1
|
He X, Lei X, Xu Q, Lan J, Wu B, Guo H, Gao W, Liu D. Combining multiple feature selection methods and structural equation modelling for exploring factors affecting stand biomass of natural coniferous-broad leaved mixed forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176669. [PMID: 39362558 DOI: 10.1016/j.scitotenv.2024.176669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Recognition of biotic and abiotic factors affecting biomass of natural mixed forests is of great importance for forest carbon estimation and management. When estimating stand biomass using models, different variable selection methods often yield inconsistent results, and there is lack of systematic analysis. This study aimed to combine multiple feature selection methods with structural equation modelling (SEM) to identify a set of variables affecting stand biomass more reasonably. Eight methods were applied for feature selection based on data from 286 permanent sample plots in natural coniferous-broad leaved mixed forests in northeast China. These methods included Pearson correlation analysis, two methods derived from principal component analysis (PCA), stepwise regression, redundancy analysis (RDA), generalized additive model (GAM), random forest (RF), and boosted regression tree (BRT). A total of 56 candidate variables were considered, covering stand, biodiversity, climate and soil features. Significant variability was observed in the variables selected, however, there were 6 variables consistently identified across all methods, including tree species diversity (N_Sp_Div), stand structural diversity (N_ Size_ Div), nearest taxon index (NRI), community weighted mean based on dry matter mass of leaves (CWM.LDMC), soil pH, and degree-days above 18 °C (DD18). Then, these variables were included in the SEM with stand average age and additive stand density index (aSDI) to explore the direction and magnitude of their impacts on stand biomass. The SEM results showed that aSDI and average age had the greatest positive effects on stand biomass, and structural diversity also had a significant positive effect. DD18 affected stand biomass both directly and indirectly, with the total negative effect. Soil pH indirectly affected stand biomass via aSDI. Our findings demonstrated that combining multiple feature selection methods with SEM was an effective approach for understanding multiple factors affecting stand biomass, and provided valuable insights for forest biomass estimation and carbon management.
Collapse
Affiliation(s)
- Xiao He
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangdong Lei
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China.
| | - Qigang Xu
- East China Inventory and Planning Institute, National Forestry and Grassland Administration, Hangzhou, Zhejiang 310019, China
| | - Jie Lan
- College of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China
| | - Biyun Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Hong Guo
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenqiang Gao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Di Liu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
2
|
Chaturvedi RK, Tripathi A, Pandey R, Raghubanshi AS, Singh JS. Assessment of habitat features modulated carbon sequestration strategies for drought management in tropical dry forest fragments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175703. [PMID: 39179036 DOI: 10.1016/j.scitotenv.2024.175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Habitat features, such as species diversity, functional diversity, tree size, disturbances and fragment sizes have differential impacts on carbon (C) storage and C-sequestration in forest ecosystems. Present study attempted to understand the tree strategies for modulating C-sequestration capacity across tropical dry forest fragments with variable edge distances. We evaluated the differences between drought strategies (i.e., drought avoiding and drought tolerant) for variations in stem density, relative growth rate (RGR), C-storage and C-sequestration, species diversity, functional diversity, tree size and disturbance indicators along edge distance gradient, besides analyzed the differences between drought strategies for responses of C-storage and C-sequestration to variations in species diversity, functional diversity, tree size and disturbance indicators. Various traits and functional indices were analyzed using standard statistical techniques. For total trees and for the two drought strategies, generalized linear modeling results showed a significant decline in stem density, RGR, C-stock, C-sequestration, species diversity, functional diversity and tree size indicators, while a considerable increase in disturbance indicators, along decreasing edge distance across the fragments. The drought strategies exhibited a high degree of variation in the slope of associations for above variables with edge distance across fragments. For predicting C-sequestration, structural equation modeling results showed highly significant influence of functional diversity indicators for drought avoiding strategy, while species diversity indicators were strongly significant for drought tolerant strategy. Moreover, fire index and drought index were critical predictors for C-sequestration for drought avoiding and drought tolerant strategies, respectively. This study provide inputs to understand the largely ignored processes of C-storage and C-sequestration in fragmented forests, which are currently prevalent due to heavy anthropogenic pressures. Our findings are useful for forest managers to understand vegetation responses to interactions of species diversity, functional diversity, tree size and disturbance indicators, for predicting the stability of larger fragments and for planning restoration of smaller fragments.
Collapse
Affiliation(s)
- R K Chaturvedi
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, Yunnan, China.
| | - Anshuman Tripathi
- National Mineral Development Corporation Limited, Bailadila Iron Ore Mine, Bacheli Complex, Dantewada, 494553, Chhattisgarh, India
| | - Rajiv Pandey
- Indian Council of Forestry Research and Education (ICFRE), Dehradun, India
| | - A S Raghubanshi
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - J S Singh
- Ecosystems Analysis Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Ray T, Fichtner A, Kunz M, Proß T, Bradler PM, Bruelheide H, Georgi L, Haider S, Hildebrand M, Potvin C, Schnabel F, Trogisch S, von Oheimb G. Diversity-enhanced canopy space occupation and leaf functional diversity jointly promote overyielding in tropical tree communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175438. [PMID: 39134282 DOI: 10.1016/j.scitotenv.2024.175438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Understanding the mechanisms that drive biodiversity-productivity relationships is critical for guiding forest restoration. Although complementarity among trees in the canopy space has been suggested as a key mechanism for greater productivity in mixed-species tree communities, empirical evidence remains limited. Here, we used data from a tropical tree diversity experiment to disentangle the effects of tree species richness and community functional characteristics (community-weighted mean and functional diversity of leaf traits) on canopy space filling, and how these effects are related to overyielding. We found that canopy space filling was largely explained by species identity effects rather than tree diversity effects. Communities with a high abundance of species with a conservative resource-use strategy were those with most densely packed canopies. Across monocultures and mixtures, a higher canopy space filling translated into an enhanced wood productivity. Importantly, most communities (83 %) produced more wood volume than the average of their constituent species in monoculture (i.e. most communities overyielded). Our results show that overyielding increased with leaf functional diversity and positive net biodiversity effects on canopy space filling, which mainly arose due to a high taxonomic diversity. These findings suggest that both taxonomic diversity-enhanced canopy space filling and canopy leaf diversity are important drivers for overyielding in mixed-species forests. Consequently, restoration initiatives should promote stands with functionally diverse canopies by selecting tree species with large interspecific differences in leaf nutrition, as well as leaf and branch morphology to optimize carbon capture in young forest stands.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Matthias Kunz
- Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Tobias Proß
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia M Bradler
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany; Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Louis Georgi
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | | | - Catherine Potvin
- Department of Biology, McGill University, 1205 Dr Penfield, Montréal, Québec H3A 1B1, Canada; Smithsonian Tropical Research Institute, Panama, Panama
| | - Florian Schnabel
- Chair of Silviculture, Institute of Forest Sciences, University of Freiburg, Tennenbacherstr. 4, 79085 Freiburg, Germany
| | - Stefan Trogisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| |
Collapse
|
4
|
Qu Q, Wang S, Hu X, Mu L. The impact of anthropogenic pressures on microbial diversity and river multifunctionality relationships on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175293. [PMID: 39111414 DOI: 10.1016/j.scitotenv.2024.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Conserving biodiversity is crucial for maintaining essential ecosystem functions, as indicated by the positive relationships between biodiversity and ecosystem functioning. However, the impacts of declining biodiversity on ecosystem functions in response to mounting human pressures remain uncertain. This uncertainty arises from the complexity of trade-offs among human activities, climate change, river properties, and biodiversity, which have not been comprehensively addressed collectively. Here, we provide evidence that river biodiversity was significantly and positively associated with multifunctionality and contributed to key ecosystem functions such as microbially driven water purification, leaf litter decomposition and pathogen control. However, human pressure led to abrupt changes in microbial diversity and river multifunctionality relationships at a human pressure value of 0.5. In approximately 30 % (N = 58) of countries globally, the ratio of area above this threshold exceeded the global average (∼11 %), especially in Europe. Results show that human pressure affected ecosystem functions through direct effects and interactive effects. We provide more direct evidence that the nonadditive effects triggered by prevailing human pressure impact the multifunctionality of rivers globally. Under high levels of human stress, the beneficial effects of biodiversity on nutrient cycling, carbon storage, gross primary productivity, leaf litter decomposition, and pathogen control tend to diminish. Our findings highlight that considering interactions between human pressure and local abiotic and biotic factors is key for understanding the fate of river ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| |
Collapse
|
5
|
Han Z, Qiao X, Lin S, Wang J, Zhang C, von Gadow K. Biodiversity and anthropogenic disturbances predominantly drive carbon sequestration rates across temporal scales in temperate forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123243. [PMID: 39509983 DOI: 10.1016/j.jenvman.2024.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Addressing the escalating challenges of climate change necessitates a comprehensive understanding of the factors influencing carbon sequestration rates (CSRs) in forest ecosystems. Although the impact of various biotic factors, environmental, and anthropogenic factors on CSRs over different time scales is well recognized, their precise roles remain poorly defined. This study aims to clarify the mechanistic relationships between CSRs and these factors in large-scale natural temperate forests in northeastern China. We employed linear mixed-effects models and piecewise structural equation models were to analyze data from 310 vegetation plots, assessing the effects of biotic factors (including multidimensional diversity, structural diversity, and community-weighted mean (CWM) trait values) and abiotic factors (climate, topography, and anthropogenic disturbances) across different forest types and successional stages. Our analysis tested a series of hypotheses to identify the principal drivers of forest CSRs. The results indicate that while functional composition and standard environmental factors such as mean annual temperature and slope are significant, their influence is markedly less than that of biodiversity (encompassing multidimensional and structural diversity) and anthropogenic disturbance (as measured by the Human Modification Index). These findings support the dominance of the niche complementarity theory and the moderate disturbance hypothesis, with their importance increasing over time. Furthermore, this study advocates for forest management strategies that are specifically tailored to the unique characteristics of mixed and dense forests at different stages of succession. By elucidating the complex relationships between ecological variables and CSRs, our findings provide critical insights for the development of effective strategies aimed at optimizing forest carbon sequestration. This study underscores the necessity of integrating sustainable forest management with the conservation of ecological biodiversity.
