1
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2024:10.1038/s41574-024-01059-8. [PMID: 39613954 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
3
|
Shaikh I, Bhatt LK. Targeting Adipokines: A Promising Therapeutic Strategy for Epilepsy. Neurochem Res 2024; 49:2973-2987. [PMID: 39060767 DOI: 10.1007/s11064-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Epilepsy affects 65 million people globally and causes neurobehavioral, cognitive, and psychological defects. Although research on the disease is progressing and a wide range of treatments are available, approximately 30% of people have refractory epilepsy that cannot be managed with conventional medications. This underlines the importance of further understanding the condition and exploring cutting-edge targets for treatment. Adipokines are peptides secreted by adipocyte's white adipose tissue, involved in controlling food intake and metabolism. Their regulatory functions in the central nervous system (CNS) are multifaceted and identified in several physiology and pathologies. Adipokines play a role in oxidative stress and neuroinflammation which are associated with brain degeneration and connected neurological diseases. This review aims to highlight the potential impacts of leptin, adiponectin, apelin, vaspin, visfatin, and chimerin in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Iqraa Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Ikhsan LN, Chin KY, Ahmad F. The Potential of Dehydrated Geniotrigona thoracica Stingless Bee Honey against Metabolic Syndrome in Rats Induced by a High-Carbohydrate, High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1427. [PMID: 39598339 PMCID: PMC11597213 DOI: 10.3390/ph17111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MS) is diagnosed when at least three out of five key risk factors are present: obesity, high blood pressure, insulin resistance, high triglycerides (TG) and low high-density lipoprotein (HDL). MS is often associated with chronic low-grade inflammation. Recent studies have shown that raw stingless bee honey (SBH) can alleviate MS risk factors. However, the high moisture content in raw SBH predisposes it to fermentation, which can degrade its quality. Therefore, dehydrating SBH is necessary to prevent the fermentation process. This study aimed to compare the effects of dehydrated (DeGT) and raw (RGT) SBH from Geniotrigona thoracica species on high-carbohydrate, high-fat diet (HCHF)-induced MS in rats. METHODS Twenty-four male Wistar rats were divided into four groups: control (C), HCHF-induced MS without treatment (MS), HCHF-induced MS treated with DeGT (MS+DeGT) and HCHF-induced MS treated with RGT (MS+RGT). Group C received standard rat chow, while the other groups were fed with HCHF diet for 16 weeks. In the final eight weeks, two HCHF-induced groups received their respective SBH treatments. RESULTS Both DeGT and RGT treatments reduced energy intake, fat mass, high blood pressure, inflammatory (tumour necrosis factor-alpha (TNF-α)) and obesity (the leptin/adiponectin (L/A) ratio, corticosterone, 11 beta-hydroxysteroid dehydrogenase type-1 (11βHSD1)) markers, as well as prevented histomorphometry changes (prevented adipocyte hypertrophy, increased the Bowman's space area and glomerular atrophy). Additionally, DeGT increased serum HDL levels, while RGT reduced serum TG, leptin and other inflammatory markers (interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as hepatosteatosis. CONCLUSIONS While DeGT demonstrates potential as a preventive agent for MS, RGT exhibited more pronounced anti-MS effects in this study.
Collapse
Affiliation(s)
- Liyana Nabihah Ikhsan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
6
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Ostrowska-Czyżewska A, Zgliczyński W, Bednarek-Papierska L, Mrozikiewicz-Rakowska B. Is It Time for a New Algorithm for the Pharmacotherapy of Steroid-Induced Diabetes? J Clin Med 2024; 13:5801. [PMID: 39407860 PMCID: PMC11605232 DOI: 10.3390/jcm13195801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024] Open
Abstract
Glucocorticoids (GS) are widely used in multiple medical indications due to their anti-inflammatory, immunosuppressive, and antiproliferative effects. Despite their effectiveness in treating respiratory, skin, joint, renal, and neoplastic diseases, they dysregulate glucose metabolism, leading to steroid-induced diabetes (SID) or a significant increase of glycemia in people with previously diagnosed diabetes. The risk of adverse event development depends on the prior therapy, the duration of the treatment, the form of the drug, and individual factors, i.e., BMI, genetics, and age. Unfortunately, SID and steroid-induced hyperglycemia (SIH) are often overlooked, because the fasting blood glucose level, which is the most commonly used diagnostic test, is insufficient for excluding both conditions. The appropriate control of post-steroid hyperglycemia remains a major challenge in everyday clinical practice. Recently, the most frequently used antidiabetic strategies have been insulin therapy with isophane insulin or multiple injections in the basal-bolus regimen. Alternatively, in patients with lower glycemia, sulphonylureas or glinides were used. Taking into account the pathogenesis of post-steroid-induced hyperglycemia, the initiation of therapy with glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase 4 (DPP-4) inhibitors should be considered. In this article, we present a universal practical diagnostic algorithm of SID/SIH in patients requiring steroids, in both acute and chronic conditions, and we present a new pharmacotherapy algorithm taking into account the use of all currently available antidiabetic drugs.
Collapse
Affiliation(s)
| | | | | | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
8
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
9
|
Dumesic DA, Rasouli MA, Katz JD, Lu GG, Dharanipragada D, Turcu AF, Grogan TR, Flores KE, Magyar CE, Abbott DH, Chazenbalk GD. The Subcutaneous Adipose Microenvironment as a Determinant of Body Fat Development in Polycystic Ovary Syndrome. J Endocr Soc 2024; 8:bvae162. [PMID: 39345868 PMCID: PMC11424691 DOI: 10.1210/jendso/bvae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Context Adipose steroid metabolism modifies body fat development in polycystic ovary syndrome (PCOS). Objective To determine whether subcutaneous (SC) abdominal adipose aldo-keto reductase 1C3 (AKR1C3; a marker of testosterone generation) is increased in normal-weight women with PCOS vs age- and body mass index (BMI)-matched normoandrogenic ovulatory women (controls) and is related to SC abdominal adipose activator protein-1 (AP-1; a marker of adipocyte differentiation) and/or androgen receptor (AR) protein expression in predicting fat accretion. Design Prospective cohort study. Setting Academic center. Patients Eighteen normal-weight PCOS women; 17 age- and BMI-matched controls. Interventions Circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total body dual-energy x-ray absorptiometry, SC abdominal fat biopsy, immunohistochemistry. Main Outcome Measures Clinical characteristics, hormonal concentrations, body fat distribution, SC adipose AKR1C3, AR, and AP-1 protein expression. Results Women with PCOS had significantly higher serum androgen levels and greater android/gynoid fat mass ratios than controls. SC adipose AKR1C3, AR, and AP-1 protein expressions were comparable between the study groups, but groups differed in correlations. In PCOS women vs controls, SC adipose AKR1C3 protein expression correlated positively with android and gynoid fat masses and negatively with SC adipose AP-1 protein expression. SC adipose AR protein expression correlated negatively with fasting serum free fatty acid and high-density lipoprotein levels. In both study groups, SC adipose AKR1C3 protein expression negatively correlated with serum cortisol levels. Conclusion In normal-weight PCOS women, SC abdominal adipose AKR1C3 protein expression, in combination with intra-adipose AP-1 and AR-dependent events, predicts fat accretion in the presence of physiological cortisol levels.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melody A Rasouli
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica D Katz
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gwyneth G Lu
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devyani Dharanipragada
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, Nutrition and Diabetes, University of Michigan, Ann Arbor, MI 48103, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Kimberly E Flores
