1
|
Yang Q, Jia S, Tao J, Zhang J, Fan Z. Multiple effects of kisspeptin on neuroendocrine, reproduction, and metabolism in polycystic ovary syndrome. J Neuroendocrinol 2024:e13482. [PMID: 39694850 DOI: 10.1111/jne.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent and heterogeneous disease characterized by a combination of reproductive and endocrine abnormalities, often associated with metabolic and mental health disorders. The etiology and pathogenesis of PCOS remain unclear, but recent research has increasingly focused on the upstream mechanisms underlying its development. Among these, kisspeptin (KISS) signaling has emerged as a pivotal component in the regulation of the hypothalamic-pituitary-gonadal axis, with significant roles in reproductive function, energy regulation, and metabolism. Women with PCOS commonly exhibit disruptions in gonadotropin secretion, including elevated luteinizing hormone (LH) levels, imbalanced LH/follicle-stimulating hormone (FSH) ratios, and increased androgen levels, all of which are usually parallel with abnormal KISS signaling. Furthermore, alterations in the KISS/KISS1R system within the central and circulatory systems, as well as peripheral tissues, have been implicated in the development of PCOS. These changes affect multiple pathophysiological domains, including reproductive function, energy regulation, metabolic homeostasis, inflammatory response, and emotional disorders, and are further influenced by lifestyle and environmental factors. This review aims to comprehensively summarize the existing experimental and clinical evidence supporting these roles of KISS in PCOS, with the goal of establishing a foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxiao Jia
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jing Tao
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
2
|
Patel R, Gomes A, Maloney SK, Smith JT. Reduced voluntary wheel running behaviour in Kiss1r knockout mice. Physiol Behav 2024; 287:114701. [PMID: 39317294 DOI: 10.1016/j.physbeh.2024.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Kisspeptin and its receptor, Kiss1r, are novel players in the central balance of energy intake and expenditure. Recent evidence also indicates that kisspeptin signalling is important in thermoregulation and generation of the circadian rhythm. We used global Kiss1r knockout mice (Kiss1r KO), which are hypogonadal and develop obesity, to determine the impact of kisspeptin on circadian related behaviour. Voluntary wheel running was examined in Kiss1r KO and wild-type (WT) mice, using gonad intact and gonadectomised (GDX) mice to account for the effects of kisspeptin on gonadal sex steroids. Intact male and female Kiss1r KO mice covered only 10% and 30% of the distance travelled each day by their respective WT controls. In all mice, most of the running activity occurred during the dark phase. GDX WT mice ran significantly less during dark periods than the intact WT. GDX Kiss1r KO male mice ran significantly less than the GDX WT male mice, but the decrease was attenuated compared to intact mice. There was no difference between the female GDX Kiss1r KO and GDX WT. In contrast to the obese phenotype that develops in Kiss1r KO mice, body mass at the end of the study was significantly lower in the GDX Kiss1r KO than it was in the GDX WT mice. The difference in wheel running activity was not associated with any histological change in WAT, BAT, or muscle diameter. No difference in immunohistochemistry expression was seen in lateral hypothalamic orexin neurons or dopamine neurons in the ventral tegmental area / substantia nigra. We observed increased Iba1 expression (activation of microglia) in the arcuate nucleus of male Kiss1r KO mice. Overall, the circadian locomotor activity in male Kiss1r KO mice appears dependant on kisspeptin signalling and the obese phenotype does not develop in Kiss1r KO mice when they engage in voluntary activity.
Collapse
Affiliation(s)
- Raj Patel
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Aaron Gomes
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia
| | - Jeremy T Smith
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Perth, Australia.
| |
Collapse
|
3
|
Velasco I, Daza-Dueñas S, Torres E, Ruiz-Pino F, Vázquez MJ, Tena-Sempere M. Kisspeptins centrally modulate food intake and locomotor activity in mice independently of gonadal steroids in a sexually dimorphic manner. J Neuroendocrinol 2024; 36:e13433. [PMID: 39041546 DOI: 10.1111/jne.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17β-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.