Collapse
Affiliation(s)
- Zhuoxiu Han
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xuetao Qiao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Senxuan Lin
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
| | - Chunyu Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Klaus von Gadow
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany; Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
6
|
Zhang L, Schmid B, Bongers FJ, Li S, von Oheimb G, Ma K, Liu X. Strong nestedness and turnover effects on stand productivity in a long-term forest biodiversity experiment. THE NEW PHYTOLOGIST 2024. [PMID: 39439371 DOI: 10.1111/nph.20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11-yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, CH-8006, Zurich, Switzerland
| | - Franca J Bongers
- Centre for Crop Systems Analysis, Wageningen University, 6700 HB, Wageningen, the Netherlands
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, 01737, Tharandt, Germany
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, 100049, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, 100049, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| |
Collapse
|
7
|
Cysneiros VC, Pelissari AL, Figueiredo Filho A. Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest. CARBON BALANCE AND MANAGEMENT 2024; 19:36. [PMID: 39425864 PMCID: PMC11491034 DOI: 10.1186/s13021-024-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Understanding the drivers of variations in carbon stocks is essential for developing the effective management strategies that contribute to mitigating climate change. Although a positive relationship between biodiversity and the aboveground carbon (AGC) has been widely reported for various Brazilian forest types, representing a win-win scenario for climate change mitigation, this association has not been commonly found in Brazilian subtropical forests. Therefore, in the present study, we aimed to evaluate the effects of Araucaria angustifolia, stand structure and species diversity in shaping AGC stocks in Brazilian subtropical mixed forest. We hypothesized that the effects on the AGC of stand structure and diversity would be mediated by A. angustifolia. We also evaluated the expectation of higher carbon stocks in protected forest as a result of their positive correlation with biodiversity conservation. RESULTS We found that stand structure, followed by A. angustifolia, played the most important role in shaping the AGC stock. Our hypothesis was partially confirmed, the indirect effects of A. angustifolia on stand structure being found to have shaped the AGC. Similarly, our expectation was partially supported, with the higher AGC in the protected area being related not to diversity, but rather to the presence of larger trees, denser stands, and a greater abundance of A. angustifolia. CONCLUSION Although the win-win strategy between diversity conservation and carbon storage is not a peculiarity of Araucaria forests, we highlight the potential of these forests as a nature-based climate solution, maintaining high levels of carbon storage in harmony with the provision of keystone socio-economic resources.
Collapse
Affiliation(s)
- Vinicius Costa Cysneiros
- Departamento de Agricultura, Biodiversidade e Florestas, Universidade Federal de Santa Catarina, Florianópolis, 89520-000, SC, Brazil.
| | - Allan Libanio Pelissari
- Departamento de Ciências Florestais, Universidade Federal do Paraná, Curitiba, 80210-170, PR, Brazil
| | - Afonso Figueiredo Filho
- Departamento de Engenharia Florestal, Universidade Estadual do Centro-Oeste, Guarapuava, 84500-000, PR, Brazil
| |
Collapse
|
8
|
Bialic-Murphy L, McElderry RM, Esquivel-Muelbert A, van den Hoogen J, Zuidema PA, Phillips OL, de Oliveira EA, Loayza PA, Alvarez-Davila E, Alves LF, Maia VA, Vieira SA, Arantes da Silva LC, Araujo-Murakami A, Arets E, Astigarraga J, Baccaro F, Baker T, Banki O, Barroso J, Blanc L, Bonal D, Bongers F, Bordin KM, Brienen R, de Medeiros MB, Camargo JL, Araújo FC, Castilho CV, Castro W, Moscoso VC, Comiskey J, Costa F, Müller SC, de Almeida EC, Lôla da Costa AC, de Andrade Kamimura V, de Oliveira F, Del Aguila Pasquel J, Derroire G, Dexter K, Di Fiore A, Duchesne L, Emílio T, Farrapo CL, Fauset S, Draper FC, Feldpausch TR, Ramos RF, Martins VF, Simon MF, Reis MG, Manzatto AG, Herault B, Herrera R, Coronado EH, Howe R, Huamantupa-Chuquimaco I, Huasco WH, Zanini KJ, Joly C, Killeen T, Klipel J, Laurance SG, Laurance WF, Fontes MAL, Oviedo WL, Magnusson WE, Dos Santos RM, Peña JLM, de Abreu KMP, Marimon B, Junior BHM, Melgaço K, Melo Cruz OA, Mendoza C, Monteagudo-Mendoza A, Morandi PS, Gianasi FM, Nascimento H, Nascimento M, Neill D, Palacios W, Camacho NCP, Pardo G, Pennington RT, Peñuela-Mora MC, Pitman NCA, Poorter L, Cruz AP, Ramírez-Angulo H, Reis SM, Correa ZR, Rodriguez CR, Lleras AR, Santos FAM, Bergamin RS, Schietti J, Schwartz G, Serrano J, Silva-Sene AM, Silveira M, Stropp J, Ter Steege H, Terborgh J, Tobler MW, Gamarra LV, van der Meer PJ, van der Heijden G, Vasquez R, Vilanova E, Vos VA, Wolf A, Woodall CW, Wortel V, Zwerts JA, Pugh TAM, Crowther TW. The pace of life for forest trees. Science 2024; 386:92-98. [PMID: 39361744 DOI: 10.1126/science.adk9616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/28/2024] [Indexed: 10/05/2024]
Abstract
Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.
Collapse
Affiliation(s)
- Lalasia Bialic-Murphy
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Robert M McElderry
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
- Forest Health and Biotic Interactions, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | | | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Edmar Almeida de Oliveira
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | - Esteban Alvarez-Davila
- Escuela de Ciencias Agrícola, Universidad Nacional Abierta y a Distancia de Colombia, Colombia
| | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California' Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Eric Arets
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Julen Astigarraga
- Universidad de Alcalá, Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Alcalá de Henares, Spain
| | | | | | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Jorcely Barroso
- Laboratório de Ciências Florestais, Universidade Federal do Acre, Campus de Cruzeiro do Sul, Acre, Brazil
| | - Lilian Blanc
- Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Frans Bongers
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Kauane Maiara Bordin
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | | | - José Luís Camargo
- Biological Dynamics of Forest Project - National Institute for Amazonian Research (BDFFP-INPA), Manaus, Brazil
| | | | | | - Wendeson Castro
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | | | - James Comiskey
- Inventory and Monitoring Program, National Park Service, Fort Collins, CO 80525, USA
- Smithsonian Institution, Washington, DC 20024, USA
| | - Flávia Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, CEP 69067-375, Manaus, Brazil
| | - Sandra Cristina Müller
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Everton Cristo de Almeida
- Universidade Federal do Oeste do Pará (UFOPA), Instituto de Biodiversidade e Florestas (IBEF), Santarém, Pará, Brazil
| | | | | | | | - Jhon Del Aguila Pasquel
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Kyle Dexter
- School of GeoSciences, University of Edinburgh, Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory and Department of Anthropology, The University of Texas at Austin, Austin, TX 78712 USA
- Tiputini Biodiversity Station, College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbay, Ecuador
| | - Louis Duchesne
- Direction de la Recherche Forestière, Ministère des Ressources Naturelles et des Forêts du Québec, Quebec City, QC G1P 3W8, Canada
| | - Thaise Emílio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Sophie Fauset
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Frederick C Draper
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Ted R Feldpausch
- Geography, Faculty of Science, Environment and Economy, University of Exeter, Exeter, UK
| | - Rafael Flora Ramos
- Biology Institute, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Valeria Forni Martins
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Natural Sciences, Mathematics, and Education, Centre for Agrarian Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil
| | | | | | | | - Bruno Herault
- Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France
| | - Rafael Herrera
- Instituto Venezolano de Investigaciones Científicas (IVIC), Miranda, Venezuela
| | | | - Robert Howe
- Cofrin Center for Biodiversity, University of Wisconsin-Green Bay, Green Bay, WI 54311, USA
| | - Isau Huamantupa-Chuquimaco
- Herbario "Alwyn Gentry" (HAG), Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Puerto Maldonado, Madre de Dios, Perú
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Katia Janaina Zanini
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Joly
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | | | - Joice Klipel
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Susan G Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
| | | | | | | | | | - Jose Luis Marcelo Peña
- Universidad Nacional de Jaén, Laboratory of Vascular Plants and ISV Herbarium, San Ignacio, Peru
| | | | - Beatriz Marimon
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | - Ben Hur Marimon Junior
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | | | | | - Abel Monteagudo-Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Jardin Botanico de Missouri, Cusco, Peru
| | - Paulo S Morandi
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | - Henrique Nascimento
- Biodiversity Department, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo Nascimento
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - David Neill
- Universidad Estatal Amazonica, Puyo, Pastaza, Ecuador
| | | | | | - Guido Pardo
- Facultad de Ciencias Forestales, Universidad Autónoma del Beni José Ballivián, Riberalta, Beni, Bolivia
| | - R Toby Pennington
- Department of Geography, University of Exeter, UK
- Royal Botanic Garden, Edinburgh, UK
| | | | - Nigel C A Pitman
- Collections, Conservation & Research, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Hirma Ramírez-Angulo
- Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, INDEFOR, Merida, Venezuela
| | - Simone Matias Reis
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
- Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | | | | | - Agustín Rudas Lleras
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Flavio A M Santos
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | - Marcos Silveira
- Laboratório de Botânica e Ecologia Vegetal, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Acre, Brazil
| | - Juliana Stropp
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - John Terborgh
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
- Florida Museum of Natural History, University of Florida-Gainesville, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | - Vincent Antoine Vos
- Instituto de Investigaciones Forestales de la Amazonía, Universidad Autónoma del Beni José Ballivián, Riberalta, Beni, Bolivia
| | - Amy Wolf
- University of Wisconsin-Green Bay, Department of Natural and Applied Sciences, Green Bay, WI 54311, USA
| | - Christopher W Woodall
- US Department of Agriculture, Forest Service, Research and Development, Durham, NH 03824, USA
| | - Verginia Wortel
- Department of Forest Management, Centre for Agricultural Research in Suriname, CELOS, Suriname
| | | | - Thomas A M Pugh
- Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Birmingham, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Sweden
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Xi Y, Zhang W, Wei F, Fang Z, Fensholt R. Boreal tree species diversity increases with global warming but is reversed by extremes. NATURE PLANTS 2024; 10:1473-1483. [PMID: 39261713 PMCID: PMC11489084 DOI: 10.1038/s41477-024-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Tree species diversity is essential to sustaining stable forest ecosystem functioning. However, it remains unclear how boreal tree species diversity has changed in response to climate change and how it is associated with productivity and the temporal stability of boreal forest ecosystems. By combining 5,312 field observations and 55,560 Landsat images, here we develop a framework to estimate boreal tree species diversity (represented by the Shannon diversity index, H') for the years 2000, 2010 and 2020. We document an average increase in H' by 12% from 2000 to 2020 across the boreal forests. This increase accounts for 53% of all boreal forest areas and mainly occurs in the eastern forest-boreal transition region, the Okhotsk-Manchurian taiga and the Scandinavian-Russian taiga. Tree species diversity responds positively to increasing temperatures, but the relationship is weakened for higher temperature changes, and in areas of extreme warming (>0.065 °C yr-1), a negative impact on tree species diversity is found. We further show that the observed spatiotemporal increase in diversity is significantly associated with increased productivity and temporal stability of boreal forest biomass. Our results highlight climate-warming-driven increases in boreal tree species diversity that positively affect boreal ecosystem functioning but are countered in areas of extreme warming.