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, WI 53715, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Collins CP, Khuat LT, Sckisel GD, Vick LV, Minnar CM, Dunai C, Le CT, Curti BD, Crittenden M, Merleev A, Sheng M, Chao NJ, Maverakis E, Rosario SR, Monjazeb AM, Blazar BR, Longo DL, Canter RJ, Murphy WJ. Systemic immunostimulation induces glucocorticoid-mediated thymic involution succeeded by rebound hyperplasia which is impaired in aged recipients. Front Immunol 2024; 15:1429912. [PMID: 39315105 PMCID: PMC11416920 DOI: 10.3389/fimmu.2024.1429912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The thymus is the central organ involved with T-cell development and the production of naïve T cells. During normal aging, the thymus undergoes marked involution, reducing naïve T-cell output and resulting in a predominance of long-lived memory T cells in the periphery. Outside of aging, systemic stress responses that induce corticosteroids (CS), or other insults such as radiation exposure, induce thymocyte apoptosis, resulting in a transient acute thymic involution with subsequent recovery occurring after cessation of the stimulus. Despite the increasing utilization of immunostimulatory regimens in cancer, effects on the thymus and naïve T cell output have not been well characterized. Using both mouse and human systems, the thymic effects of systemic immunostimulatory regimens, such as high dose IL-2 (HD IL-2) with or without agonistic anti-CD40 mAbs and acute primary viral infection, were investigated. These regimens produced a marked acute thymic involution in mice, which correlated with elevated serum glucocorticoid levels and a diminishment of naïve T cells in the periphery. This effect was transient and followed with a rapid thymic "rebound" effect, in which an even greater quantity of thymocytes was observed compared to controls. Similar results were observed in humans, as patients receiving HD IL-2 treatment for cancer demonstrated significantly increased cortisol levels, accompanied by decreased peripheral blood naïve T cells and reduced T-cell receptor excision circles (TRECs), a marker indicative of recent thymic emigrants. Mice adrenalectomized prior to receiving immunotherapy or viral infection demonstrated protection from this glucocorticoid-mediated thymic involution, despite experiencing a substantially higher inflammatory cytokine response and increased immunopathology. Investigation into the effects of immunostimulation on middle aged (7-12 months) and advance aged (22-24 months) mice, which had already undergone significant thymic involution and had a diminished naïve T cell population in the periphery at baseline, revealed that even further involution was incurred. Thymic rebound hyperplasia, however, only occurred in young and middle-aged recipients, while advance aged not only lacked this rebound hyperplasia, but were entirely absent of any indication of thymic restoration. This coincided with prolonged deficits in naïve T cell numbers in advanced aged recipients, further skewing the already memory dominant T cell pool. These results demonstrate that, in both mice and humans, systemic immunostimulatory cancer therapies, as well as immune challenges like subacute viral infections, have the potential to induce profound, but transient, glucocorticoid-mediated thymic involution and substantially reduced thymic output, resulting in the reduction of peripheral naive T cells. This can then be followed by a marked rebound effect with naïve T cell restoration, events that were shown not to occur in advanced-aged mice.
Collapse
Affiliation(s)
- Craig P. Collins
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Lam T. Khuat
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Gail D. Sckisel
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Logan V. Vick
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Christine M. Minnar
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Catherine T. Le
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Brendan D. Curti
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alexander Merleev
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Michael Sheng
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Spencer R. Rosario
- Biostatistics & Bioinformatics Department, Roswell Park, Roswell Comprehensive Cancer Center, Buffalo, NY, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, Davis Comprehensive Cancer Center, School of Medicine, Sacramento, CA, United States
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Dan L. Longo
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis Comprehensive Cancer Center, School of Medicine, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, School of Medicine, Sacramento, CA, United States
| |
Collapse
|
11
|
Lloyd EM, Crew RC, Haynes VR, White RB, Mark PJ, Jackaman C, Papadimitriou JM, Pinniger GJ, Murphy RM, Watt MJ, Grounds MD. Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy. Skelet Muscle 2024; 14:19. [PMID: 39123261 PMCID: PMC11312411 DOI: 10.1186/s13395-024-00350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Rachael C Crew
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Vanessa R Haynes
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Robert B White
- MD Education Unit, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter J Mark
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - John M Papadimitriou
- Department of Pathology and Laboratory Medicine, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
12
|
Salgueiro RB, Bolin AP, Andreotti S, Medeiros Komino AC, de Sousa É, de Fatima Silva F, Gomes de Proença AR, Laurato Sertié RA, Rodrigues AC, Lima FB. Long-term glucocorticoid infusion impairs epididymal adipocyte metabolism and maturation and affects miR-150-5p actions. Mol Cell Endocrinol 2024; 589:112250. [PMID: 38663485 DOI: 10.1016/j.mce.2024.112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.
Collapse
Affiliation(s)
- Rafael Barrera Salgueiro
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil; University of Brasília, Biology Institute, Department of Physiological Sciences, Brasília, Federal District, Brazil.
| | - Anaysa Paola Bolin
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Sandra Andreotti
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Ayumi Cristina Medeiros Komino
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Érica de Sousa
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Flaviane de Fatima Silva
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | | | - Rogério Antonio Laurato Sertié
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Alice Cristina Rodrigues
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Fabio Bessa Lima
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Şirikçi V, Kiraç CO, Findikli HA, Muhammedoğlu B. Assessing the predictive value of the suppressed 1 mg overnight dexamethasone suppression test in success of bariatric surgery. Medicine (Baltimore) 2024; 103:e38939. [PMID: 38996091 PMCID: PMC11245216 DOI: 10.1097/md.0000000000038939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Bariatric surgery has been proven to be a successful intervention for managing obesity. There are numerous studies in the literature aiming to predict the factors influencing the success of bariatric surgery. Our study aims to determine whether preoperative 1 mg overnight dexamethasone suppression test (1 mg-DST) serum cortisol levels can serve as predictors of the effectiveness of bariatric surgery in severe obese patients without Cushing syndrome. A total of 98 patients who underwent bariatric surgery were included in the study. The preoperative 1 mg-DST levels, insulin levels, thyroid function tests, and lipid profiles of the patients were recorded. The patients' preoperative, postoperative 3rd, and 6th month weights were recorded and the percent total weight loss (%TWL) is calculated. Patients were categorized into 2 groups based on their TWL at 6 months. The 1 mg-DST results were significantly lower in the high-TWL-6 group (0.93 ± 0.37 μg/dL) compared to the low-TWL-6 group (1.09 ± 0.36 μg/dL, P = .040). Similarly, Homeostatic Model Assessment for Insulin Resistance values were lower in the high-TWL-6 group (5.63 ± 2.21) compared to the low-TWL-6 group (6.63 ± 2.55, P = .047). The optimal cutoff value found for 1 mg-DST level was 0.97 µg/dL, providing 50% sensitivity and 70% specificity. This study is the first to examine the predictive role of suppressed 1 mg-DST levels on postoperative weight loss in nondiabetic patients. The most prominent result of this study was that we observed a negative correlation between 1 mg-DST levels and %TWL.
Collapse
Affiliation(s)
- Vehbi Şirikçi
- Department of Internal Medicine, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Cem Onur Kiraç
- Department of Internal Medicine, Necip Fazil City Hospital, Division of Endocrinology and Metabolism, Kahramanmaras, Turkey
| | | | - Bahtiyar Muhammedoğlu
- Department of General Surgery, Kahramanmaras Sutcu Imam University, Medical Faculty, Kahramanmaras, Turkey
| |
Collapse
|
15
|
Geronikolou SA, Pavlopoulou A, Uça Apaydin M, Albanopoulos K, Cokkinos DV, Chrousos G. Non-Hereditary Obesity Type Networks and New Drug Targets: An In Silico Approach. Int J Mol Sci 2024; 25:7684. [PMID: 39062927 PMCID: PMC11277295 DOI: 10.3390/ijms25147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a chronic, preventable disease, has significant comorbidities that are associated with a great human and financial cost for society. The aim of the present work is to reconstruct the interactomes of non-hereditary obesity to highlight recent advances of its pathogenesis, and discover potential therapeutic targets. Obesity and biological-clock-related genes and/or gene products were extracted from the biomedical literature databases PubMed, GeneCards and OMIM. Their interactions were investigated using STRING v11.0 (a database of known and predicted physical and indirect associations among genes/proteins), and a high confidence interaction score of >0.7 was set. We also applied virtual screening to discover natural compounds targeting obesity- and circadian-clock-associated proteins. Two updated and comprehensive interactomes, the (a) stress- and (b) inflammation-induced obesidomes involving 85 and 93 gene/gene products of known and/or predicted interactions with an average node degree of 9.41 and 10.8, respectively, were produced. Moreover, 15 of these were common between the two non-hereditary entities, namely, ADIPOQ, ADRB2/3, CCK, CRH, CXCL8, FOS, GCG, GNRH1, IGF1, INS, LEP, MC4R, NPY and POMC, while phelligridin E, a natural product, may function as a potent FOX1-DBD interaction blocker. Molecular networks may contribute to the understanding of the integrated regulation of energy balance/obesity pathogenesis and may associate chronopharmacology schemes with natural products.