Collapse
Affiliation(s)
- Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| | - María J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
4
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
5
|
Sliwowska JH, Woods NE, Alzahrani AR, Paspali E, Tate RJ, Ferro VA. Kisspeptin a potential therapeutic target in treatment of both metabolic and reproductive dysfunction. J Diabetes 2024; 16:e13541. [PMID: 38599822 PMCID: PMC11006622 DOI: 10.1111/1753-0407.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/21/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Kisspeptins (KPs) are proteins that were first recognized to have antimetastatic action. Later, the critical role of this peptide in the regulation of reproduction was proved. In recent years, evidence has been accumulated supporting a role for KPs in regulating metabolic processes in a sexual dimorphic manner. It has been proposed that KPs regulate metabolism both indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, brown adipose tissue, and pancreas. The aim of the review is to provide both experimental and clinical evidence indicating that KPs are peptides linking metabolism and reproduction. We propose that KPs could be used as a potential target to treat both metabolic and reproductive abnormalities. Thus, we focus on the consequences of disruptions in KPs and their receptors in metabolic conditions such as diabetes, undernutrition, obesity, and reproductive disorders (hypogonadotropic hypogonadism and polycystic ovary syndrome). Data from both animal models and human subjects indicate that alterations in KPs in the case of metabolic imbalance lead also to disruptions in reproductive functions. Changes both in the hypothalamic and peripheral KP systems in animal models of the aforementioned disorders are discussed. Finally, an overview of current clinical studies involving KP in fertility and metabolism show fewer studies on metabolism (15%) and only one to date on both. Presented data indicate a dynamic and emerging field of KP studies as possible therapeutic targets in treatments of both reproductive and metabolic dysfunctions.
Collapse
Affiliation(s)
- Joanna Helena Sliwowska
- Department of Veterinary Medicine and Animal Sciences, Laboratory of Neurobiology, Poznan University of Life Sciences, Poznan, Poland
| | - Nicola Elizabeth Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Abdullah Rzgallah Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elpiniki Paspali
- Department of Chemical Engineering, University of Strathclyde, Glasgow, UK
| | - Rothwelle Joseph Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Valerie Anne Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
6
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
7
|
Wang C, Smith J, Lu D, Noble P, Wang K. Airway-associated adipose tissue accumulation is increased in a kisspeptin receptor knockout mouse model. Clin Sci (Lond) 2023; 137:1547-1562. [PMID: 37732890 PMCID: PMC10550770 DOI: 10.1042/cs20230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Airway-associated adipose tissue increases with body mass index and is a local source of pro-inflammatory adipokines that may contribute to airway pathology in asthma co-existing with obesity. Genetic susceptibility to airway adiposity was considered in the present study through kisspeptin/kisspeptin receptor signalling, known to modulate systemic adiposity and potentially drive airway remodelling. Therefore, the aim of the study was to determine the effects of kisspeptin/kisspeptin receptor signalling in the lung, focusing on airway-associated adipose tissue deposition and impact on airway structure-function. Wild-type, heterozygous and kisspeptin receptor knockout mice were studied at 6 or 8 weeks of age. Lung mechanics were assessed before and after methacholine challenge and were subsequently fixed for airway morphometry. A separate group of mice underwent glucose tolerance testing and bronchoalveolar lavage. At 6 weeks of age, kisspeptin/kisspeptin receptor signalling did not affect body adiposity, airway inflammation, wall structure or function. Despite no differences in body adiposity, there was a greater accumulation of airway-associated adipose tissue in knockout mice. By 8 weeks of age, female knockout mice displayed a non-diabetic phenotype with increased body adiposity but not males. Airway-associated adipose tissue area was also increased in both knockout females and males at 8 weeks of age, but again no other respiratory abnormality was apparent. In summary, airway-associated adipose tissue is decoupled from body adiposity in prepubescent mice which supports a genetic susceptibility to fatty deposits localised to the airway wall. There was no evidence that airway-associated adipose tissue drives pathology or respiratory impairment in the absence of other environmental exposures.