Collapse
Affiliation(s)
- Yanbiao Xi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Wenmin Zhang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Fangli Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhongxiang Fang
- Institute of Geography, Augsburg University, Augsburg, Germany
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Guo C, Tuo B, Seibold S, Ci H, Sai BL, Qin HT, Yan ER, Cornelissen JHC. Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition. Ecol Lett 2024; 27:e70002. [PMID: 39462853 DOI: 10.1111/ele.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant-animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years. Findings from a four-year coarse wood decomposition experiment involving 27 tree and 5 termite species support this hypothesis. Phenological and mandibular traits of the two most abundant termite species controlled wood decomposition of tree species differing in wood traits, through the seasons over 4 years, thereby promoting overall deadwood decomposition rates. Our findings indicate that complementarity in functional trait co-variation in plants and animals plays an important role in carbon cycling.
Collapse
Affiliation(s)
- Chao Guo
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Bin Tuo
- Department of Ecological Science, A-Life, Faculty of Science, Vrije Universiteit Amsterdam (VU University), HV Amsterdam, The Netherlands
| | - Sebastian Seibold
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Hang Ci
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Bi-Le Sai
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Han-Tang Qin
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - En-Rong Yan
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Johannes H C Cornelissen
- Department of Ecological Science, A-Life, Faculty of Science, Vrije Universiteit Amsterdam (VU University), HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Bai YH, Tang Z. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. Proc Natl Acad Sci U S A 2024; 121:e2410467121. [PMID: 39302969 PMCID: PMC11441485 DOI: 10.1073/pnas.2410467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
The increasing duration of drought induced by global climate change has reduced forest productivity. Biodiversity is believed to mitigate the effects of drought, thereby enhancing the stability of tree growth. However, the effects of species richness on tree growth stability under droughts with different durations remain uncertain. Here, we used tree ring data from 4,072 sites globally, combined with climate and plant richness data, to evaluate the effects of species richness on the resistance and resilience of trees to short-term and prolonged droughts. We found that species richness enhanced resistance but weakened resilience of trees to drought globally. Compared to short-term drought, species richness further increased tree growth during prolonged drought but reduced the growth afterward, resulting in stronger effects on resistance and resilience. In addition, as the degree of drought intensified and regional aridity levels increased, the effects of richness on resistance and resilience under short-term drought were enhanced, but these trends were reduced or even reversed under prolonged drought. These results reveal the global effects of species richness on resistance and resilience of tree growth to droughts with different durations and highlight that species richness plays a crucial role in resisting prolonged drought.
Collapse
Affiliation(s)
- Yun-Hao Bai
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Gillespie LE, Ruffley M, Exposito-Alonso M. Deep learning models map rapid plant species changes from citizen science and remote sensing data. Proc Natl Acad Sci U S A 2024; 121:e2318296121. [PMID: 39236239 PMCID: PMC11406280 DOI: 10.1073/pnas.2318296121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
Anthropogenic habitat destruction and climate change are reshaping the geographic distribution of plants worldwide. However, we are still unable to map species shifts at high spatial, temporal, and taxonomic resolution. Here, we develop a deep learning model trained using remote sensing images from California paired with half a million citizen science observations that can map the distribution of over 2,000 plant species. Our model-Deepbiosphere-not only outperforms many common species distribution modeling approaches (AUC 0.95 vs. 0.88) but can map species at up to a few meters resolution and finely delineate plant communities with high accuracy, including the pristine and clear-cut forests of Redwood National Park. These fine-scale predictions can further be used to map the intensity of habitat fragmentation and sharp ecosystem transitions across human-altered landscapes. In addition, from frequent collections of remote sensing data, Deepbiosphere can detect the rapid effects of severe wildfire on plant community composition across a 2-y time period. These findings demonstrate that integrating public earth observations and citizen science with deep learning can pave the way toward automated systems for monitoring biodiversity change in real-time worldwide.
Collapse
Affiliation(s)
- Lauren E. Gillespie
- Department of Plant Biology, Carnegie Science, Stanford, CA94305
- Department of Computer Science, Stanford University, Stanford, CA94305
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Science, Stanford, CA94305
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Science, Stanford, CA94305
- Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Global Ecology, Carnegie Science, Stanford, CA94305
- HHMI, University of California, Berkeley, CA94720
| |
Collapse
|
13
|
Luo S, Schmid B, Hector A, Scherer-Lorenzen M, Verheyen K, Barsoum N, Bauhus J, Beyer F, Bruelheide H, Ferlian O, Godbold D, Hall JS, Hajek P, Huang Y, Hölscher D, Kreft H, Liu X, Messier C, Nock C, Paquette A, Parker JD, Parker WC, Paterno GB, Reich PB, Rewald B, Sandén H, Sinacore K, Stefanski A, Williams L, Eisenhauer N. Mycorrhizal associations modify tree diversity-productivity relationships across experimental tree plantations. THE NEW PHYTOLOGIST 2024; 243:1205-1219. [PMID: 38855965 DOI: 10.1111/nph.19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.
Collapse
Affiliation(s)
- Shan Luo
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zürich, CH-8006, Switzerland
| | - Andy Hector
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Kris Verheyen
- Department of Environment, Forest & Nature Lab, Ghent University, Melle-Gontorde, B-9090, Belgium
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Juergen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, 79108, Germany
| | - Friderike Beyer
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, 79108, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Douglas Godbold
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Jefferson S Hall
- Agua Salud Project, Smithsonian Tropical Research Institute, Balboa, 401 Ancón, Panamá, Panama
| | - Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Dirk Hölscher
- Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, 37077, Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, 37077, Germany
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Messier
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, H2X 3Y7, Canada
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, J0V 1V0, Canada
| | - Charles Nock
- Department of Renewables Resources, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, H2X 3Y7, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Gustavo B Paterno
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, 37077, Germany
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Institute for Global Change Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Hans Sandén
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Katherine Sinacore
- Agua Salud Project, Smithsonian Tropical Research Institute, Balboa, 401 Ancón, Panamá, Panama
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
| | - Laura Williams
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| |
Collapse
|
14
|
Zhang H, Gao Y, Zheng X, Hu Y, Zhou X, Fang Y, Li Y, Xie L, Ding H. Neighborhood Diversity Promotes Tree Growth in a Secondary Forest: The Interplay of Intraspecific Competition, Interspecific Competition, and Spatial Scale. PLANTS (BASEL, SWITZERLAND) 2024; 13:1994. [PMID: 39065520 PMCID: PMC11280550 DOI: 10.3390/plants13141994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Understanding the biodiversity-productivity relationship (BPR) is crucial for biodiversity conservation and ecosystem management. While it is known that diversity enhances forest productivity, the underlying mechanisms at the local neighborhood level remain poorly understood. We established a 9.6 ha dynamic forest plot to study how neighborhood diversity, intraspecific competition, and interspecific competition influence tree growth across spatial scales using linear mixed-effects models. Our analysis reveals a significant positive correlation between neighborhood species richness (NSR) and relative growth rate (RGR). Notably, intraspecific competition, measured by conspecific neighborhood density and resource competition, negatively impacts RGR at finer scales, indicating intense competition among conspecifics for limited resources. In contrast, interspecific competition, measured by heterospecific density and resource competition, has a negligible impact on RGR. The relative importance of diversity and intra/interspecific competition in influencing tree growth varies with scale. At fine scales, intraspecific competition dominates negatively, while at larger scales, the positive effect of NSR on RGR increases, contributing to a positive BPR. These findings highlight the intricate interplay between local interactions and spatial scale in modulating tree growth, emphasizing the importance of considering biotic interactions and spatial variability in studying BPR.
Collapse
Affiliation(s)
- Haonan Zhang
- Innovative Research Team for Forest Restoration Mechanisms, Chishui National Ecological Quality Comprehensive Monitoring Stations, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
- Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Yuanyun Gao
- Innovative Research Team for Forest Restoration Mechanisms, Chishui National Ecological Quality Comprehensive Monitoring Stations, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Xiao Zheng
- Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Yaping Hu
- Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Xu Zhou
- Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Ding
- Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| |
Collapse
|
15
|
Souza MMX, Agostini GB, Santos GA, Favalessa CMC, Kanieski MR, Milani JEF. Floristic diversity and edaphic filters in an urban forest under Cerrado domain, in Cuiabá, Central Western Brazil. BRAZ J BIOL 2024; 84:e279583. [PMID: 38985060 DOI: 10.1590/1519-6984.279583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
We aimed to characterize the adult and regenerating tree components and their relationships with soil characteristics of a native vegetation remnant in Cuiabá, Mato Grosso, Brazil. The area of the fragment is stratified into "dry area" (lithic neosoil) and "damp area" (gleisoil). We conducted a forest inventory with a random distribution of 25 parcels. We analyzed the physical and chemical components of the soil. We evaluated the vegetation's horizontal structure, diversity, and sample sufficiency using the Bootstrap richness estimator. We classified the species according to dispersal syndrome and ecological group. Overall, we found 93 species in the adult layer and 70 species in the regenerating layer. The similarity dendrograms based on the two evaluated indices demonstrated the existence of the two initially stratified environments in both strata. The IndVal (%) indicated that the set of indicator species differed between the strata. Thereby, the fragment is in an intermediate stage of successional progression. PCA showed that plots in the wet area had higher pH values and Ca, Zn, and Fe levels, while plots in the dry area did not clearly distinguish, varying in terms of K, B, and organic matter content. In CCA, a set of species that occurred exclusively in the damp area showed a strong relationship with the analyzed variables. The area is a diverse ecosystem that efficiently provides ecosystem services to society and should be the subject of long-term conservation and research.
Collapse
Affiliation(s)
- M M X Souza
- Universidade Federal de Mato Grosso - UFMT, Programa de Pós-graduação em Ciências Florestais e Ambientais - PPGCFA, Cuiabá, MT, Brasil
| | - G B Agostini
- Universidade Federal de Mato Grosso - UFMT, Programa de Pós-graduação em Ciências Florestais e Ambientais - PPGCFA, Cuiabá, MT, Brasil
| | - G A Santos
- Universidade Federal de Mato Grosso - UFMT, Programa de Pós-graduação em Ciências Florestais e Ambientais - PPGCFA, Cuiabá, MT, Brasil
| | - C M C Favalessa
- Universidade Federal de Mato Grosso - UFMT, Departamento de Engenharia Florestal, Cuiabá, MT, Brasil
| | - M R Kanieski
- Universidade do Estado de Santa Catarina - UDESC, Departamento de Engenharia Florestal, Lages, SC, Brasil
| | - J E F Milani
- Universidade Federal de Mato Grosso - UFMT, Programa de Pós-graduação em Ciências Florestais e Ambientais - PPGCFA, Cuiabá, MT, Brasil
| |
Collapse
|
16
|
Bénédet F, Gourlet-Fleury S, Allah-Barem F, Baya F, Beina D, Cornu G, Dimanche L, Dubiez É, Forni É, Freycon V, Mortier F, Ouédraogo DY, Picard N, Rossi V, Semboli O, Yalibanda Y, Yongo-Bombo O, Fayolle A. 40 years of forest dynamics and tree demography in an intact tropical forest at M'Baïki in central Africa. Sci Data 2024; 11:734. [PMID: 38971846 PMCID: PMC11227503 DOI: 10.1038/s41597-024-03577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
A vast silvicultural experiment was set up in 1982 nearby the town of M'Baïki in the Central African Republic to monitor the recovery of tropical forests after disturbance. The M'Baïki experiment consists of ten 4-ha Permanent Sample Plots (PSPs) that were assigned to three silvicultural treatments in 1986 according to a random block design. In each plot, all trees with a girth at breast height greater than 30 cm were spatially located, numbered, measured, and determined botanically. Girth, mortality and newly recruited trees, were monitored almost annually over the 1982-2022 period with inventory campaigns for 35 years. The data were earlier used to fit growth and population models, to study the species composition dynamics, and the effect of silvicultural treatments on tree diversity and aboveground biomass. Here, we present new information on the forest stand structure dynamics and tree demography. The data released from this paper cover the three control plots and constitute a major contribution for further studies about the biodiversity of intact tropical forests.