Collapse
Affiliation(s)
- Styliani A. Geronikolou
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | - Merve Uça Apaydin
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | | | - Dennis V. Cokkinos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
| | - George Chrousos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| |
Collapse
|
16
|
Askani E, Rospleszcz S, Lorbeer R, Wintergerst C, Müller-Peltzer K, Kiefer LS, Kellner E, Reisert M, Rathmann W, Peters A, Schlett CL, Bamberg F, Storz C. Associations between adrenal gland volume and adipose tissue compartments - a whole body MRI study. Nutr Metab (Lond) 2024; 21:45. [PMID: 38982517 PMCID: PMC11234623 DOI: 10.1186/s12986-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Obesity is associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Effects of glucocorticoids on adipose tissues appear to depend on the specific adipose depot, in which they take place. In this study, we aimed to investigate the role of MRI-based adrenal gland volume as an imaging marker in association with different adipose tissue compartments. METHODS The study cohort derives from the population-based research platform KORA (Cooperative Health Research in the Augsburg Region, Germany) MRI sub-study, a cross-sectional sub-study investigating the interactions between subclinical metabolic changes and cardiovascular disease in a study sample of 400 participants. Originally, eligible subjects underwent a whole-body MRI. MRI-based segmentations were performed manually and semi-automatically for adrenal gland volume, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), epi- and pericardial fat and renal sinus fat. Hepatic and pancreatic lipid content were measured as pancreatic proton density fraction (PDFF) and MR-spectroscopic hepatic fat fraction (HFF). Multivariable linear regression analyses were performed. RESULTS A number of 307 participants (56.2 ± 9.1 years, 60.3% male, 14.3% with type 2 diabetes (T2DM), 30.6% with obesity, 34.2% with hypertension) were included. In multivariable analyses, strong positive associations between adrenal gland volume and VAT, total adipose tissue (TAT) as well as HFF persisted after extensive step-wise adjustment for possible metabolic confounders (VAT: beta = 0.31, 95%-CI [0.71, 0.81], p < 0.001; TAT: beta = 0.14, 95%-CI [0.06, 0.23], p < 0.001; HFF: beta = 1.17, 95%-CI [1.04, 1.31], p = 0.009). In contrast, associations between adrenal gland volume and SAT were attenuated in multivariate analysis after adjusting for BMI. Associations between pancreatic PDFF, epi- and pericardial fat and renal sinus fat were mediated to a great extent by VAT (pancreatic PDFF: 72%, epicardial adipose tissue: 100%, pericardial adipose tissue: 100%, renal sinus fat: 81.5%). CONCLUSION Our results found MRI-based adrenal gland volume as a possible imaging biomarker of unfavorable adipose tissue distribution, irrespective of metabolic risk factors. Thus, adrenal gland volume may serve as a potential MRI-based biomarker of metabolic changes and contributes to an individual characterization of metabolic states and individual risk stratification. Future studies should elucidate in a longitudinal study design, if and how HPA axis activation may trigger unfavorable adipose tissue distribution and whether and to which extent this is involved in the pathogenesis of manifest metabolic syndrome.
Collapse
Affiliation(s)
- Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Lorbeer
- Department of Radiology, Ludwig-Maximilans-University Hospital, Munich, Germany
| | - Charlotte Wintergerst
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena S Kiefer
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Elias Kellner
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Site Neuherberg, Neuherberg, Germany
| | - Annette Peters
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner Site Neuherberg, Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK E.V.), Munich, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Corinna Storz
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg, 79106, Germany.
| |
Collapse
|
17
|
Hur GH, Lee TK, Cho YJ, Kim JH, Park JHY, Yang H, Lee KW. Optimization of cultivar, germination time and extraction for radish sprout extract with high sulforaphene content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5010-5020. [PMID: 38314949 DOI: 10.1002/jsfa.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cruciferous vegetable sprout has been highlighted as a promising functional material rich in bioactive compounds called isothiocyanates (ITCs) and it can be grown in very short periods in controlled indoor farms. However, because ITCs content depends on multiple factors such as cultivar, germination time and myrosinase activity, those variables need to be controlled during germination or extraction to produce functional materials enriched in ITCs. Sulforaphene (SFEN), an ITC found primarily in radishes (Raphanus sativus L.), exerts beneficial effects on obesity. However, the optimal germination and extraction conditions for radish sprout (RSP) to increase SFEN content remain unascertained, and the extract's anti-obesity effect has yet to be evaluated. RESULTS The present study found that the SFEN content was highest in purple radish sprout (PRSP) among the six cultivars investigated. Optimal SFEN content occurred after 2 days of PRSP germination (2 days PRSP). To maximize the dry matter yield, total ITCs and SFEN contents in RSP extract, we found the optimal conditions for extracting PRSP [27.5 °C, 60 min, 1:75.52 solute/solvent (w/v), no ascorbic acid] using response surface methodology. Consistent with high SFEN content, 2 days PRSP extract significantly outperformed 3 days or 4 days PRSP extract in inhibiting lipid accumulation in 3T3-L1 cells. Moreover, 2 days PRSP extract suppressed adipogenesis and lipogenesis-related protein expression. CONCLUSION Regarding the cultivar, germination time and extraction conditions, optimally produced PRSP extract contains high SFEN content and exerts anti-obesity effects. Thus, we suggest PRSP extract as a potent functional material for obesity prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gi Hyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Jin Cho
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul, Republic of Korea
- Basic Science Research Institute, Sungshin University, Seoul, Republic of Korea
| | | | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Center for Food and Bio convergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Vali A, Beaupère C, Loubaresse A, Dalle H, Fève B, Grosfeld A, Moldes M. Effects of glucocorticoids on adipose tissue plasticity. ANNALES D'ENDOCRINOLOGIE 2024; 85:259-262. [PMID: 38871499 DOI: 10.1016/j.ando.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Glucocorticoids (GCs) play an important role in metabolic adaptation, regulating carbohydrate-lipid homeostasis and the immune system. Because they also have anti-inflammatory and immunosuppressive properties, synthetic analogues of GCs have been developed and are widely used in the treatment of chronic inflammatory conditions and in organ transplantation. GCs are among the most commonly prescribed drugs in the world. However, long term and high GC doses can cause side effects such as GC-induced diabetes and lipodystrophy. In recent years, a large number of independent studies have reported the effects of constitutive and adipocyte-specific deletion of the GC receptor (GR) in mice under different diets and treatments, resulting in contrasting phenotypes. To avoid potential compensatory mechanisms associated with the constitutive adipocyte GR silencing during adipose tissue development, our team has generated an inducible mouse model of GR deletion specifically in the adipocyte (AdipoGR-KO). Using this mouse model, we were able to demonstrate the critical role of the adipocyte GR in GC-induced metabolic changes. Indeed, under conditions of hypercorticism, AdipoGR-KO mice showed an improvement in glucose tolerance and insulin sensitivity, as well as in lipid profile, despite a massive increase in adiposity. This result is explained by a densification of adipose tissue vascularization, highlighting the repressive role of adipocyte GR in the healthy expansion of this tissue. Our work has largely contributed to the demonstration of the important role of the adipocyte GR in the physiology and pathophysiology of the adipose tissue and its impact on energy homeostasis.