Collapse
Affiliation(s)
- Carolyn J. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jeremy T. Smith
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - David Lu
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B. Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kimberley C.W. Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
8
|
Grant AD, Kriegsfeld LJ. Neural substrates underlying rhythmic coupling of female reproductive and thermoregulatory circuits. Front Physiol 2023; 14:1254287. [PMID: 37753455 PMCID: PMC10518419 DOI: 10.3389/fphys.2023.1254287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Coordinated fluctuations in female reproductive physiology and thermoregulatory output have been reported for over a century. These changes occur rhythmically at the hourly (ultradian), daily (circadian), and multi-day (ovulatory) timescales, are critical for reproductive function, and have led to the use of temperature patterns as a proxy for female reproductive state. The mechanisms underlying coupling between reproductive and thermoregulatory systems are not fully established, hindering the expansion of inferences that body temperature can provide about female reproductive status. At present, numerous digital tools rely on temperature to infer the timing of ovulation and additional applications (e.g., monitoring ovulatory irregularities and progression of puberty, pregnancy, and menopause are developed based on the assumption that reproductive-thermoregulatory coupling occurs across timescales and life stages. However, without clear understanding of the mechanisms and degree of coupling among the neural substrates regulating temperature and the reproductive axis, whether such approaches will bear fruit in particular domains is uncertain. In this overview, we present evidence supporting broad coupling among the central circuits governing reproduction, thermoregulation, and broader systemic physiology, focusing on timing at ultradian frequencies. Future work characterizing the dynamics of reproductive-thermoregulatory coupling across the lifespan, and of conditions that may decouple these circuits (e.g., circadian disruption, metabolic disease) and compromise female reproductive health, will aid in the development of strategies for early detection of reproductive irregularities and monitoring the efficacy of fertility treatments.
Collapse
Affiliation(s)
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, United States
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, CA, United States
| |
Collapse
|
9
|
Sahin Z, Ozcan M, Ozkaya A, Canpolat S, Kutlu S, Kelestimur H. Percentages of serum, liver and adipose tissue fatty acids and body weight are affected in female rats by long-term Central kisspeptin treatments. Arch Physiol Biochem 2023; 129:307-315. [PMID: 32951481 DOI: 10.1080/13813455.2020.1819339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to determine the possible effects of long-term exogenous kisspeptin and its antagonist P234 on serum, liver and adipose tissue fatty acids (FA) profiles, as well as body weight, in female rats. Kisspeptin (50 pmol) and P234 (1 nmol) were administrated to the weaned Sprague-Dawley female rats by an intracerebroventricular injection from the 26th postnatal day to the 60th postnatal day. Percentages of the serum total saturated FA (∑SFA) and total monounsaturated FA (∑MUFA) were lower in the kisspeptin group. In the adipose tissue, ∑SFA was lower and total unsaturated FA higher in the P234 group. Moreover, long-term central kisspeptin injection caused a decrease in the body weight. When compared to the kisspeptin group, the final body weights were higher in the P234 and kisspeptin + P234 groups. According to our results, we suggest that kisspeptin has a regulatory role in FA metabolism and regulation of body weight.