Collapse
Affiliation(s)
- Fabrice Bénédet
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France.
- CIRAD, Forêts et Sociétés, Montpellier, France.
| | - Sylvie Gourlet-Fleury
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, Forêts et Sociétés, Montpellier, France
| | - Félix Allah-Barem
- Institut Centrafricain de la Recherche Agronomique, Bangui, Central African Republic
| | - Fidèle Baya
- Ministère des Eaux, Forêts, Chasse et Pêche, Bangui, Central African Republic
| | - Denis Beina
- Université de Bangui. Faculté des Sciences. Laboratoire de Biodiversité Végétale et Fongique, Bangui, Central African Republic
| | - Guillaume Cornu
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, Forêts et Sociétés, Montpellier, France
| | - Luc Dimanche
- Fonds de Développement Forestier, Bangui, Central African Republic
| | - Émilien Dubiez
- CIRAD, Forêts et Sociétés, Montpellier, France
- Institut national de Recherche Forestière, Brazzaville, Republic of the Congo
| | - Éric Forni
- CIRAD, Forêts et Sociétés, Montpellier, France
- Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Vincent Freycon
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, Forêts et Sociétés, Montpellier, France
| | - Frédéric Mortier
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, Forêts et Sociétés, Montpellier, France
| | | | | | - Vivien Rossi
- CIRAD, Forêts et Sociétés, Montpellier, France
- Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Olivia Semboli
- Université de Bangui. Faculté des Sciences. Laboratoire de Biodiversité Végétale et Fongique, Bangui, Central African Republic
- Centre d'Études et de Recherche en Pharmacopée et Médecine Traditionnelle Africaine, Université de Bangui, Bangui, Central African Republic
| | - Yves Yalibanda
- Ministère des Eaux, Forêts, Chasse et Pêche, Bangui, Central African Republic
| | - Olga Yongo-Bombo
- Université de Bangui. Faculté des Sciences. Laboratoire de Biodiversité Végétale et Fongique, Bangui, Central African Republic
| | - Adeline Fayolle
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, Forêts et Sociétés, Montpellier, France
- Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
17
|
Zeng WH, Zhu SD, Luo YH, Shi W, Wang YQ, Cao KF. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation. PLANT DIVERSITY 2024; 46:530-536. [PMID: 39280971 PMCID: PMC11390628 DOI: 10.1016/j.pld.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 09/18/2024]
Abstract
Forests, the largest terrestrial carbon sinks, play an important role in carbon sequestration and climate change mitigation. Although forest attributes and environmental factors have been shown to impact aboveground biomass, their influence on biomass stocks in species-rich forests in southern China, a biodiversity hotspot, has rarely been investigated. In this study, we characterized the effects of environmental factors, forest structure, and species diversity on aboveground biomass stocks of 30 plots (1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi, China. Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions. Furthermore, we found that aboveground biomass was positively correlated with stand age, mean annual precipitation, elevation, structural attributes and species richness, although not with species evenness. When we compared stands with the same basal area, we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height. These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China. Notably, many natural forests in southern China are not fully stocked. Therefore, their continued growth will increase their carbon storage over time.
Collapse
Affiliation(s)
- Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ying-Hua Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Wei Shi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Huaxi College Town, Gui'an District, Guiyang 550025, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Bakshi B, Polasky S. The effect of forest composition on outdoor recreation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121397. [PMID: 38878569 DOI: 10.1016/j.jenvman.2024.121397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Climate change will shift the composition of northern Minnesota forests from boreal to temperate by the end of the century. This shift in forest composition will likely affect outdoor recreation, a valuable ecosystem service and a key economic driver for the region. In this context, the objective of our paper is to empirically examine the relationship between forest composition and recreation. We analyze the effect of changes in forest composition for seven forest types on seven types of recreation using a lognormal pooled panel regression model for Minnesota's Laurentian Mixed Forest Province. Earlier research showed forest composition affected recreation at the level of broad groups of broadleaved or coniferous species. We find a statistically significant empirical association between forest composition and recreation at the forest type level (forest types within those broad groups). This relationship varies across forest types and recreation categories. For example, big game hunting is positively related to elm-ash-cottonwood and white-red-jack pine and negatively associated with aspen-birch. We find individual forest types within broad groups of broadleaved or coniferous forests, have different relationships with recreation, so that these broad groups are not sufficient in capturing the effect of forest composition on recreation. Our results are of interest in the context of current shifts in forest composition caused by climate change, which could also affect recreation. Our findings suggest adding a forest composition lens to existing policies could facilitate strategies for more effective recreation management and climate change adaptation.
Collapse
Affiliation(s)
- Baishali Bakshi
- Natural Resources Science and Management, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Stephen Polasky
- Department of Applied Economics, University of Minnesota, Saint Paul, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
19
|
Zhang B, Zou H, Duan D, Zhou X, Chen J, Sun Z, Zhang X. Stability in change: building a stable ecological security pattern in Northeast China under climate and land use changes. Sci Rep 2024; 14:12642. [PMID: 38825599 PMCID: PMC11144710 DOI: 10.1038/s41598-024-63391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Climate change and land use change caused by human activities have a profound impact on ecological security. Simulating the spatio-temporal changes in ecosystem service value and ecological security patterns under different carbon emission scenarios in the future is of great significance for formulating sustainable development policies. This study quantified the four major ecosystem services (habitat quality, water retention, soil erosion, and carbon storage) in Northeast China (NC), identified ecological source areas, and constructed a stable ecological security pattern. The results show that the spatial patterns of soil erosion, carbon storage, water retention, and habitat quality, the four major ecosystem services in NC, are relatively stable in the next 30 years, and there is no significant difference from the current spatial pattern distribution. The SSP1-2.6 carbon emission scenario is a priority model for the development of NC in the next 30 years. In this carbon emission scenario, the NC has the largest ecological resources (191,177 km2) and the least comprehensive resistance value (850.006 × 10-4). At the same time, the relative resistance of the corridor in this scenario is the smallest, and the area of the mandatory reserve pinch points is the least. The ecological corridors in the SSP1-2.6 scenario form a network distribution among the ecological sources, connecting several large ecological sources as a whole. This study fills the knowledge gap in building a stable ecological security pattern in NC under the background of global change, and provides a scientific basis for the decision-making of regional ecological security and land resource management.
Collapse
Affiliation(s)
- Boyan Zhang
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China
| | - Hui Zou
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China
| | - Detai Duan
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China
| | - Xinyu Zhou
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China
| | - Jianxi Chen
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China
| | - Zhonghua Sun
- Heilongjiang Seed Industry Technology Service Center, Harbin, China
| | - Xinxin Zhang
- School of Life Sciences and Technology, Heilongjiang Genuine Wild Medicinal Materials Germplasm Resources Research Center, Harbin Normal University, Harbin, China.
| |
Collapse
|
20
|
Zou Y, Zohner CM, Averill C, Ma H, Merder J, Berdugo M, Bialic-Murphy L, Mo L, Brun P, Zimmermann NE, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Niinements U, Dahlgren J, Kändler G, Ratcliffe S, Ruiz-Benito P, de Zavala MA, Crowther TW. Positive feedbacks and alternative stable states in forest leaf types. Nat Commun 2024; 15:4658. [PMID: 38821957 PMCID: PMC11143268 DOI: 10.1038/s41467-024-48676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024] Open
Abstract
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
Collapse
Affiliation(s)
- Yibiao Zou
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland.
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Colin Averill
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Haozhi Ma
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Julian Merder
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Miguel Berdugo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Lalasia Bialic-Murphy
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Ulo Niinements
- Plant Physiology work group, Estonian University of Life Sciences, Tartu, Estonia
| | - Jonas Dahlgren
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gerald Kändler
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg im Breisgau, Germany
| | | | | | | | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, 8092, Zurich, Switzerland
| |
Collapse
|
21
|
Wan X, Lu X, Zhu L, Feng J. Relative prevalence of top-down versus bottom-up control in planktonic ecosystem under eutrophication and climate change: A comparative study of typical bay and estuary. WATER RESEARCH 2024; 255:121487. [PMID: 38518414 DOI: 10.1016/j.watres.2024.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.
Collapse
Affiliation(s)
- Xuhao Wan
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
22
|
Hämäläinen A, Runnel K, Ranius T, Strengbom J. Diversity of forest structures important for biodiversity is determined by the combined effects of productivity, stand age, and management. AMBIO 2024; 53:718-729. [PMID: 38165548 PMCID: PMC10992050 DOI: 10.1007/s13280-023-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
In forests, the amount and diversity of structural features with high value for biodiversity, such as large trees and dead wood, are affected by productivity, stand age, and forest management. For efficient conservation of forest biodiversity, it is essential to understand the combined effects of these drivers. We used data from the Swedish National Forest Inventory to study the combined effects of productivity, stand age, and management for wood production on structures with high value for biodiversity: tree species richness, large living trees, dead wood volume, and specific dead wood types. Forest management changed the relationship between productivity and amount or diversity of some of the structures. Most structures increased with productivity and stand age, but decreased due to management. The negative effect of management was greatest for structures occurring mainly in high-productivity forests, such as deciduous dead wood. Thus, biodiversity conservation should target high-productivity forests to preserve these structures.
Collapse
Affiliation(s)
- Aino Hämäläinen
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden.
| | - Kadri Runnel
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
| | - Thomas Ranius
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden
| | - Joachim Strengbom
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden
| |
Collapse
|
23
|
Bönisch E, Blagodatskaya E, Dirzo R, Ferlian O, Fichtner A, Huang Y, Leonard SJ, Maestre FT, von Oheimb G, Ray T, Eisenhauer N. Mycorrhizal type and tree diversity affect foliar elemental pools and stoichiometry. THE NEW PHYTOLOGIST 2024; 242:1614-1629. [PMID: 38594212 DOI: 10.1111/nph.19732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.