Collapse
Affiliation(s)
- Anna Vali
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Carine Beaupère
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Alya Loubaresse
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Héloïse Dalle
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Bruno Fève
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France; Service endocrinologie, CRMR PRISIS, centre de recherche Saint-Antoine (CRSA), hôpital Saint-Antoine, AP-HP, Sorbonne université, Inserm, 75012 Paris, France
| | - Alexandra Grosfeld
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France
| | - Marthe Moldes
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne université, Inserm, 75013 Paris, France.
| |
Collapse
|
19
|
Cresswell E, Basty N, Atabaki Pasdar N, Karpe F, Pinnick KE. The value of neck adipose tissue as a predictor for metabolic risk in health and type 2 diabetes. Biochem Pharmacol 2024; 223:116171. [PMID: 38552854 DOI: 10.1016/j.bcp.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Upper-body adiposity is adversely associated with metabolic health whereas the opposite is observed for the lower-body. The neck is a unique upper-body fat depot in adult humans, housing thermogenic brown adipose tissue (BAT), which is increasingly recognised to influence whole-body metabolic health. Loss of BAT, concurrent with replacement by white adipose tissue (WAT), may contribute to metabolic disease, and specific accumulation of neck fat is seen in certain conditions accompanied by adverse metabolic consequences. Yet, few studies have investigated the relationships between neck fat mass (NFM) and cardiometabolic risk, and the influence of sex and metabolic status. Typically, neck circumference (NC) is used as a proxy for neck fat, without considering other determinants of NC, including variability in neck lean mass. In this study we develop and validate novel methods to quantify NFM using dual x-ray absorptiometry (DEXA) imaging, and subsequently investigate the associations of NFM with metabolic biomarkers across approximately 7000 subjects from the Oxford BioBank. NFM correlated with systemic insulin resistance (Homeostatic Model Assessment for Insulin Resistance; HOMA-IR), low-grade inflammation (plasma high-sensitivity C-Reactive Protein; hsCRP), and metabolic markers of adipose tissue function (plasma triglycerides and non-esterified fatty acids; NEFA). NFM was higher in men than women, higher in type 2 diabetes mellitus compared with non-diabetes, after adjustment for total body fat, and also associated with overall cardiovascular disease risk (calculated QRISK3 score). This study describes the development of methods for accurate determination of NFM at scale and suggests a specific relationship between NFM and adverse metabolic health.
Collapse
Affiliation(s)
- Emily Cresswell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nicolas Basty
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Naeimeh Atabaki Pasdar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Malmö, Sweden
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK.
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Kays Mohammed Ali Y, Dolin TG, Damm Nybing J, Lykke J, Hvid Linden F, Høgh-Schmidt E, Sørensen TIA, Christensen JF, Nielsen YJW, Stenfatt Larsen J, Madsbad S, Sidenius Johansen J, Svane MS, Lang Lehrskov L. Change in abdominal obesity after colon cancer surgery - effects of left-sided and right-sided colonic resection. Int J Obes (Lond) 2024; 48:533-541. [PMID: 38172335 PMCID: PMC10978490 DOI: 10.1038/s41366-023-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Excess abdominal visceral adipose tissue (VAT) is associated with metabolic diseases and poor survival in colon cancer (CC). We assessed the impact of different types of CC surgery on changes in abdominal fat depots. MATERIAL AND METHODS Computed tomography (CT)-scans performed preoperative and 3 years after CC surgery were analyzed at L3-level for VAT, subcutaneous adipose tissue (SAT) and total adipose tissue (TAT) areas. We assessed changes in VAT, SAT, TAT and VAT/SAT ratio after 3 years and compared the changes between patients who had undergone left-sided and right-sided colonic resection in the total population and in men and women separately. RESULTS A total of 134 patients with stage I-III CC undergoing cancer surgery were included. Patients who had undergone left-sided colonic resection had after 3 years follow-up a 5% (95% CI: 2-9%, p < 0.01) increase in abdominal VAT, a 4% (95% CI: 2-6%, p < 0.001) increase in SAT and a 5% increase (95% CI: 2-7%, p < 0.01) in TAT. Patients who had undergone right-sided colonic resection had no change in VAT, but a 6% (95% CI: 4-9%, p < 0.001) increase in SAT and a 4% (95% CI: 1-7%, p < 0.01) increase in TAT after 3 years. Stratified by sex, only males undergoing left-sided colonic resection had a significant VAT increase of 6% (95% CI: 2-10%, p < 0.01) after 3 years. CONCLUSION After 3 years follow-up survivors of CC accumulated abdominal adipose tissue. Notably, those who underwent left-sided colonic resection had increased VAT and SAT, whereas those who underwent right-sided colonic resection demonstrated solely increased SAT.
Collapse
Affiliation(s)
- Younes Kays Mohammed Ali
- Department of Endocrinological Research, Copenhagen University Hospital -Amager and Hvidovre, Hvidovre, Denmark
- Department of Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels Gammeltoft Dolin
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- CopenAge, Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Janus Damm Nybing
- Department of Radiology, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Jakob Lykke
- Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Frederik Hvid Linden
- Department of Radiology, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences at the University of Southern Denmark, Odense, Denmark
- Digestive Disease Center, Bispebjerg Hospital, Copenhagen, Denmark
| | - Yousef J W Nielsen
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Jim Stenfatt Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Sten Madsbad
- Department of Endocrinological Research, Copenhagen University Hospital -Amager and Hvidovre, Hvidovre, Denmark
| | - Julia Sidenius Johansen
- Department of Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Maria Saur Svane
- Department of Endocrinological Research, Copenhagen University Hospital -Amager and Hvidovre, Hvidovre, Denmark
- Department of Gastrointestinal Surgery, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Louise Lang Lehrskov
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
| |
Collapse
|
21
|
Navarro-Perez J, Carobbio S. Adipose tissue-derived stem cells, in vivo and in vitro models for metabolic diseases. Biochem Pharmacol 2024; 222:116108. [PMID: 38438053 DOI: 10.1016/j.bcp.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results. ADSCs have also been used to generate two-dimensional (2D) and three-dimensional (3D) cellular and in vivo models to study adipose tissue biology and function as well as intracellular communication. Characterising the biology and function of ADSCs, how it is altered in health and disease, and its therapeutic potential and uses in cellular models is key for designing intervention strategies for complex metabolic diseases and cancer.