Collapse
Affiliation(s)
- Zafer Sahin
- Faculty of Medicine, Department of Physiology, Karadeniz Technical University, Trabzon, Turkey
| | - Mete Ozcan
- Faculty of Medicine, Department of Biophysics, Firat University, Elazig, Turkey
| | - Ahmet Ozkaya
- Faculty of Science, Department of Chemistry, Adiyaman University, Adiyaman, Turkey
| | - Sinan Canpolat
- Faculty of Medicine, Department of Physiology, Fırat University, Elazig, Turkey
| | - Selim Kutlu
- Meram Medical Faculty, Department of Physiology, Necmettin Erbakan University, Konya, Turkey
| | - Haluk Kelestimur
- Faculty of Medicine, Department of Physiology, Fırat University, Elazig, Turkey
| |
Collapse
|
10
|
De Jesus AN, Henry BA. The role of oestrogen in determining sexual dimorphism in energy balance. J Physiol 2023; 601:435-449. [PMID: 36117117 PMCID: PMC10092637 DOI: 10.1113/jp279501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023] Open
Abstract
Energy balance is determined by caloric intake and the rate at which energy is expended, with the latter comprising resting energy expenditure, physical activity and adaptive thermogenesis. The regulation of both energy intake and expenditure exhibits clear sexual dimorphism, with young women being relatively protected against weight gain and the development of cardiometabolic diseases. Preclinical studies have indicated that females are more sensitive to the satiety effects of leptin and insulin compared to males. Furthermore, females have greater thermogenic activity than males, whereas resting energy expenditure is generally higher in males than females. In addition to this, in post-menopausal women, the decline in sex steroid concentration, particularly in oestrogen, is associated with a shift in the distribution of adipose tissue and overall increased propensity to gain weight. Oestrogens are known to regulate energy balance and weight homeostasis via effects on both food intake and energy expenditure. Indeed, 17β-oestradiol treatment increases melanocortin signalling in the hypothalamus to cause satiety. Furthermore, oestrogenic action at the ventromedial hypothalamus has been linked with increased energy expenditure in female mice. We propose that oestrogen action on energy balance is multi-faceted and is fundamental to determining sexual dimorphism in weight control. Furthermore, evidence suggests that the decline in oestrogen levels leads to increased risk of weight gain and development of cardiometabolic disease in women across the menopausal transition.
Collapse
Affiliation(s)
- Anne Nicole De Jesus
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Socs3 ablation in kisspeptin cells partially prevents lipopolysaccharide-induced body weight loss. Cytokine 2022; 158:155999. [PMID: 35985175 DOI: 10.1016/j.cyto.2022.155999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Many cytokines have been proposed to regulate reproduction due to their actions on hypothalamic kisspeptin cells, the main modulators of gonadotropin-releasing hormone (GnRH) neurons. Hormones such as leptin, prolactin and growth hormone are good examples of cytokines that lead to Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway activation, consequently exerting effects in kisspeptin neurons. Different studies have investigated how specific components of the JAK/STAT signaling pathway affect the functions of kisspeptin cells, but the role of the suppressor of cytokine signaling 3 (SOCS3) in mediating cytokine actions in kisspeptin cells remains unknown. Cre-Loxp technology was used in the present study to ablate Socs3 expression in kisspeptin cells (Kiss1/Socs3-KO). Then, male and female control and Kiss1/Socs3-KO mice were evaluated for sexual maturation, energy homeostasis features, and fertility. It was found that hypothalamic Kiss1 mRNA expression is significantly downregulated in Kiss1/Socs3-KO mice. Despite reduced hypothalamic Kiss1 mRNA content, these mice did not present any sexual maturation or fertility impairments. Additionally, body weight gain, leptin sensitivity and glucose homeostasis were similar to control mice. Interestingly, Kiss1/Socs3-KO mice were partially protected against lipopolysaccharide (LPS)-induced body weight loss. Our results suggest that Socs3 ablation in kisspeptin cells partially prevents the sickness behavior induced by LPS, suggesting that kisspeptin cells can modulate energy metabolism in mice in certain situations.
Collapse
|
12
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
13
|
Ma Y, Awe O, Radovick S, Yang X, Divall S, Wolfe A, Wu S. Lower FSH With Normal Fertility in Male Mice Lacking Gonadotroph Kisspeptin Receptor. Front Physiol 2022; 13:868593. [PMID: 35557961 PMCID: PMC9089166 DOI: 10.3389/fphys.2022.868593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
The kisspeptin receptor, crucial for hypothalamic control of puberty and reproduction, is also present in the pituitary gland. Its role in the pituitary gland is not defined. Kisspeptin signaling via the Kiss1r could potentially regulate reproductive function at the level of pituitary gonadotrope. Using Cre/Lox technology, we deleted the Kiss1r gene in pituitary gonadotropes (PKiRKO). PKiRKO males have normal genital development (anogenital distance WT: 19.1 ± 0.4 vs. PKiRKO: 18.5 ± 0.4 mm), puberty onset, testes cell structure on gross histology, normal testes size, and fertility. PKiRKO males showed significantly decreased serum FSH levels compared to WT males (5.6 ± 1.9 vs. 10.2 ± 1.8 ng/ml) with comparable LH (1.1 ± 0.2 vs. 1.8 ± 0.4 ng/ml) and testosterone levels (351.8 ± 213.0 vs. 342.2 ± 183.0 ng/dl). PKiRKO females have normal puberty onset, cyclicity, LH and FSH levels and fertility. Overall, these findings indicate that absence of pituitary Kiss1r reduces FSH levels in male mice without affecting testis function. PKiRKO mice have normal reproductive function in both males and females.