Collapse
Affiliation(s)
- Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Evgenia Blagodatskaya
- Soil Ecology Department, Helmholtz-Centre for Environmental Research (UFZ), Theodor-Lieser-Str. 11, 06120, Halle, Germany
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Samuel J Leonard
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| | - Tama Ray
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| |
Collapse
|
24
|
Cui Z, Sun J, Wu GL. Plant diversity increases spatial stability of aboveground productivity in alpine grasslands. Oecologia 2024; 205:27-38. [PMID: 38652294 DOI: 10.1007/s00442-024-05552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Plant diversity can significantly affect the grassland productivity and its stability. However, it remains unclear how plant diversity affects the spatial stability of natural grassland productivity, especially in alpine regions that are sensitive to climate change. We analyzed the interaction between plant (species richness and productivity, etc.) and climatic factors (precipitation, temperature, and moisture index, etc.) of alpine natural grassland on the Qinghai-Tibetan Plateau. In addition, we tested the relationship between plant diversity and spatial stability of grassland productivity. Results showed that an increase in plant diversity significantly enhanced community productivity and its standard deviation, while reducing the coefficient of variation in productivity. The influence of plant diversity on productivity and the reciprocal of productivity variability coefficient was not affected by vegetation types. The absolute values of the regression slopes between climate factors and productivity in alpine meadow communities with higher plant diversity were smaller than those in alpine meadow communities with lower plant diversity. In other words, alpine meadow communities with higher plant diversity exhibited a weaker response to climatic factors in terms of productivity, whereas those with lower plant diversity showed a stronger response. Our results indicate that high plant diversity buffers the impact of ambient pressure (e.g., precipitation, temperature) on alpine meadow productivity, and significantly enhanced the spatial stability of grassland productivity. This finding provides a theoretical basis for maintaining the stability of grassland ecosystems and scientifically managing alpine grasslands under the continuous climate change.
Collapse
Affiliation(s)
- Zeng Cui
- State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A & F University, Yangling, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gao-Lin Wu
- State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A & F University, Yangling, 712100, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
25
|
Liu Y, Hogan JA, Lichstein JW, Guralnick RP, Soltis DE, Soltis PS, Scheiner SM. Biodiversity and productivity in eastern US forests. Proc Natl Acad Sci U S A 2024; 121:e2314231121. [PMID: 38527197 PMCID: PMC10998592 DOI: 10.1073/pnas.2314231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents-functional trait diversity, phylogenetic diversity, or species richness-remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning.
Collapse
Affiliation(s)
- Yunpeng Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing100871, China
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - J. Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL32611
| | | | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32610
- Biodiversity Institute, University of Florida, Gainesville, FL32611
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Department of Biology, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32610
- Biodiversity Institute, University of Florida, Gainesville, FL32611
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32610
- Biodiversity Institute, University of Florida, Gainesville, FL32611
| | | |
Collapse
|
26
|
Zheng L, Barry KE, Guerrero-Ramírez NR, Craven D, Reich PB, Verheyen K, Scherer-Lorenzen M, Eisenhauer N, Barsoum N, Bauhus J, Bruelheide H, Cavender-Bares J, Dolezal J, Auge H, Fagundes MV, Ferlian O, Fiedler S, Forrester DI, Ganade G, Gebauer T, Haase J, Hajek P, Hector A, Hérault B, Hölscher D, Hulvey KB, Irawan B, Jactel H, Koricheva J, Kreft H, Lanta V, Leps J, Mereu S, Messier C, Montagnini F, Mörsdorf M, Müller S, Muys B, Nock CA, Paquette A, Parker WC, Parker JD, Parrotta JA, Paterno GB, Perring MP, Piotto D, Wayne Polley H, Ponette Q, Potvin C, Quosh J, Rewald B, Godbold DL, van Ruijven J, Standish RJ, Stefanski A, Sundawati L, Urgoiti J, Williams LJ, Wilsey BJ, Yang B, Zhang L, Zhao Z, Yang Y, Sandén H, Ebeling A, Schmid B, Fischer M, Kotowska MM, Palmborg C, Tilman D, Yan E, Hautier Y. Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding. Nat Commun 2024; 15:2078. [PMID: 38453933 PMCID: PMC10920907 DOI: 10.1038/s41467-024-46355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Collapse
Affiliation(s)
- Liting Zheng
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - Kathryn E Barry
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Dylan Craven
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Huechuraba, Santiago, Chile
- Data Observatory Foundation, ANID Technology Center No. DO210001, Providencia, Santiago, Chile
| | - Peter B Reich
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nadia Barsoum
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Alice Holt Lodge, Farnham, UK
| | - Jürgen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle, Germany
| | | | - Jiri Dolezal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Functional Ecology, Institute of Botany CAS, Třeboň, Czech Republic
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Marina V Fagundes
- Departamento de Ecología, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Sebastian Fiedler
- Department of Ecosystem Modelling, Büsgen-Institute, University of Göttingen, Göttingen, Germany
| | | | - Gislene Ganade
- Departamento de Ecología, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bioenergy Systems Department, Resource Mobilisation, German Biomass Research Center-DBFZ gGmbH, Leipzig, Germany
| | - Josephine Haase
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Aquatic Ecology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andy Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Bruno Hérault
- CIRAD, Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Dirk Hölscher
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Tropical Silviculture and Forest Ecology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | | | - Bambang Irawan
- Forestry Department, Faculty of Agriculture, University of Jambi, Jambi, Indonesia
- Land Use Transformation Systems Center of Excellence, University of Jambi, Jambi, Indonesia
| | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, Cestas, France
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Vojtech Lanta
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Functional Ecology, Institute of Botany CAS, Třeboň, Czech Republic
| | - Jan Leps
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biological Research Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Simone Mereu
- Consiglio Nazionale delle Ricerche, Istituto per la Bioeconomia, CNR-IBE, Sassari, Italy
- CMCC-Centro Euro-Mediterraneo sui Cambiamenti Climatici, IAFES Division, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Christian Messier
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
- Département des sciences naturelles, ISFORT, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Florencia Montagnini
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Martin Mörsdorf
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department for Research, Biotope-, and Wildlife Management; National Park Administration Hunsrück-Hochwald, Birkenfeld, Germany
| | - Sandra Müller
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bart Muys
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - John A Parrotta
- USDA Forest Service, Research & Development, Washington, DC, USA
| | - Gustavo B Paterno
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Michael P Perring
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales, Bangor, UK
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Quentin Ponette
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Boris Rewald
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Forest Ecosystem Research, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Douglas L Godbold
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Forest Ecosystem Research, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
- Forest Ecology and Management group, Wageningen University, Wageningen, The Netherlands
| | - Rachel J Standish
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
| | - Leti Sundawati
- Department of Forest Management, Faculty of Forestry and Environment, Institut Pertanian Bogor University, Bogor, Indonesia
| | - Jon Urgoiti
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - Laura J Williams
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Brian J Wilsey
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Baiyu Yang
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Li Zhang
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhao Zhao
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Hans Sandén
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anne Ebeling
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Martyna M Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Cecilia Palmborg
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Enrong Yan
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Li X, Liu Y, Wu G, Lie Z, Sheng H, Aguila LCR, Khan MS, Liu X, Zhou S, Wu T, Xu W, Liu J. Mixed plantations do not necessarily provide higher ecosystem multifunctionality than monoculture plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170156. [PMID: 38219692 DOI: 10.1016/j.scitotenv.2024.170156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Forest stand transformation is a crucial strategy for enhancing the productivity and stability of planted forest ecosystems and maximizing their ecosystem functions. However, understanding forest ecosystem multifunctionality responses to various stand transformation methods remains limited. In this study, we assessed ecosystem multifunctionality, encompassing nutrient cycling, carbon stocks, water regulation, decomposition, wood production, and symbiosis, under different stand transformation methods (Chinese fir monoculture, mixed conifer and broad-leaf, broad-leaf mixed, and secondary forests). We also identified key factors contributing to variations in ecosystem multifunctionality. The results showed that Chinese fir plantations were more conducive to carbon stock creation, while broad-leaved mixed plantations excelled in water regulation. Secondary forests exhibited higher ecosystem multifunctionality than other plantation types, with Chinese fir plantations displaying the highest multifunctionality, significantly surpassing mixed coniferous and broad-leaved plantations. Our findings further revealed that soil nutrients and plant diversity have significant impacts on ecosystem multifunctionality. In summary, stand transformation profoundly influences ecosystem multifunctionality, and mixed plantations do not necessarily provide higher ecosystem multifunctionality than monoculture plantations.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guopeng Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Han Sheng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Muhammmad Sadiq Khan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
28
|
Beugnon R, Le Guyader N, Milcu A, Lenoir J, Puissant J, Morin X, Hättenschwiler S. Microclimate modulation: An overlooked mechanism influencing the impact of plant diversity on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17214. [PMID: 38494864 DOI: 10.1111/gcb.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity-ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change.
Collapse
Affiliation(s)
- Rémy Beugnon
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nolwenn Le Guyader
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Alexandru Milcu
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Ecotron Européen de Montpellier, Univ Montpellier, CNRS, Montferrier sur Lez, France
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| | - Jérémy Puissant
- Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
29
|
Shi X, Eisenhauer N, Peñuelas J, Fu Y, Wang J, Chen Y, Liu S, He L, Lucas-Borja ME, Wang L, Huang Z. Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness. GLOBAL CHANGE BIOLOGY 2024; 30:e17234. [PMID: 38469998 DOI: 10.1111/gcb.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.