Collapse
|
22
|
Cho JH, Suh S. Glucocorticoid-Induced Hyperglycemia: A Neglected Problem. Endocrinol Metab (Seoul) 2024; 39:222-238. [PMID: 38532282 PMCID: PMC11066448 DOI: 10.3803/enm.2024.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Glucocorticoids provide a potent therapeutic response and are widely used to treat a variety of diseases, including coronavirus disease 2019 (COVID-19) infection. However, the issue of glucocorticoid-induced hyperglycemia (GIH), which is observed in over one-third of patients treated with glucocorticoids, is often neglected. To improve the clinical course and prognosis of diseases that necessitate glucocorticoid therapy, proper management of GIH is essential. The key pathophysiology of GIH includes systemic insulin resistance, which exacerbates hepatic steatosis and visceral obesity, as well as proteolysis and lipolysis of muscle and adipose tissue, coupled with β-cell dysfunction. For patients on glucocorticoid therapy, risk stratification should be conducted through a detailed baseline evaluation, and frequent glucose monitoring is recommended to detect the onset of GIH, particularly in high-risk individuals. Patients with confirmed GIH who require treatment should follow an insulin-centered regimen that varies depending on whether they are inpatients or outpatients, as well as the type and dosage of glucocorticoid used. The ideal strategy to maintain normoglycemia while preventing hypoglycemia is to combine basal-bolus insulin and correction doses with a continuous glucose monitoring system. This review focuses on the current understanding and latest evidence concerning GIH, incorporating insights gained from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jung-Hwan Cho
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sunghwan Suh
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
23
|
Azevedo-Martins AK, Santos MP, Abayomi J, Ferreira NJR, Evangelista FS. The Impact of Excessive Fructose Intake on Adipose Tissue and the Development of Childhood Obesity. Nutrients 2024; 16:939. [PMID: 38612973 PMCID: PMC11013923 DOI: 10.3390/nu16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/14/2024] Open
Abstract
Worldwide, childhood obesity cases continue to rise, and its prevalence is known to increase the risk of non-communicable diseases typically found in adults, such as cardiovascular disease and type 2 diabetes mellitus. Thus, comprehending its multiple causes to build healthier approaches and revert this scenario is urgent. Obesity development is strongly associated with high fructose intake since the excessive consumption of this highly lipogenic sugar leads to white fat accumulation and causes white adipose tissue (WAT) inflammation, oxidative stress, and dysregulated adipokine release. Unfortunately, the global consumption of fructose has increased dramatically in recent years, which is associated with the fact that fructose is not always evident to consumers, as it is commonly added as a sweetener in food and sugar-sweetened beverages (SSB). Therefore, here, we discuss the impact of excessive fructose intake on adipose tissue biology, its contribution to childhood obesity, and current strategies for reducing high fructose and/or free sugar intake. To achieve such reductions, we conclude that it is important that the population has access to reliable information about food ingredients via food labels. Consumers also need scientific education to understand potential health risks to themselves and their children.
Collapse
Affiliation(s)
- Anna Karenina Azevedo-Martins
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Matheus Pedro Santos
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Julie Abayomi
- School of Medicine and Nutrition, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| | - Natália Juliana Ramos Ferreira
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Fabiana S. Evangelista
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| |
Collapse
|
24
|
Tsutsumi T, Nakagomi D, Kobayashi K, Hanai S, Kobayashi Y, Ito R, Ishii T, Okuma H, Uchinuma H, Ichijo M, Tsuchiya K. Moon-like Facies by Glucocorticoid Is Associated With the Development of Diabetes and Body Image Disturbance. J Endocr Soc 2024; 8:bvae036. [PMID: 38481602 PMCID: PMC10928504 DOI: 10.1210/jendso/bvae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 04/07/2024] Open
Abstract
Context Moon-like facies (MLF) are a typical side effect of glucocorticoid (GC) therapy; however, its predisposing factors, relationship with GC-induced complications, and effects on body image are not well understood. Objective This study aimed to determine the predisposing factors for MLF during GC therapy; its association with GC-induced diabetes, hypertension, and dyslipidemia; and its effects on body image. Methods This prospective observational study spanned 24 weeks and targeted patients who received GC therapy at the University of Yamanashi Hospital from June 2020 to August 2022. The MLF was defined based on the following 3 factors: (1) an increase in facial measurement lengths, (2) subjective facial changes by patients' self-assessment using a visual analog scale; (3) objective and qualitative facial changes assessed by physicians. We examined the predisposing factors for MLF and the association of MLF with GC-induced diabetes, hypertension, dyslipidemia, and body image. Results The cumulative incidence rate of MLF at 24 weeks was 37.6%. Predisposing factors for MLF were an initial oral prednisolone dosage of ≥ 30 mg/day [odds ratio (OR) 63.91, 95% confidence interval (CI) 5.82-701.81] and female (OR 6.66, 95% CI 1.35-32.79). MLF showed a significant association with the onset of GC-induced diabetes (OR 6.58, 95% CI 1.25-34.74). MLF was also an independent factor contributing to body image disturbance (β = -18.94, P = .01). Conclusion MLF contributes to body image disturbance and is associated with the development of GC-induced diabetes; therefore, it is clinically important as a physical manifestation of GC therapy.
Collapse
Affiliation(s)
- Takahiro Tsutsumi
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daiki Nakagomi
- Department of Rheumatology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kei Kobayashi
- Department of Rheumatology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shunichiro Hanai
- Department of Rheumatology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshiaki Kobayashi
- Department of Rheumatology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryosuke Ito
- Department of Rheumatology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshihisa Ishii
- Department of Nephrology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroyuki Uchinuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Masashi Ichijo
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
25
|
Anekwe CV, Ahn YJ, Bajaj SS, Stanford FC. Pharmacotherapy causing weight gain and metabolic alteration in those with obesity and obesity-related conditions: A review. Ann N Y Acad Sci 2024; 1533:145-155. [PMID: 38385953 PMCID: PMC11057385 DOI: 10.1111/nyas.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review aims to summarize pharmacological interventions that may affect adiposity and metabolic equilibrium in individuals with obesity. Pharmacological therapy is frequently used to treat medical conditions that are both directly related to obesity (such as hypertension and type 2 diabetes) and indirectly related to obesity (such as asthma, insomnia, and type 1 diabetes). This pharmacological therapy may result in weight gain and alterations in the metabolic profile. Many medication classes are implicated in the pharmacologic causes of weight gain, including antipsychotics, glucocorticoids, beta-adrenergic blockers, tricyclic antidepressants, antihistamines, insulin, neuropathic agents, sleep agents, and steroids. This article describes the mechanisms of action and pathways of pharmacological interventions causing obesity.
Collapse
Affiliation(s)
- Chika V. Anekwe
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Metabolism Unit, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yoon Ji Ahn
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Metabolism Unit, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Fatima Cody Stanford
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, MGH Weight Center, Department of Internal Medicine-Division of Endocrinology-Neuroendocrine Unit and Department of Pediatrics-Division of Pediatric Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Boston, MA, USA
| |
Collapse
|
26
|
Zhang Y, Du C, Wang W, Qiao W, Li Y, Zhang Y, Sheng S, Zhou X, Zhang L, Fan H, Yu Y, Chen Y, Liao Y, Chen S, Chang Y. Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages. Nat Commun 2024; 15:1190. [PMID: 38331933 PMCID: PMC10853261 DOI: 10.1038/s41467-024-45477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yinliang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Wei Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yuhui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yong Chen
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China.
| | - Yongsheng Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
27
|
Rosolen APF, Ribeiro RA, Teleken JL, de Oliveira Chaves J, Padilha SC, Goes ME, Morari J, Boschero AC, Balbo SL, Bonfleur ML. Pubertal glyphosate-based herbicide exposure aggravates high-fat diet-induced obesity in female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15872-15884. [PMID: 38302837 DOI: 10.1007/s11356-024-32234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.