Collapse
Affiliation(s)
- Yaping Ma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Radovick
- Department of Pediatrics, Rutgers University Medical School, New Brunswick, NJ, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, United States
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Lee Y, Park YJ, Lee B, Park E, Kim H, Choi CW, Kim MS. Ribes fasciculatum Ameliorates High-Fat-Diet-Induced Obesity by Elevating Peripheral Thermogenic Signaling. Molecules 2022; 27:1649. [PMID: 35268752 PMCID: PMC8911937 DOI: 10.3390/molecules27051649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ribes fasciculatum has been consumed as a food and as a traditional medicine for treating autoimmune diseases and aging in diverse countries. A previous study showed that a mixture of Ribes fasciculatum and Cornus officinalis prohibited adipocyte differentiation and lipid accumulation in preadipocytes and suppressed diet-induced obesity. Nevertheless, the mechanism of R. fasciculatum to regulate energy homeostasis solely through thermogenic signaling remains unclear. Thus, we investigated its effects on energy homeostasis using R. fasciculatum fed to C57BL/6 mice with a 45% high-fat diet. Chronic consumption of R. fasciculatum decreased the body weight of obese mice with increasing food intakes and improved metabolic-syndrome-related phenotypes. Therefore, we further tested its thermogenic effects. Cold chamber experiments and qPCR studies indicated that R. fasciculatum elevated thermogenic signaling pathways, demonstrated by increased body temperature and uncoupling protein 1 (UCP1) signaling in the white and brown adipose tissues. Afzelin is one major known compound derived from R. fasciculatum. Hence, the isolated compound afzelin was treated with preadipocytes and brown adipocytes for cell viability and luciferase assay, respectively, to further examine its thermogenic effect. The studies showed that the response of afzelin was responsible for cell viability and the increased UCP1. In conclusion, our data indicated that R. fasciculatum elevated peripheral thermogenic signaling through increased UCP1 via afzelin activation and ameliorated diet-induced obesity.
Collapse
Affiliation(s)
- Yuna Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Yeo-Jin Park
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
- Korean Convergence Medicine, University of Science and Technology, Daejeon 34054, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34504, Korea;
| | - Chun-Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea
| | - Min-Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
15
|
Hudson AD, Kauffman AS. Metabolic actions of kisspeptin signaling: Effects on body weight, energy expenditure, and feeding. Pharmacol Ther 2022; 231:107974. [PMID: 34530008 PMCID: PMC8884343 DOI: 10.1016/j.pharmthera.2021.107974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Kisspeptin (encoded by the Kiss1 gene) and its receptor, KISS1R (encoded by the Kiss1r gene), have well-established roles in stimulating reproduction via central actions on reproductive neural circuits, but recent evidence suggests that kisspeptin signaling also influences metabolism and energy balance. Indeed, both Kiss1 and Kiss1r are expressed in many metabolically-relevant peripheral tissues, including both white and brown adipose tissue, the liver, and the pancreas, suggesting possible actions on these tissues or involvement in their physiology. In addition, there may be central actions of kisspeptin signaling, or factors co-released from kisspeptin neurons, that modulate metabolic, feeding, or thermoregulatory processes. Accumulating data from animal models suggests that kisspeptin signaling regulates a wide variety of metabolic parameters, including body weight and energy expenditure, adiposity and adipose tissue function, food intake, glucose metabolism, respiratory rates, locomotor activity, and thermoregulation. Herein, the current evidence for the involvement of kisspeptin signaling in each of these physiological parameters is reviewed, gaps in knowledge identified, and future avenues of important research highlighted. Collectively, the discussed findings highlight emerging non-reproductive actions of kisspeptin signaling in metabolism and energy balance, in addition to previously documented roles in reproductive control, but also emphasize the need for more research to resolve current controversies and uncover underlying molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Alexandra D Hudson