Collapse
Affiliation(s)
- Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Nico Eisenhauer
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Josep Peñuelas
- CREAF, Centre de Recerca Ecològicai Aplicacions Forestals, Cerdanyola del Vallès, Bellaterra, Catalonia, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Yanrong Fu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jianqing Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Shengen Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Manuel Esteban Lucas-Borja
- Higher Technical School of Agricultural and Forestry Engineering, Castilla-La Mancha University, Albacete, Spain
| | - Liyan Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
30
|
Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, Chen X, Peng W. Recent progress on phytoremediation of urban air pollution. CHEMOSPHERE 2024; 349:140821. [PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
Collapse
Affiliation(s)
- Xiaoyi Duan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, DK-4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Wenjie Lu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
31
|
Rahman MM, Zimmer M, Donato D, Ahmed I, Xu M, Wu J. Functional composition outweighs taxonomic and functional diversity in maintaining ecosystem properties and processes of mangrove forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17152. [PMID: 38273532 DOI: 10.1111/gcb.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Biodiversity loss can have significant consequences for human well-being, as it can affect multiple ecosystem properties and processes (MEPP) that drive ecosystem services. However, a comprehensive understanding of the link between environmental factors, biodiversity, and MEPP remains elusive, especially in mangrove ecosystems that millions of people along tropical coastlines worldwide depend upon. Here, we collated a comprehensive dataset on forest inventory, plant traits, and environmental factors across 93 plots in the Sundarbans Reserved Forests, Bangladesh. The functional composition (FC) of leaf area showed a stronger positive association with MEPP, being determined by total biomass and productivity of the mangroves, sediment organic carbon, and ammonium, phosphorus, and potassium contents of the sediment, than species richness (SR) or functional diversity (FD). Further, FC mediated a strong negative association of sediment salinity, and a positive association of SR, with MEPP. The similar but opposite total associations of SR and sediment salinity with MEPP suggest that species-rich mangroves could offset the negative impacts of rising salinity on MEPP. When focusing on a single aspect of MEPP, both FD and FC mattered, with the FD of leaf area showing a strong association with mangrove productivity and sediment potassium content, while the FC of leaf litter nitrogen showed the strongest associations with sediment ammonium and phosphorus contents. Therefore, to sustain mangrove ecosystems as a reliable nature-based solution for climate change mitigation, conservation and (re-)establishment projects should prioritize regionally dominant species with high leaf area and nitrogen content, plus functionally different species to support the ecosystem processes and services provided by mangroves.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology, Jiangmen, China
| | - Martin Zimmer
- Leibniz Centre for Tropical Marine Research, University of Bremen, Bremen, Germany
- IUCN-SSC Mangrove Specialist Group, Gland, Switzerland
| | - Daniel Donato
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Imran Ahmed
- Bangladesh Forest Department, Dhaka, Bangladesh
| | - Ming Xu
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology, Jiangmen, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Visscher AM, Meli P, Fonte SJ, Bonari G, Zerbe S, Wellstein C. Agroforestry enhances biological activity, diversity and soil-based ecosystem functions in mountain agroecosystems of Latin America: A meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17036. [PMID: 38273524 DOI: 10.1111/gcb.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
Mountain agroecosystems in Latin America provide multiple ecosystem functions (EFs) and products from global to local scales, particularly for the rural communities who depend on them. Agroforestry has been proposed as a climate-smart farming strategy throughout much of the region to help conserve biodiversity and enhance multiple EFs, especially in mountainous regions. However, large-scale synthesis on the potential of agroforestry across Latin America is lacking. To understand the potential impacts of agroforestry at the continental level, we conducted a meta-analysis examining the effects of agroforestry on biological activity and diversity (BIAD) and multiple EFs across mountain agroecosystems of Latin America. A total of 78 studies were selected based on a formalized literature search in the Web of Science. We analysed differences between (i) silvoarable systems versus cropland, (ii) silvopastoral systems versus pastureland, and (iii) agroforestry versus forest systems, based on response ratios. Response ratios were further used to understand how climate type, precipitation and soil properties (texture) influence key EFs (carbon sequestration, nutrient provision, erosion control, yield production) and BIAD in agroforestry systems. Results revealed that BIAD and EFs related to carbon sequestration and nutrient provisioning were generally higher in agroforestry systems (silvopastoral and silvoarable) compared to croplands and pasturelands without trees. However, the impacts of agroforestry systems on crop yields varied depending on the system considered (i.e., coffee vs. cereals), while forest systems generally provided greater levels of BIAD and EFs than agroforestry systems. Further analysis demonstrated that the impacts of agroforestry systems on BIAD and EFs depend greatly on climate type, soil, and precipitation. For example, silvoarable systems appear to generate the greatest benefits in arid or tropical climates, on sandier soils, and under lower precipitation regimes. Overall, our findings highlight the widespread potential of agroforestry systems to BIAD and multiple EFs across montane regions of Latin America.
Collapse
Affiliation(s)
- Anna M Visscher
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, Bolzano, Italy
| | - Paula Meli
- Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Estudios del Antropoceno, Departamento de Manejo de Bosques y Medio Ambiente, Universidad de Concepción, Concepción, Chile
| | - Steven J Fonte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gianmaria Bonari
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, Bolzano, Italy
| | - Stefan Zerbe
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, Bolzano, Italy
| | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, Bolzano, Italy
| |
Collapse
|
33
|
Aussenac R, Monnet JM, Klopčič M, Hawryło P, Socha J, Mahnken M, Gutsch M, Cordonnier T, Vallet P. Diameter, height and species of 42 million trees in three European landscapes generated from field data and airborne laser scanning data. OPEN RESEARCH EUROPE 2023; 3:32. [PMID: 38288290 PMCID: PMC10823913 DOI: 10.12688/openreseurope.15373.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Ecology and forestry sciences are using an increasing amount of data to address a wide variety of technical and research questions at the local, continental and global scales. However, one type of data remains rare: fine-grain descriptions of large landscapes. Yet, this type of data could help address the scaling issues in ecology and could prove useful for testing forest management strategies and accurately predicting the dynamics of ecosystem services. Here we present three datasets describing three large European landscapes in France, Poland and Slovenia down to the tree level. Tree diameter, height and species data were generated combining field data, vegetation maps and airborne laser scanning (ALS) data following an area-based approach. Together, these landscapes cover more than 100 000 ha and consist of more than 42 million trees of 51 different species. Alongside the data, we provide here a simple method to produce high-resolution descriptions of large landscapes using increasingly available data: inventory and ALS data. We carried out an in-depth evaluation of our workflow including, among other analyses, a leave-one-out cross validation. Overall, the landscapes we generated are in good agreement with the landscapes they aim to reproduce. In the most favourable conditions, the root mean square error (RMSE) of stand basal area (BA) and mean quadratic diameter (Dg) predictions were respectively 5.4 m 2.ha -1 and 3.9 cm, and the generated main species corresponded to the observed main species in 76.2% of cases.
Collapse
Affiliation(s)
- Raphaël Aussenac
- Université Grenoble Alpes, INRAE, LESSEM, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d'Hères, France
- Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Cote d'Ivoire
| | - Jean-Matthieu Monnet
- Université Grenoble Alpes, INRAE, LESSEM, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d'Hères, France
| | - Matija Klopčič
- University of Ljubljana, Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Paweł Hawryło
- Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - Jarosław Socha
- Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - Mats Mahnken
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Telegrafenberg, 14473 Potsdam, Germany
| | - Martin Gutsch
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Telegrafenberg, 14473 Potsdam, Germany
| | - Thomas Cordonnier
- Université Grenoble Alpes, INRAE, LESSEM, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d'Hères, France
- Office National des Forêts, Département Recherche Développement Innovation, Direction Territoriale Bourgogne-Franche-Comté, 21 rue du Muguet, 39100 Dole, France
| | - Patrick Vallet
- Université Grenoble Alpes, INRAE, LESSEM, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d'Hères, France
| |
Collapse
|
34
|
Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, Renner SS, van den Hoogen J, Araza A, Herold M, Mirzagholi L, Ma H, Averill C, Phillips OL, Gamarra JGP, Hordijk I, Routh D, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon RL, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Gann GD, Crowther TW. Integrated global assessment of the natural forest carbon potential. Nature 2023; 624:92-101. [PMID: 37957399 PMCID: PMC10700142 DOI: 10.1038/s41586-023-06723-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Collapse
Affiliation(s)
- Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Solsona, Spain
| | | | - Susanne S Renner
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Arnan Araza
- Wageningen University & Research, Wageningen, The Netherlands
| | - Martin Herold
- Remote Sensing and Geoinformatics Section, Helmholtz GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Leila Mirzagholi
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Haozhi Ma
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Colin Averill
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | | | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Iris Hordijk
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Devin Routh
- Central IT - Teaching and Research, University of Zürich, Zürich, Switzerland
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Lab, Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
| | | | - Gerardo A Aymard
- Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), UNELLEZ-Guanare, Portuguesa, Venezuela
- Compensation International Progress S. A. Ciprogress Greenlife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Sękocin Stary, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
| | | | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, Univ. Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Science & Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University & Research, Wageningen, The Netherlands
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Lab, Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Conservation Research Institute, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | | | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Ben DeVries
- Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Department of Environment and Science, Queensland Herbarium and Biodiversity Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Ted R Feldpausch
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Damiano Gianelle
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas Ibanez
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | - Kuswata Kartawinata
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Elizabeth Kearsley
- CAVElab - Computational & Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Timothy J Killeen
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Dmitry Kucher
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land Ltd., Kirby Misperton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | | | - Stanislaw Miscicki
- Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Oxapampa, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de Doctorado en Ingeniería para el Desarrollo Rural y Civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Ecuador
| | - Victor J Neldner
- Department of Environment and Science, Queensland Herbarium and Biodiversity Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Department of Environment and Science, Queensland Herbarium and Biodiversity Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NH, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | | | - John R Poulsen
- Global Change Research Institute CAS, Brno, Czech Republic
- The Nature Conservancy, Boulder, CO, USA
| | - Hans Pretzsch
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute (iuFOR), University Valladolid, Valladolid, Spain
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Center for Natural Climate Solutions, Conservation International, Arlington, VA, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity Section, MUSE - Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Christian Salas-Eljatib
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
- Departamento de Gestión Forestal y su Medio Ambiente, Universidad de Chile, Santiago, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | | | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Siberian Federal University, Krasnoyarsk, Russian Federation
| | | | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zürich, Zürich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, French Guiana
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russian Federation
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab - Computational & Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, Portugal
- Agricultural High School, Polytechnic Institute of Viseu, IPV, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - George D Gann
- Society for Ecological Restoration (SER), Washington, DC, USA
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| |
Collapse
|
35
|
Di Maurizio V, Searle E, Paquette A. It takes a village to grow a tree: Most tree species benefit from dissimilar neighbors. Ecol Evol 2023; 13:e10804. [PMID: 38145019 PMCID: PMC10739099 DOI: 10.1002/ece3.10804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
Scientific consensus is that diverse tree species positively impact forest productivity, especially when species are functionally dissimilar. Under the complementarity hypothesis, differences in species traits reduce competition among neighboring tree species. However, while this relationship has been extensively studied at the community level, there is a lack of understanding regarding how individuals of different species specifically respond to a functionally dissimilar neighborhood. In this study, we used permanent plots from Quebec, Canada, and 19 focal tree species to test whether: (1) tree growth response to neighborhood dissimilarity varies with their identity and competition intensity, and (2) focal tree species' traits explain their response to neighborhood dissimilarity. We demonstrate that: tree growth is primarily influenced by competition, species identity, and their interactions, but that dissimilarity, alone and in interaction with the main drivers of tree growth, explains an additional 1.8% of the variation in species growth. Within this context, (1) most species' respond positively to neighborhood dissimilarity, with magnitude being species and competition dependent, and (2) focal tree traits partly explain these dependencies, with shade-intolerant species benefiting most from dissimilar neighbors under high competition. Our study provides empirical support for the complementarity hypothesis, emphasizing the small but consistent positive effect of functional dissimilarity on tree growth in local neighborhoods. Our findings identify the species with the highest potential of benefiting from dissimilar neighbors but also demonstrate that the positive effect of neighborhood dissimilarity is not limited to a select few species with specific traits; rather, it is observed across a diverse range of species. The cumulative growth responses of individuals to functionally dissimilar neighbors may help explain the commonly observed higher productivity in more diverse communities.