Collapse
Affiliation(s)
- Ana Paula Farina Rosolen
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas E da Saúde, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Jakeline Liara Teleken
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Janaina de Oliveira Chaves
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Suellen Camila Padilha
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Eduarda Goes
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Joseane Morari
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Sandra Lucinei Balbo
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Lúcia Bonfleur
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil.
| |
Collapse
|
28
|
Vali A, Dalle H, Loubaresse A, Gilleron J, Havis E, Garcia M, Beaupère C, Denis C, Roblot N, Poussin K, Ledent T, Bouillet B, Cormont M, Tanti JF, Capeau J, Vatier C, Fève B, Grosfeld A, Moldes M. Adipocyte Glucocorticoid Receptor Activation With High Glucocorticoid Doses Impairs Healthy Adipose Tissue Expansion by Repressing Angiogenesis. Diabetes 2024; 73:211-224. [PMID: 37963392 DOI: 10.2337/db23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Anna Vali
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Héloïse Dalle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Alya Loubaresse
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Jérôme Gilleron
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Emmanuelle Havis
- Sorbonne Université, CNRS, INSERM, Laboratoire de Biologie du Développement, Institut Biologie Paris Seine, Paris, France
| | - Marie Garcia
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Carine Beaupère
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Clémentine Denis
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Natacha Roblot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Karine Poussin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Tatiana Ledent
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | - Benjamin Bouillet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Mireille Cormont
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Jean-François Tanti
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Camille Vatier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Service Endocrinologie, CRMR PRISIS, Paris, France
| | - Bruno Fève
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Service Endocrinologie, CRMR PRISIS, Paris, France
| | - Alexandra Grosfeld
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| | - Marthe Moldes
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Sorbonne Université, INSERM, Institute of CardioMetabolism and Nutrition, Paris, France
| |
Collapse
|
29
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
30
|
Chua MWJ. All That Glitters Is Not Gold - The Patient with 'Excellent' Weight Loss Following Bariatric Surgery. Am J Med 2024; 137:e1-e2. [PMID: 37748743 DOI: 10.1016/j.amjmed.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Marvin Wei Jie Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, Singapore.
| |
Collapse
|
31
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
32
|
Halasz L, Divoux A, Sandor K, Erdos E, Daniel B, Smith SR, Osborne TF. An Atlas of Promoter Chromatin Modifications and HiChIP Regulatory Interactions in Human Subcutaneous Adipose-Derived Stem Cells. Int J Mol Sci 2023; 25:437. [PMID: 38203607 PMCID: PMC10778978 DOI: 10.3390/ijms25010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.
Collapse
Affiliation(s)
- Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Bence Daniel
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA;
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA (T.F.O.)
| |
Collapse
|
33
|
Kitani RA, Nicolaides NC, Mantzou A, Chatzidaki E, Michou M, Polychronaki N, Letsou K, Pervanidou P, Kanaka-Gantenbein C. Differences in segmental hair cortisol concentration analysis among children and adolescents with overweight and obesity, their parents, and normal weight peers. Hormones (Athens) 2023; 22:623-632. [PMID: 37688736 DOI: 10.1007/s42000-023-00482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE Dysregulation of the stress system via incidental long exposure to glucocorticoids (GCs) can lead to weight gain. In addition, family and maternal stress can also have an impact on children's weight. Hair is used in several studies to evaluate cortisol (GC) levels in children and adolescents with excess weight as a retrospective stress biomarker, depending on the hair length the cortisol measurement depicting different time periods. We aimed to investigate whether there is a difference among segmental hair cortisol concentration (HCC) analysis between children and adolescents with overweight and obesity, their mothers, and normal weight peers. METHODS This study recruited 25 children aged 6-14 years with a body mass index (BMI) ≥ 85th centile and their mothers, as well as 20 children of the same age with a BMI < 85th centile. Hair cortisol concentration was measured using electrochemiluminescence immunoassay. RESULTS Segmental HCC analysis exhibited gradually decreasing values in all participants as segments of hair were more distantly located from the scalp. A positive correlation was found between BMI z-score and HCC of the first segment of hair in children and adolescents with elevated BMI (b = 1.84, p = 0.033), as well as with maternal HCC / of an only child (b = 15.77, p = 0.01). There were no associations between mother-child dyads and children and adolescents of different BMI groups, even though minors with excess weight exhibited higher HCC levels in all segments of hair in comparison to their normal weight counterparts. CONCLUSIONS Hair cortisol of all participants exhibited a gradually declining concentration. More studies with larger samples and more sensitive methods of analysis are warranted in order to draw firmer conclusions.
Collapse
Affiliation(s)
- Rosa-Anna Kitani
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece.
| | - Nicolas C Nicolaides
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Aimilia Mantzou
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Evi Chatzidaki
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Michou
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece
- Human Ecology Laboratory, Department of Economics and Sustainable Development, Harokopio University, 17671, Athens, Greece
| | - Nektaria Polychronaki
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantina Letsou
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece
| | - Panagiota Pervanidou
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Postgraduate Course on "The Science of Stress and Health Promotion", Medical School, National and Kapodistrian University of Athens, Thivon and Levadias str, 11527, Athens, Greece
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
34
|
Kashiwabara L, Pirard L, Debier C, Crocker D, Khudyakov J. Effects of cortisol, epinephrine, and bisphenol contaminants on the transcriptional landscape of marine mammal blubber. Am J Physiol Regul Integr Comp Physiol 2023; 325:R504-R522. [PMID: 37602383 DOI: 10.1152/ajpregu.00165.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Top ocean predators such as marine mammals are threatened by intensifying anthropogenic activity, and understanding the combined effects of multiple stressors on their physiology is critical for conservation efforts. We investigated potential interactions between stress hormones and bisphenol contaminants in a model marine mammal, the northern elephant seal (NES). We exposed precision-cut adipose tissue slices (PCATS) from blubber of weaned NES pups to cortisol (CORT), epinephrine (EPI), bisphenol A (BPA), bisphenol S (BPS), or their combinations (CORT-EPI, BPA-EPI, and BPS-EPI) ex vivo and identified hundreds of genes that were differentially regulated in response to these treatments. CORT altered expression of genes associated with lipolysis and adipogenesis, whereas EPI and CORT-EPI-regulated genes were associated with responses to hormones, lipid and protein turnover, immune function, and transcriptional and epigenetic regulation of gene expression, suggesting that EPI has wide-ranging and prolonged impacts on the transcriptional landscape and function of blubber. Bisphenol treatments alone had a weak impact on gene expression compared with stress hormones. However, the combination of EPI with bisphenols altered expression of genes associated with inflammation, cell stress, DNA damage, regulation of nuclear hormone receptor activity, cell cycle, mitochondrial function, primary ciliogenesis, and lipid metabolism in blubber. Our results suggest that CORT, EPI, bisphenols, and their combinations impact cellular, immune, and metabolic homeostasis in marine mammal blubber, which may affect the ability of marine mammals to sustain prolonged fasting during reproduction and migration, renew tissues, and mount appropriate responses to immune challenges and additional stressors.