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander S Kauffman
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
16
|
Kavanagh GS, Tadi J, Balkenhol SM, Kauffman AS, Maloney SK, Smith JT. Kisspeptin impacts on circadian and ultradian rhythms of core body temperature: Evidence in kisspeptin receptor knockout and kisspeptin knockdown mice. Mol Cell Endocrinol 2022; 542:111530. [PMID: 34896241 PMCID: PMC9907773 DOI: 10.1016/j.mce.2021.111530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023]
Abstract
Kisspeptin is vital for the regulation of both fertility and metabolism. Kisspeptin receptor (Kiss1r) knockout (KO) mice exhibit increased adiposity and reduced energy expenditure in adulthood. Kiss1r mRNA is expressed in brown adipose tissue (BAT) and Kiss1r KO mice exhibit reduced Ucp1 mRNA in BAT and impaired thermogenesis. We hypothesised that mice with diminished kisspeptin signalling would exhibit reduced core body temperature (Tc) and altered dynamics of circadian and ultradian rhythms of Tc. Tc was recorded every 15-min over 14-days in gonadectomised wild-type (WT), Kiss1r KO, and also Kiss1-Cre (95% reduction in Kiss1 transcription) mice. Female Kiss1r KOs had higher adiposity and lower Ucp1 mRNA in BAT than WTs. No change was detected in Kiss1-Cre mice. Mean Tc during the dark phase was lower in female Kiss1r KOs versus WTs, but not Kiss1-Cre mice. Female Kiss1r KOs had a lower mesor and amplitude of the circadian rhythm of Tc than did WTs. In WT mice, there were more episodic ultradian events (EUEs) of Tc during the dark phase than the light phase, but this measure was similar between dark and light phases in Kiss1r KO and Kiss1-Cre mice. The amplitude of EUEs was higher in the dark phase in female Kiss1r KO and male Kiss1-Cre mice. Given the lack of clear metabolic phenotype in Kiss1-Cre mice, 5% of Kiss1 transcription may be sufficient for proper metabolic control, as was shown for fertility. Moreover, the observed alterations in Tc suggest that kisspeptin has a role in circadian and ultradian rhythm-driven pathways.
Collapse
Affiliation(s)
- Georgia S Kavanagh
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Tadi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Sydney M Balkenhol
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy T Smith
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
17
|
Kim D, Lee Y, Kim HR, Park YJ, Hwang H, Rhim H, Kang T, Choi CW, Lee B, Kim MS. Hypothalamic administration of sargahydroquinoic acid elevates peripheral thermogenic signaling and ameliorates high fat diet-induced obesity through the sympathetic nervous system. Sci Rep 2021; 11:21315. [PMID: 34716371 PMCID: PMC8556287 DOI: 10.1038/s41598-021-00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Sargassum serratifolium (C. Agardh) C.Agardh, a marine brown alga, has been consumed as a food and traditional medicine in Asia. A previous study showed that the meroterpenoid-rich fraction of an ethanolic extract of S. serratifolium (MES) induced adipose tissue browning and suppressed diet-induced obesity and metabolic syndrome when orally supplemented. Sargahydroquinoic acid (SHQA) is a major component of MES. However, it is unclear whether SHQA regulates energy homeostasis through the central nervous system. To examine this, SHQA was administrated through the third ventricle in the hypothalamus in high-fat diet-fed C57BL/6 mice and investigated its effects on energy homeostasis. Chronic administration of SHQA into the brain reduced body weight without a change in food intake and improved metabolic syndrome-related phenotypes. Cold experiments and biochemical analyses indicated that SHQA elevated thermogenic signaling pathways, as evidenced by an increase in body temperature and UCP1 signaling in white and brown adipose tissues. Peripheral denervation experiments using 6-OHDA indicated that the SHQA-induced anti-obesity effect is mediated by the activation of the sympathetic nervous system, possibly by regulating genes associated with sympathetic outflow and GABA signaling pathways. In conclusion, hypothalamic injection of SHQA elevates peripheral thermogenic signaling and ameliorates diet-induced obesity.