Collapse
Affiliation(s)
- Vanessa Di Maurizio
- Centre d'Étude de la Forêt, Faculté des Sciences, Département des Sciences BiologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | - Eric Searle
- Centre d'Étude de la Forêt, Faculté des Sciences, Département des Sciences BiologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Ontario Ministry of Natural Resources and ForestryOntario Forest Research InstituteSault Ste. MarieOntarioCanada
| | - Alain Paquette
- Centre d'Étude de la Forêt, Faculté des Sciences, Département des Sciences BiologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| |
Collapse
|
36
|
Wildermuth B, Seifert CL, Husemann M, Schuldt A. Metabarcoding reveals that mixed forests mitigate negative effects of non-native trees on canopy arthropod diversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2921. [PMID: 37776039 DOI: 10.1002/eap.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Averting climate change-induced forest diebacks increasingly relies on tree species planted outside of their natural range and on the addition of non-native tree species to mixed-species forests. However, the consequences of such changes for associated biodiversity remain poorly understood, especially for the forest canopy as a largely understudied forest stratum. Here, we used flight interception traps and a metabarcoding approach to study the taxonomic and functional (trophic guilds) composition and taxon richness of canopy arthropods. We sampled 15 monospecific and mixed stands of native European beech, native Norway spruce-planted outside its natural range-and non-native Douglas fir in northwest Germany. We found that the diversity of arthropods was lower in non-native Douglas fir compared with native beech stands. Taxon richness of herbivores was reduced by both conifer species. Other functional guilds, however, were not affected by stand type. Arthropod composition differed strongly between native broadleaved beech and monospecific coniferous (native spruce or non-native Douglas fir) stands, with less pronounced differences between the native and non-native conifers. Beech-conifer mixtures consistently hosted intermediate arthropod diversity and community composition compared with the respective monospecific stands. Moreover, arthropod diversity had a positive relationship with the number of canopy microhabitats. Our study shows that considering arthropod taxa of multiple functional groups reveals the multifaceted impact of non-native tree species on forest canopy arthropod communities. Contrasting with previous studies that primarily focused on the forest floor, we found that native beech hosts a rich diversity of arthropods, compared with lower diversity and distinct communities in economically attractive, and especially in non-native, conifers with few canopy microhabitats. Broadleaf-conifer mixtures did not perform better than native beech stands, but mitigated the negative effects of conifers, making such mixtures a compromise to foster both forest-associated diversity and economic yield.
Collapse
Affiliation(s)
- Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Carlo L Seifert
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Martin Husemann
- Museum of Nature, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Tao S, Veen GFC, Zhang N, Yu T, Qu L. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. MICROBIOME 2023; 11:261. [PMID: 37996939 PMCID: PMC10666335 DOI: 10.1186/s40168-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.
Collapse
Affiliation(s)
- Siqi Tao
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Naili Zhang
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China.
| | - Tianhe Yu
- Department of Biology, Mudanjiang Normal University, Mudanjiang, 157011, People's Republic of China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
38
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
39
|
Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, Zou Y, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Niinemets Ü, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Fridman J, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTF, Piotto D, Pitman NCA, Mendoza-Polo I, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miścicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Westerlund B, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Zohner CM. The global biogeography of tree leaf form and habit. NATURE PLANTS 2023; 9:1795-1809. [PMID: 37872262 PMCID: PMC10654052 DOI: 10.1038/s41477-023-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Collapse
Affiliation(s)
- Haozhi Ma
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Yibiao Zou
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, D.C., Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | | | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, Univ. Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, the Netherlands
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Tropical Forest and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St. Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | | | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Ben DeVries
- Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brasil
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU, Umea, Sweden
| | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Martin Herold
- Helmholtz GFZ German Research Centre for Geosciences, Remote Sensing and Geoinformatics Section, Telegrafenberg, Potsdam, Germany
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | - Kuswata Kartawinata
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Dmitry Kucher
- Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land Ltd, Kirby Misperton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | | | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | | | | | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- The Nature Conservancy, Boulder, CO, USA
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School for Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida and Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Center for Natural Climate Solutions, Conservation International, Arlington, VA, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE - Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
- Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | | | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Siberian Federal University, Krasnoyarsk, Russian Federation
| | | | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, French Guiana
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Stanislaw Miścicki
- Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russian Federation
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, the Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Agricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Bertil Westerlund
- Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU, Umea, Sweden
| | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Hannsjoerg Woell
- Independent Researcher, Sommersbergseestrasse, Bad Aussee, Austria
| | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderick Zagt
- Tropenbos International, Wageningen, the Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
40
|
Wan X, Joly FX, Jia H, Zhu M, Fu Y, Huang Z. Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. THE NEW PHYTOLOGIST 2023; 240:1003-1014. [PMID: 37606255 DOI: 10.1111/nph.19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Forest floor accumulation is a key process that influences ecosystem carbon cycling. Despite evidence suggesting that tree diversity and soil carbon are positively correlated, most soil carbon studies typically omit the response of the forest floor carbon to tree diversity loss. Here, we evaluated how tree species richness affects forest floor mass and how this effect is mediated by litterfall production and forest floor decay rate in a tree diversity experiment in a subtropical forest. We observed that greater tree species richness leads to higher forest floor accumulation at the soil surface through increasing litterfall production - positively linked to functional trait identity (i.e. community-weighted mean functional trait) rather than functional diversity - and unchanged forest floor decay. Interestingly, structural equation modelling revealed that this lack of overall significant tree species richness effect on forest floor decay rate was due to two indirect and opposite effects cancelling each other out. Indeed, tree species richness increased forest floor decay rate through increasing litterfall production while decreasing forest floor decay rate by increasing litter species richness. Our reports of greater organic matter accumulation in the forest floor in species-rich forests suggest that tree diversity may have long-term and important effect on ecosystem carbon cycling and services.
Collapse
Affiliation(s)
- Xiaohua Wan
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, 350007, China
- School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - François-Xavier Joly
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hui Jia
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, 350007, China
- School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Min Zhu
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, 350007, China
- School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yanrong Fu
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, 350007, China
- School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhiqun Huang
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fuzhou, 350007, China
- School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
41
|
Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, Eisenhauer N, Ferlian O, Quosh J, von Oheimb G, Fichtner A. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. SCIENCE ADVANCES 2023; 9:eadi2362. [PMID: 37801499 PMCID: PMC10558120 DOI: 10.1126/sciadv.adi2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Benjamin M. Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103 Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier Cedex 5, France
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
42
|
Chiarella C, Meyfroidt P, Abeygunawardane D, Conforti P. Balancing the trade-offs between land productivity, labor productivity and labor intensity. AMBIO 2023; 52:1618-1634. [PMID: 37368162 PMCID: PMC10460764 DOI: 10.1007/s13280-023-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Agricultural intensification, through increased yields, and raising incomes, through enhanced labor productivity, are two dimensions prioritized for sustainable agricultural development. Prioritizing these two outcomes leaves labor intensity as a hidden adjustment variable. Yet, when agriculture is mainstay and the prospects of labor absorption in other sectors are scarce, the density of agricultural employment is central for livelihoods. We revise relationships of land and labor productivity and labor intensity with farm size, using standardized data for 32 developing countries. We show that labor productivity increases with farm size, while land productivity and labor intensity decrease with farm size nonlinearly. Technical efficiency increases with farm size. We further systematize the evidence on how, beyond the farm level, local contexts can be pivotal in choosing how to prioritize the dimensions of the trade-off space. Our findings contribute to debates on the fate of small-scale farmers, and call for contextualized decisions.
Collapse
Affiliation(s)
- Cristina Chiarella
- Earth and Life Institute, UCLouvain, Place de l’Université 1, 1348 Louvain-la-Neuve, Belgium
| | - Patrick Meyfroidt
- Earth and Life Institute, UCLouvain, Place de l’Université 1, 1348 Louvain-la-Neuve, Belgium
- Fonds de la Recherche Scientifique F.R.S.-FNRS, 1000 Brussels, Belgium
| | - Dilini Abeygunawardane
- Structural Development of Farms and Rural Areas (Structural Change), Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Theodor-Lieser-Str. 2, 06120 Halle, Germany
| | - Piero Conforti
- Statistics Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
43
|
Li J, He B, Ahmad S, Mao W. Leveraging explainable machine learning models to assess forest health: A case study in Hainan, China. Ecol Evol 2023; 13:e10558. [PMID: 37753308 PMCID: PMC10518842 DOI: 10.1002/ece3.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Global forest area has declined over the past few years, forest quality has declined, and ecological and environmental events have increased with climate change and human activity. In the context of ecological civilization, forest health issues have received unprecedented attention. By improving forest health, forests can better perform their ecosystem service functions and promote green development. This study was carried out in the WuZhi Shan area of Hainan Tropical Rainforest National Park. We employed a decision tree algorithm, a machine learning technique, for our modeling due to its high accuracy and interpretability. The objective weighted method using criteria of importance through intercriteria correlation (CRITIC) was used to determine forest health classes based on survey and experimental data from 132 forest samples. The results showed that species diversity is the most important metric to measure forest health. An interpretable decision tree machine learning model was proposed to incorporate forest health indicators, providing up to 90% accuracy in the classification of forest health conditions. The model demonstrated a high degree of effectiveness, achieving an average precision of 90%, a recall of 67%, and an F1 score of 70.2% in predicting forest health. The interpretable decision tree classification results showed that breast height diameter is the most important variable in classifying the health status of both primary and secondary forests. This study highlights the importance of using interpretable machine learning methods for the decision-making process. Our work contributes to the scientific underpinnings of sustainable forest development and effective conservation planning.
Collapse
Affiliation(s)
- Jialing Li
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
- Wuzhishan DivisionHainan Tropical Rainforest National Park BureauWuzhishanChina
| | - Bohao He
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Shahid Ahmad
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Wei Mao
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| |
Collapse
|
44
|
Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTTF, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miscicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS. Native diversity buffers against severity of non-native tree invasions. Nature 2023; 621:773-781. [PMID: 37612513 PMCID: PMC10533391 DOI: 10.1038/s41586-023-06440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Niamh M Robmann
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas Lauber
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Sara Kuebbing
- The Forest School at The Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Mathieu Decuyper
- Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brazil
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Martin Herold
- Wageningen University and Research, Wageningen, The Netherlands
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land, Malton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | - Nicolas Picard
- Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Irina Polo
- Jardín Botánico de Medellín, Medellin, Colombia
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile
- Depto. de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk Russian Federation, Krasnoyarsk, Russia
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, France
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Betafaculty, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Viseu, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
45
|
Yao J, Huang J, Zang R. Alpha and beta diversity jointly drive the aboveground biomass in temperate and tropical forests. Ecol Evol 2023; 13:e10487. [PMID: 37664512 PMCID: PMC10468913 DOI: 10.1002/ece3.10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Changes in biodiversity often affect ecosystem functioning. However, most previous biodiversity and ecosystem functioning (BEF) studies have generally been limited to very small spatial grains. Thus, knowledge regarding the biodiversity-ecosystem functioning relationships across spatial scales is lacking. Moreover, the multiscale nature of biodiversity, and specifically β diversity (i.e., spatial heterogeneity in species composition) was still largely missing in BEF studies. Here, using the vegetation and functional trait data collected from four 6-ha forest dynamics plots (FDPs) in temperate and tropical forests in China, we examine the scale-dependent relationships between tree diversity and the aboveground biomass (AGB), as well as the roles of species spatial heterogeneity in determining the AGB. In tropical forests, the effect of species richness on AGB decreased with spatial grains, while functional dominance played a stronger role at larger spatial grains. In temperate forests, positive relationship between diversity and AGB occurred at all spatial grains, especially on smaller scales. In both temperate and tropical forests, β diversity was positively correlated with AGB, but weaker than α diversity in determining AGB. Overall, complementarity and selection hypothesis play dominant role in determining AGB in temperate and tropical forests, respectively. The roles of these underlying mechanisms are more pronounced with increasing spatial scales. β diversity, a hitherto underexplored facet of biodiversity, is likely to increase ecosystem functions by species spatial turnover and should not be neglected in BEF explorations. Our findings have practical implications for forest management and demonstrate that biotic heterogeneity plays an important positive role in ecosystem functioning.