Collapse
Affiliation(s)
- Lauren Kashiwabara
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| | - Laura Pirard
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Daniel Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| | - Jane Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| |
Collapse
|
35
|
Blow TA, Murthy A, Grover R, Schwitzer E, Nanus DM, Halpenny D, Plodkowski AJ, Jones LW, Goncalves MD. Profiling of Skeletal Muscle and Adipose Tissue Depots in Men with Advanced Prostate Cancer Receiving Different Forms of Androgen Deprivation Therapy. EUR UROL SUPPL 2023; 57:1-7. [PMID: 38020528 PMCID: PMC10658404 DOI: 10.1016/j.euros.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) is a common treatment modality for men with prostate cancer. Increases in adipose tissue mass and decreases in skeletal muscle mass are known on-target adverse effects of standard ADT. The effects of newer agents such as abiraterone acetate (ABI) and enzalutamide (ENZA) on body composition and how these compare with standard luteinizing hormone-releasing hormone agonists (aLHRHs) are unclear. Objective To assess the effects of different forms of androgen deprivation therapy on body composition in men with prostate cancer. Design setting and participants Using a retrospective design, 229 patients receiving aLHRHs alone (n = 120) or in combination with ABI (n = 53) or ENZA (n = 56) were studied. Outcome measurements and statistical analysis Muscle, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) were assessed at baseline, 6 mo, and 18 mo after initiating therapy using a cross-sectional densitometry analysis performed on standard of care computed tomography images. Response trajectories for all treatment groups were calculated via a two-way analysis of variance post hoc test, for both within-group and between-group differences. Results and limitations Treatment with aLHRHs, ABI, and ENZA was associated with a median muscle volume loss of -1.4%, -4.8%, and -5.5% at 6 mo, and -7.1%, -8.1%, and -8.3% at 18 mo, respectively. Therapy with aLHRHs was associated with minimal changes in VAT (0.3% at 6 mo and -0.1% at 18 mo). ABI therapy was associated with significant increases in VAT at 6 mo (4.9%) but not at 18 mo (0.5%), and ENZA therapy was associated with significant decreases in VAT (-4.6% at 6 mo and -5.4% at 18 mo). With respect to SAT, treatment with aLHRHs was associated with increases over time (8.6% at 6 mo and 4.7% at 18 mo), ABI was associated with decreases over time (-3.6% at 6 mo and -6.8% at 18 mo), and ENZA had no clear effects (1.7% at 6 mo and 3.3% at 18 mo). Conclusions ADT regimens cause significant short-term losses in muscle mass, with the most rapid effects occurring with ABI and ENZA. The three regimens have disparate effects on SAT and VAT, suggesting distinct roles of androgens in these tissues. Patient summary Androgen deprivation therapy alters body composition in men with prostate cancer. Abiraterone and enzalutamide are associated with losses in muscle mass compared with luteinizing hormone-releasing hormone agonists. These treatments impact subcutaneous and visceral fat mass, suggesting distinct roles of androgens in these tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lee W. Jones
- Weill Cornell Medicine, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
36
|
Linden MA, Burke SJ, Pirzadah HA, Huang TY, Batdorf HM, Mohammed WK, Jones KA, Ghosh S, Campagna SR, Collier JJ, Noland RC. Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration. Mol Metab 2023; 74:101751. [PMID: 37295745 PMCID: PMC10300254 DOI: 10.1016/j.molmet.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent stimulation of lipolysis during glucocorticoid therapy plays a causative role in the development of iatrogenic diabetes. METHODS Male C57BL/6J mice were given 100 μg/mL corticosterone (Cort) in the drinking water for two weeks and were fed either normal chow (TekLad 8640) or the same diet supplemented with an adipose triglyceride lipase inhibitor (Atglistatin - 2 g/kg diet) to inhibit the first step of lipolysis. RESULTS Herein, we report for the first time that glucocorticoid administration promotes a unique state of substrate excess and energetic overload in skeletal muscle that primarily results from the rampant mobilization of endogenous fuels. Inhibiting lipolysis protected mice from Cort-induced gains in fat mass, excess ectopic lipid accrual, hyperinsulinemia, and hyperglycemia. The role lipolysis plays in Cort-mediated pathology appears to differ between tissues. Within skeletal muscle, Cort-induced lipolysis facilitated diversion of glucose-derived carbons toward the pentose phosphate and hexosamine biosynthesis pathways but contributed to <3% of the Cort-induced genomic adaptations. In contrast, Cort stimulation of lipolysis accounted for ∼35% of the genomic changes in the liver but had minimal impact on hepatic metabolites reported. CONCLUSIONS These data support the idea that activation of lipolysis plays a causal role in the progression toward iatrogenic diabetes during glucocorticoid therapy with differential impact on skeletal muscle and liver.
Collapse
Affiliation(s)
- Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Exercise and Health Sciences, University of Massachusetts-Boston, Boston, MA, 02125, USA.
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Humza A Pirzadah
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Walid K Mohammed
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Katarina A Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
37
|
O'Mahony AT, Henry PJ, Coghlan P, Waldron M, Crowley C, Ryan D, Moore N, Bennett DM, O'Connor OJ, Maher MM, Henry MT. Analytic Morphomics in Myositis-Related Interstitial Lung Disease. Lung 2023; 201:345-353. [PMID: 37458801 PMCID: PMC10444650 DOI: 10.1007/s00408-023-00637-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Interstitial lung disease (ILD) is the most common non-musculoskeletal manifestation of idiopathic inflammatory myopathies (IIM). Identification of body composition change may enable early intervention to improve prognosis. We investigated muscle quantity and quality derived from cross-sectional imaging in IIM, and its relationship to ILD severity. METHODS A retrospective cohort study assessing IIM of ILD patients (n = 31) was conducted. Two datasets separated in time were collected, containing demographics, biochemical data, pulmonary function testing and thoracic CT data. Morphomic analysis of muscle quantity (cross-sectional area) and quality (density in Hounsfield Units) on thoracic CT were analysed utilising a web-based tool allowing segmentation of muscle and fat. Bilateral erector spinae and pectoralis muscle (ESM&PM) were measured at defined vertebral levels. RESULTS FVC and DLCO decreased but within acceptable limits of treatment response (FVC: 83.7-78.7%, p < 0.05, DLCO 63.4-60.6%, p < 0.05). The cross-sectional area of the PM and ESM increased (PM: 39.8 to 40.7 cm2, p = 0.491; ESM: 35.2 to 39.5 cm2, p = 0.098). Density significantly fell for both the PM and ESM (PM: 35.3-31 HU, p < 0.05; ESM: 38-33.7, p < 0.05). Subcutaneous fat area increased from 103.9 to 136.1 cm2 (p < 0.05), while the visceral fat area increased but not reaching statistical significance. The change in PM density between time points demonstrated an inverse correlation with DLCO (p < 0.05, R = - 0.49). CONCLUSION Patients with IIM ILD demonstrated significant body composition changes on CT imaging unlikely to be detected by traditional measurement tools. An increase in muscle area with an inverse decrease in density suggests poor muscle quality.
Collapse
Affiliation(s)
| | | | - Patrick Coghlan
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Michael Waldron
- Department of Radiology, Cork University Hospital, Cork, Ireland.
- Department of Radiology, University College Cork, Cork, Ireland.
| | - Claire Crowley
- Department of Radiology, Mercy University Hospital, Cork, Ireland
| | - David Ryan
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Niamh Moore
- Department of Radiography, School of Medicine, University College Cork, Cork, Ireland
| | | | - Owen J O'Connor
- Department of Radiology, University College Cork, Cork, Ireland
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, Cork, Ireland
- Department of Radiology, University College Cork, Cork, Ireland
- Department of Radiology, Mercy University Hospital, Cork, Ireland
| | - Michael T Henry
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| |
Collapse
|
38
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
39
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
40
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
41
|