Collapse
Affiliation(s)
- Doyeon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yuna Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo Jin Park
- Korea Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
- Korean Convergence Medicine, University of Science and Technology, Daejeon, 34504, Republic of Korea
| | - Hongik Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-Do, 16229, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
18
|
Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod 2021; 27:gaab060. [PMID: 34524460 PMCID: PMC8786495 DOI: 10.1093/molehr/gaab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.
Collapse
Affiliation(s)
- Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angelos G Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - George A Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
19
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
20
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
21
|
Izzi-Engbeaya C, Dhillo WS. Emerging roles for kisspeptin in metabolism. J Physiol 2021; 600:1079-1088. [PMID: 33977536 DOI: 10.1113/jp281712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Kisspeptin, a neuropeptide hormone, has been firmly established as a key regulator of the hypothalamic-pituitary-gonadal axis and mammalian reproductive behaviour. In recent years, a growing body of evidence has emerged suggesting a role for kisspeptin in regulating metabolic processes. This data suggest that kisspeptin exerts its metabolic effects indirectly via gonadal hormones and/or directly via the kisspeptin receptor in the brain, pancreas and brown adipose tissue. Kisspeptin receptor knockout studies indicate that kisspeptin may play sexually dimorphic roles in the physiological regulation of energy expenditure, food intake and body weight. Some, but not all, in vitro work demonstrates positive effects on glucose-stimulated insulin secretion, which is more marked at higher kisspeptin concentrations. Acute and chronic in vivo rodent, non-human primate and human studies reveal enhancement of glucose-stimulated insulin secretion in response to pharmacological doses of kisspeptin. Although significant progress has been made in elucidating the metabolic effects of kisspeptin, further mechanistic work and translational studies are required to address unanswered questions and establish the metabolic effects of kisspeptin in diverse human populations (including women, people with obesity and people with diabetes).
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Section of Endocrinology & Investigative Medicine, Imperial College London, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Imperial College London, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
22
|
Cázarez‐Márquez F, Eliveld J, Ritsema WIGR, Foppen E, Bossenbroek Y, Pelizzari S, Simonneaux V, Kalsbeek A. Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat. J Neuroendocrinol 2021; 33:e12973. [PMID: 33960524 PMCID: PMC8365661 DOI: 10.1111/jne.12973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Abstract
Kisspeptin (Kp) and (Arg)(Phe) related peptide 3 (RFRP-3) are two RF-amides acting in the hypothalamus to control reproduction. In the past 10 years, it has become clear that, apart from their role in reproductive physiology, both neuropeptides are also involved in the control of food intake, as well as glucose and energy metabolism. To investigate further the neural mechanisms responsible for these metabolic actions, we assessed the effect of acute i.c.v. administration of Kp or RFRP-3 in ad lib. fed male Wistar rats on feeding behaviour, glucose and energy metabolism, circulating hormones (luteinising hormone, testosterone, insulin and corticosterone) and hypothalamic neuronal activity. Kp increased plasma testosterone levels, had an anorexigenic effect and increased lipid catabolism, as attested by a decreased respiratory exchange ratio (RER). RFRP-3 also increased plasma testosterone levels but did not modify food intake or energy metabolism. Both RF-amides increased endogenous glucose production, yet with no change in plasma glucose levels, suggesting that these peptides provoke not only a release of hepatic glucose, but also a change in glucose utilisation. Finally, plasma insulin and corticosterone levels did not change after the RF-amide treatment. The Kp effects were associated with an increased c-Fos expression in the median preoptic area and a reduction in pro-opiomelanocortin immunostaining in the arcuate nucleus. No effects on neuronal activation were found for RFRP-3. Our results provide further evidence that Kp is not only a very potent hypothalamic activator of reproduction, but also part of the hypothalamic circuit controlling energy metabolism.