Collapse
Affiliation(s)
- Jie Yao
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
| | - Jihong Huang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
| | - Runguo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Beijing China
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
| |
Collapse
|
46
|
Lu S, Zhang D, Wang L, Dong L, Liu C, Hou D, Chen G, Qiao X, Wang Y, Guo K. Comparison of plant diversity-carbon storage relationships along altitudinal gradients in temperate forests and shrublands. FRONTIERS IN PLANT SCIENCE 2023; 14:1120050. [PMID: 37636113 PMCID: PMC10453807 DOI: 10.3389/fpls.2023.1120050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Understanding the mechanisms underlying the relationship between biodiversity and ecosystem function (BEF) is critical for the implementation of productive and resilient ecosystem management. However, the differences in BEF relationships along altitudinal gradients between forests and shrublands are poorly understood, impeding the ability to manage terrestrial ecosystems and promote their carbon sinks. Using data from 37962 trees of 115 temperate forest and 134 shrubland plots of Taihang Mountains Priority Reserve, we analyzed the effects of species diversity, structural diversity, climate factors and soil moisture on carbon storage along altitudinal gradients in temperate forests and shrublands. We found that: (1) Structural diversity, rather than species diversity, mainly promoted carbon storage in forests. While species diversity had greater positive effect on carbon storage in shrublands. (2) Mean annual temperature (MAT) had a direct negative effect on forest carbon storage, and indirectly affected forest carbon storage by inhibiting structural diversity. In contrast, MAT promoted shrubland carbon storage directly and indirectly through the positive mediating effect of species diversity. (3) Increasing altitudinal gradients enhanced the structural diversity-carbon relationship in forests, but weakened the species diversity-carbon relationship in shrublands. Niche and architectural complementarity and different life strategies of forests and shrubs mainly explain these findings. These differential characteristics are critical for our comprehensive understanding of the BEF relationship and could help guide the differentiated management of forests and shrublands in reaction to environmental changes.
Collapse
Affiliation(s)
- Shuaizhi Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dou Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Le Wang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Lei Dong
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Inner Mongolia, China
| | - Changcheng Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongjie Hou
- Inner Mongolia Agricultural University, Hohhot, China
| | - Guoping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianguo Qiao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Ke Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Mori AS, Suzuki KF, Hori M, Kadoya T, Okano K, Uraguchi A, Muraoka H, Sato T, Shibata H, Suzuki-Ohno Y, Koba K, Toda M, Nakano SI, Kondoh M, Kitajima K, Nakamura M. Perspective: sustainability challenges, opportunities and solutions for long-term ecosystem observations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220192. [PMID: 37246388 DOI: 10.1098/rstb.2022.0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/11/2023] [Indexed: 05/30/2023] Open
Abstract
As interest in natural capital grows and society increasingly recognizes the value of biodiversity, we must discuss how ecosystem observations to detect changes in biodiversity can be sustained through collaboration across regions and sectors. However, there are many barriers to establishing and sustaining large-scale, fine-resolution ecosystem observations. First, comprehensive monitoring data on both biodiversity and possible anthropogenic factors are lacking. Second, some in situ ecosystem observations cannot be systematically established and maintained across locations. Third, equitable solutions across sectors and countries are needed to build a global network. Here, by examining individual cases and emerging frameworks, mainly from (but not limited to) Japan, we illustrate how ecological science relies on long-term data and how neglecting basic monitoring of our home planet further reduces our chances of overcoming the environmental crisis. We also discuss emerging techniques and opportunities, such as environmental DNA and citizen science as well as using the existing and forgotten sites of monitoring, that can help overcome some of the difficulties in establishing and sustaining ecosystem observations at a large scale with fine resolution. Overall, this paper presents a call to action for joint monitoring of biodiversity and anthropogenic factors, the systematic establishment and maintenance of in situ observations, and equitable solutions across sectors and countries to build a global network, beyond cultures, languages, and economic status. We hope that our proposed framework and the examples from Japan can serve as a starting point for further discussions and collaborations among stakeholders across multiple sectors of society. It is time to take the next step in detecting changes in socio-ecological systems, and if monitoring and observation can be made more equitable and feasible, they will play an even more important role in ensuring global sustainability for future generations. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Kureha F Suzuki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Masakazu Hori
- Japan Fisheries Research and Education Agency, 6F Technowave100, 1-1-25 Shin-urashima, Kanagawa-ku, Yokohama, Kanagawa 221-8529, Japan
| | - Taku Kadoya
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kotaro Okano
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
| | - Aya Uraguchi
- Conservation International Japan, 1-17 Yotsuya, Shinjuku, Tokyo 160-0014, Japan
| | - Hiroyuki Muraoka
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Tamotsu Sato
- International Strategy Division, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Hideaki Shibata
- Field Science Center for Northern Biosphere, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| | - Yukari Suzuki-Ohno
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Mariko Toda
- Kokusai Kogyo Co., Ltd. Shinjuku Front Tower, 21-1, Kita-Shinjuku 2-chome, Shinjukuku, Tokyo 169-0074, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Nakamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido 053-0035, Japan
| |
Collapse
|
48
|
Mensah S, Noulèkoun F, Dimobe K, Seifert T, Glèlè Kakaï R. Climate and soil effects on tree species diversity and aboveground carbon patterns in semi-arid tree savannas. Sci Rep 2023; 13:11509. [PMID: 37460693 DOI: 10.1038/s41598-023-38225-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Climatic and edaphic effects are increasingly being discussed in the context of biodiversity-ecosystem functioning. Here we use data from West African semi-arid tree savannas and contrasting climatic conditions (lower vs. higher mean annual precipitation-MAP and mean annual temperature-MAT) to (1) determine how climate modulates the effects of species richness on aboveground carbon (AGC); (2) explore how species richness and AGC relate with soil variables in these contrasting climatic conditions; and (3) assess how climate and soil influence directly, and/or indirectly AGC through species richness and stand structural attributes such as tree density and size variation. We find that greater species richness is generally associated with higher AGC, but more strongly in areas with higher MAP, which also have greater stem density. There is a climate-related influence of soils on AGC, which decreases from lower to higher MAP conditions. Variance partitioning analyses and structural equation modelling show that, across all sites, MAP, relative to soils, has smaller effect on AGC, mediated by stand structural attributes whereas soil texture and fertility explain 14% of variations in AGC and influence AGC directly and indirectly via species richness and stand structural attributes. Our results highlight coordinated effects of climate and soils on AGC, which operated primarily via the mediation role of species diversity and stand structures.
Collapse
Affiliation(s)
- Sylvanus Mensah
- Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, Cotonou, Benin.
- Chair of Forest Growth, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
| | - Florent Noulèkoun
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anamro, Seongbukgu, Seoul, 02841, Korea
| | - Kangbéni Dimobe
- Institut des Sciences de l'Environnement et du Développement Rural, Université de Dédougou, BP 176, Dédougou, Burkina Faso
| | - Thomas Seifert
- Chair of Forest Growth, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, 7602, South Africa
| | - Romain Glèlè Kakaï
- Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, Cotonou, Benin
| |
Collapse
|
49
|
Eisenhauer N, Angst G, Asato AEB, Beugnon R, Bönisch E, Cesarz S, Dietrich P, Jurburg SD, Madaj AM, Reuben RC, Ristok C, Sünnemann M, Yi H, Guerra CA, Hines J. The heterogeneity-diversity-system performance nexus. Natl Sci Rev 2023; 10:nwad109. [PMID: 37575691 PMCID: PMC10423029 DOI: 10.1093/nsr/nwad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 08/15/2023] Open
Abstract
Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Gerrit Angst
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| | - Ana E B Asato
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, Leipzig 04103, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, Leipzig 04103Germany
| |
Collapse
|
50
|
Li Y, Xie D, Wang Y, Jin S, Zhou K, Zhang Z, Li W, Zhang W, Mu X, Yan G. Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering. Ecol Evol 2023; 13:e10297. [PMID: 37456074 PMCID: PMC10338759 DOI: 10.1002/ece3.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/04/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Light detection and ranging (LiDAR) data can provide 3D structural information of objects and are ideal for extracting individual tree parameters, and individual tree segmentation (ITS) is a vital step for this purpose. Various ITS methods have been emerging from airborne LiDAR scanning (ALS) or unmanned aerial vehicle LiDAR scanning (ULS) data. Here, we propose a new individual tree segmentation method, which couples the classical and efficient watershed algorithm (WS) and the newly developed connection center evolution (CCE) clustering algorithm in pattern recognition. The CCE is first used in ITS and comprehensively optimized by considering tree structure and point cloud characteristics. Firstly, the amount of data is greatly reduced by mean shift voxelization. Then, the optimal clustering scale is automatically determined by the shapes in the projection of three different directions. We select five forest plots in Saihanba, China and 14 public plots in Alpine region, Europe with ULS or ALS point cloud densities from 11 to 3295 pts/m2. Eleven ITS methods were used for comparison. The accuracy of tree top detection and tree height extraction is estimated by five and two metrics, respectively. The results show that the matching rate (R match) of tree tops is up to 0.92, the coefficient of determination (R 2) of tree height estimation is up to .94, and the minimum root mean square error (RMSE) is 0.6 m. Our method outperforms the other methods especially in the broadleaf forests plot on slopes, where the five evaluation metrics for tree top detection outperformed the other algorithms by at least 11% on average. Our ITS method is both robust and efficient and has the potential to be used especially in coniferous forests to extract the structural parameters of individual trees for forest management, carbon stock estimation, and habitat mapping.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Donghui Xie
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | | | - Shuangna Jin
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Kun Zhou
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Zhixiang Zhang
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Weihua Li
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Wuming Zhang
- School of Geospatial Engineering and ScienceSun Yat‐Sen UniversityZhuhaiChina
| | - Xihan Mu
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| | - Guangjian Yan
- State Key Laboratory of Remote Sensing Science, Beijing Engineering Research Center for Global Land Remote Sensing ProductsBeijing Normal UniversityBeijingChina
| |
Collapse
|