tumor Necrosis Factor Receptor (TNFR) families, ie the CD28/CTLA4-CD80/CD86 and CD40L/CD40 dyads in the pathogenesis of atherosclerosis and obesity. In addition, we will explore their potential as therapeutic targets in both atherosclerosis and obesity.
Collapse
Affiliation(s)
- A Zirlik
- Prof. Andreas Zirlik, Atherogenesis Research Group, Heart Center Freiburg University, Cardiology and Angiology I, University of Freiburg, Germany, E-mail:
| | | |
Collapse
|
47
|
Guo X, Yu L, Chen M, Wu T, Peng X, Guo R, Zhang B. miR-145 mediated the role of aspirin in resisting VSMCs proliferation and anti-inflammation through CD40. J Transl Med 2016; 14:211. [PMID: 27412561 PMCID: PMC4944465 DOI: 10.1186/s12967-016-0961-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background Aspirin (ASA) is the most widely used medicine to prevent cardiovascular diseases; however, the mechanisms by which ASA exerts its anti-proliferative effect remain not fully understood. This study was designed to investigate whether miR-145 is involved in the regulation of vascular smooth muscle cells’ (VSMCs) proliferation and to determine the anti-inflammatory effects of ASA via its regulation of CD40 to provide a new theoretical basis for the pharmacological effect of aspirin. Methods The TNF-α induced proliferation model of VSMCs was divided into different groups with or without aspirin. Cell proliferation was detected by EdU; Real-time PCR was used to detect the mRNA expression of miR-145, CD40, and Calponin, a VSMCs differentiation marker gene. Western blot was used to detect the protein expression of CD40; ELISA was used to determine the concentrations of the inflammatory cytokine IL-6 in cell supernatants. Results The proliferation of VSMCs was stimulated by TNF-α and accompanied by decreased levels of Calponin. TNF-α also decreased the levels of miR-145 and increased the levels of CD40 and IL-6. Pretreatment with 20 μg/mL of aspirin in VSMCs could partially block the above-mentioned effects induced by TNF-α. The protective effects of ASA in VSMCs were reversed by a pretreatment with a miR-145 inhibitor. We also found that the expression of miR-145 in peripheral blood mononuclear cells in ischemic stroke patients was significantly increased after a 10-day treatment with aspirin. Conclusion miR-145 is involved in the anti-proliferation and anti-inflammation effects of aspirin on VSMCs by inhibiting the expression of CD40.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lijin Yu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Min Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Tian Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
49
|
Fuentes E, Rojas A, Palomo I. NF-κB signaling pathway as target for antiplatelet activity. Blood Rev 2016; 30:309-15. [PMID: 27075489 DOI: 10.1016/j.blre.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
In different nucleated cells, NF-κB has long been considered a prototypical proinflammatory signaling pathway with the expression of proinflammatory genes. Although platelets lack a nucleus, a number of functional transcription factors are involved in activated platelets, such as NF-κB. In platelet activation NF-κB regulation events include IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation. Multiple pathways contribute to platelet activation and NF-κB is a common pathway in this activation. Therefore, in platelet activation the modulation of NF-κB pathway could be a potential new target in the treatment of inflammation-related vascular disease therapy (antiplatelet and antithrombotic activities).
Collapse
Affiliation(s)
- Eduardo Fuentes
- Laboratory of Hematology and Immunology, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Iván Palomo
- Laboratory of Hematology and Immunology, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.
| |
Collapse
|
50
|
Ruef J, Browatzki M, Pfeiffer CAH, Schmidt J, Kranzhöfer R. Angiotensin II promotes the inflammatory response to CD40 ligation via TRAF-2. Vasc Med 2016; 12:23-7. [PMID: 17451090 DOI: 10.1177/1358863x07076766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A plethora of evidence supports a link between inflammation and atherogenesis. Both the vasoactive peptide angiotensin II (ANG II) as well as the CD40/CD154 signaling pathway exhibit proinflammatory properties with a direct influence on atherogenesis. We therefore tested the hypothesis that ANG II interacts with CD40/CD154 in human vascular smooth muscle cells (SMC). ANG II did not increase expression of CD40 in human SMC. However, when SMC were prestimulated with ANG II and thereafter stimulated with CD154, the ligand for CD40, the release of IL-6 as a marker of inflammatory activation was augmented compared to cells not primed with ANG II. TNF receptor-associated factor 2 (TRAF-2), an important adaptor protein involved in CD40 signaling, but not TRAF-5 or -6, was increased by ANG II via activation of the angiotensin II type 1 (AT1) receptor subtype. These results suggest that a signaling pathway downstream of CD40 may be altered by ANG II prestimulation. Thus, ANG II can also indirectly cause inflammatory activation of vascular SMC. The data show a novel link between the proatherogenic vasoactive peptide ANG II and cell—cell contact-mediated inflammatory pathways and implicate options for the prevention and therapy of atherosclerotic disease.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Atherosclerosis/metabolism
- CD40 Antigens/metabolism
- CD40 Ligand/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Humans
- Inflammation/metabolism
- Interleukin-6/metabolism
- Losartan/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 1/metabolism
- Saphenous Vein/metabolism
- TNF Receptor-Associated Factor 2/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Johannes Ruef
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|