Collapse
Affiliation(s)
- Fernando Cázarez‐Márquez
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jitske Eliveld
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Wayne I. G. R. Ritsema
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ewout Foppen
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Yvonne Bossenbroek
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Simone Pelizzari
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
23
|
Yang L, Demetriou L, Wall MB, Mills EG, Wing VC, Thurston L, Schaufelberger CN, Owen BM, Abbara A, Rabiner EA, Comninos AN, Dhillo WS. The Effects of Kisspeptin on Brain Response to Food Images and Psychometric Parameters of Appetite in Healthy Men. J Clin Endocrinol Metab 2021; 106:e1837-e1848. [PMID: 33075807 PMCID: PMC7993584 DOI: 10.1210/clinem/dgaa746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. OBJECTIVE This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. DESIGN A double-blinded, randomized, placebo-controlled, crossover study was conducted. PARTICIPANTS Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). INTERVENTION Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. MAIN OUTCOME MEASURES Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. RESULTS Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. CONCLUSIONS This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.
Collapse
Affiliation(s)
- Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | | | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Victoria C Wing
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Layla Thurston
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
24
|
Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021; 60:220-243. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors in nature and mediate the effects of a variety of extracellular signals, such as hormone, neurotransmitter, odor, and light signals. Due to their involvement in a broad range of physiological and pathological processes and their accessibility, GPCRs are widely used as pharmacological targets of treatment. Orphan G protein-coupled receptors (oGPCRs) are GPCRs for which no natural ligands have been found, and they not only play important roles in various physiological functions, such as sensory perception, reproduction, development, growth, metabolism, and responsiveness, but are also closely related to many major diseases, such as central nervous system (CNS) diseases, metabolic diseases, and cancer. Recently, many studies have reported that oGPCRs play increasingly important roles as key factors in the occurrence and progression of autoimmune diseases. Therefore, oGPCRs are likely to become potential therapeutic targets and may provide a breakthrough in the study of autoimmune diseases. In this article, we focus on reviewing the recent research progress and clinical treatment effects of oGPCRs in three common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE), shedding light on novel strategies for treatments.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China.,Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China.,Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, 310058, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
25
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
26
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
27
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
28
|
Halvorson CL, De Bond JP, Maloney SK, Smith JT. Thermoneutral conditions correct the obese phenotype in female, but not male, Kiss1r knockout mice. J Therm Biol 2020; 90:102592. [PMID: 32479387 DOI: 10.1016/j.jtherbio.2020.102592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
Abstract
Kisspeptin, a neuropeptide that activates gonadotropin-releasing hormone (GnRH) neurons, has also been implicated as a regulator of energy balance. Kisspeptin receptor (Kiss1r) knockout (KO) mice display an obese phenotype in adulthood compared to wild-type (WT) controls due to reduced energy expenditure. Additionally, experimental evidence shows that the temperature of typical rodent housing conditions (22 °C) increases the metabolism of mice above basal levels. Female Kiss1r KO mice show reduced core temperature and impaired temperature adaptation to an acute cold challenge, suggesting their temperature homeostasis processes are altered. The present study examined the phenotype of gonadectomised Kiss1r KO mice at both sub-thermoneutral and thermoneutral temperature (22 °C and 30 °C). Our results confirmed the obese phenotype in Kiss1r KO mice at 22 °C, and revealed a sexually dimorphic effect of thermal neutrality on the phenotype. In female KO mice, the obesity observed at 22 °C was attenuated at 30 °C. Plasma leptin levels were higher in KO than WT female mice at 22 °C (P < 0.001) but not at 30 °C. Importantly, the expression of Ucp1 mRNA in brown adipose tissue was lower in KO mice compared to WT mice at 22 °C (P < 0.05), but not different from WT at 30 °C. In male KO mice, a metabolic phenotype was observed at 22 °C and 30 °C. These results provide further evidence for kisspeptin-mediated regulation of adiposity via altered energy expenditure. Moreover, thermoneutral housing alleviated the obese phenotype in female Kiss1r KO mice, compared to WT, indicating the impairment in these mice may relate to an inability to adapt to the chronic cold stress that is experienced at 22 °C.
Collapse
Affiliation(s)
- C L Halvorson
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - J P De Bond
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - S K Maloney
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - J T Smith
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|