Christakoudi S, Tsilidis KK, Dossus L, Rinaldi S, Weiderpass E, Antoniussen CS, Dahm CC, Tjønneland A, Mellemkjær L, Katzke V, Kaaks R, Schulze MB, Masala G, Grioni S, Panico S, Tumino R, Sacerdote C, May AM, Monninkhof EM, Quirós JR, Bonet C, Sánchez MJ, Amiano P, Chirlaque MD, Guevara M, Rosendahl AH, Stocks T, Perez-Cornago A, Tin Tin S, Heath AK, Aglago EK, Peruchet-Noray L, Freisling H, Riboli E. A body shape index (ABSI) is associated inversely with post-menopausal progesterone-receptor-negative breast cancer risk in a large European cohort. BMC Cancer 2023; 23:562. [PMID: 37337133 PMCID: PMC10278318 DOI: 10.1186/s12885-023-11056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Associations of body shape with breast cancer risk, independent of body size, are unclear because waist and hip circumferences are correlated strongly positively with body mass index (BMI). METHODS We evaluated body shape with the allometric "a body shape index" (ABSI) and hip index (HI), which compare waist and hip circumferences, correspondingly, among individuals with the same weight and height. We examined associations of ABSI, HI, and BMI (per one standard deviation increment) with breast cancer overall, and according to menopausal status at baseline, age at diagnosis, and oestrogen and progesterone receptor status (ER+/-PR+/-) in multivariable Cox proportional hazards models using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. RESULTS During a mean follow-up of 14.0 years, 9011 incident breast cancers were diagnosed among 218,276 women. Although there was little evidence for association of ABSI with breast cancer overall (hazard ratio HR = 0.984; 95% confidence interval: 0.961-1.007), we found borderline inverse associations for post-menopausal women (HR = 0.971; 0.942-1.000; n = 5268 cases) and breast cancers diagnosed at age ≥ 55 years (HR = 0.976; 0.951-1.002; n = 7043) and clear inverse associations for ER + PR- subtypes (HR = 0.894; 0.822-0.971; n = 726) and ER-PR- subtypes (HR = 0.906; 0.835-0.983 n = 759). There were no material associations with HI. BMI was associated strongly positively with breast cancer overall (HR = 1.074; 1.049-1.098), for post-menopausal women (HR = 1.117; 1.085-1.150), for cancers diagnosed at age ≥ 55 years (HR = 1.104; 1.076-1.132), and for ER + PR + subtypes (HR = 1.122; 1.080-1.165; n = 3101), but not for PR- subtypes. CONCLUSIONS In the EPIC cohort, abdominal obesity evaluated with ABSI was not associated with breast cancer risk overall but was associated inversely with the risk of post-menopausal PR- breast cancer. Our findings require validation in other cohorts and with a larger number of PR- breast cancer cases.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Laure Dossus
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Christian S Antoniussen
- Department of Public Health, Aarhus University, Bartholins Allé 2, Aarhus C, DK-8000, Denmark
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Bartholins Allé 2, Aarhus C, DK-8000, Denmark
| | - Anne Tjønneland
- Diet, Cancer and Health, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lene Mellemkjær
- Diet, Cancer and Health, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, 14558, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, Milano, 20133, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association Epidemiological Research AIRE - ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, Turin, 10126, Italy
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, Utrecht, 3508 GA, Netherlands
| | - Evelyn M Monninkhof
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, Utrecht, 3508 GA, Netherlands
| | | | - Catalina Bonet
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, 18011, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, 18071, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Tanja Stocks
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Laia Peruchet-Noray
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Heinz Freisling
- International Agency for Research on Cancer (IARC/WHO), 25 avenue Tony Garnier, Lyon, CS 90627, 69366 LYON CEDEX 07, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
42
|
Al-Alem U, Rauscher GH, Alem QA, Kajdacsy-Balla A, Mahmoud AM. Prognostic Value of SGK1 and Bcl-2 in Invasive Breast Cancer. Cancers (Basel) 2023; 15:3151. [PMID: 37370761 DOI: 10.3390/cancers15123151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
It is crucial to understand molecular alterations in breast cancer and how they relate to clinicopathologic factors. We have previously shown that the glucocorticoid receptor (GCR) protein expression was reduced in invasive breast carcinoma compared to normal breast tissue. Glucocorticoids, signaling through the GCR, regulate several cellular processes via downstream targets such as serum/glucocorticoid-regulated kinase 1 (SGK1) and B-cell lymphoma 2 (Bcl-2). We measured the expression of SGK1 and Bcl-2, in respective breast cancer tissue arrays, from a multiracial cohort of breast cancer patients. Higher cytoplasmic SGK1 staining was stronger in breast cancer tissue compared to normal tissue, especially in hormone receptor-negative cases. Conversely, the expression of cytoplasmic Bcl-2 was reduced in breast cancer compared to normal tissue, especially in hormone receptor-negative cases. Bcl-2 staining was associated with the self-reported racial/ethnic category, an earlier clinical stage, a lower histological grade, and a higher survival rate. Bcl-2 expression was associated with longer survival in models adjusted for age and race (HR = 0.32, 95% CI: 0.15, 0.65), and Bcl-2 expression remained strongly positively associated with protection from breast cancer death, with additional adjustments for ER/PR status (HR = 0.41, 95% CI: 0.2, 0.85). SGK1 and Bcl-2 may play biological roles in breast cancer development and/or progression.
Collapse
Affiliation(s)
- Umaima Al-Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Garth H Rauscher
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qais Al Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Dwyer AR, Perez Kerkvliet C, Truong TH, Hagen KM, Krutilina RI, Parke DN, Oakley RH, Liddle C, Cidlowski JA, Seagroves TN, Lange CA. Glucocorticoid Receptors Drive Breast Cancer Cell Migration and Metabolic Reprogramming via PDK4. Endocrinology 2023; 164:bqad083. [PMID: 37224504 PMCID: PMC10251300 DOI: 10.1210/endocr/bqad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/08/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Corticosteroids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and are routinely prescribed to breast cancer patients undergoing chemotherapy treatment to alleviate side effects. Triple-negative breast cancers (TNBCs) account for 15% to 20% of diagnoses and lack expression of estrogen and progesterone receptors as well as amplified HER2, but they often express high GR levels. GR is a mediator of TNBC progression to advanced metastatic disease; however, the mechanisms underpinning this transition to more aggressive behavior remain elusive. We previously showed that tissue/cellular stress (hypoxia, chemotherapies) as well as factors in the tumor microenvironment (transforming growth factor β [TGF-β], hepatocyte growth factor [HGF]) activate p38 mitogen-activated protein kinase (MAPK), which phosphorylates GR on Ser134. In the absence of ligand, pSer134-GR further upregulates genes important for responses to cellular stress, including key components of the p38 MAPK pathway. Herein, we show that pSer134-GR is required for TNBC metastatic colonization to the lungs of female mice. To understand the mechanisms of pSer134-GR action in the presence of GR agonists, we examined glucocorticoid-driven transcriptomes in CRISPR knock-in models of TNBC cells expressing wild-type or phospho-mutant (S134A) GR. We identified dexamethasone- and pSer134-GR-dependent regulation of specific gene sets controlling TNBC migration (NEDD9, CSF1, RUNX3) and metabolic adaptation (PDK4, PGK1, PFKFB4). TNBC cells harboring S134A-GR displayed metabolic reprogramming that was phenocopied by pyruvate dehydrogenase kinase 4 (PDK4) knockdown. PDK4 knockdown or chemical inhibition also blocked cancer cell migration. Our results reveal a convergence of GR agonists (ie, host stress) with cellular stress signaling whereby pSer134-GR critically regulates TNBC metabolism, an exploitable target for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deanna N Parke
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Robert H Oakley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and University of Sydney School of Medicine, Darlington, NSW, 2006, Australia
| | - John A Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
44
|
Baez AS, Ortiz-Whittingham LR, Tarfa H, Osei Baah F, Thompson K, Baumer Y, Powell-Wiley TM. Social determinants of health, health disparities, and adiposity. Prog Cardiovasc Dis 2023; 78:17-26. [PMID: 37178992 PMCID: PMC10330861 DOI: 10.1016/j.pcad.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Social determinants of health (SDoH), or the socioeconomic, environmental, and psychosocial conditions in which individuals spend their daily lives, substantially influence obesity as a cardiovascular disease (CVD) risk factor. The coronavirus disease 2019 (COVID-19) pandemic highlighted the converging epidemics of obesity, CVD, and social inequities globally. Obesity and CVD serve as independent risk factors for COVID-19 severity and lower-resourced populations most impacted by adverse SDoH have the highest COVID-19 mortality rates. Better understanding the interplay between social and biologic factors that contribute to obesity-related CVD disparities are important to equitably address obesity across populations. Despite efforts to investigate SDoH and their biologic effects as drivers of health disparities, the connections between SDoH and obesity remain incompletely understood. This review aims to highlight the relationships between socioeconomic, environmental, and psychosocial factors and obesity. We also present potential biologic factors that may play a role in the biology of adversity, or link SDoH to adiposity and poor adipo-cardiology outcomes. Finally, we provide evidence for multi-level obesity interventions targeting multiple aspects of SDoH. Throughout, we emphasize areas for future research to tailor health equity-promoting interventions across populations to reduce obesity and obesity-related CVD disparities.
Collapse
Affiliation(s)
- Andrew S Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Lola R Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Hannatu Tarfa
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Keitra Thompson
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10-CRC, 5-5330, 10 Center Drive, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Sumińska M, Podgórski R, Fichna P, Mazur A, Fichna M. The Impact of Obesity on the Excretion of Steroid Metabolites in Boys and Girls: A Comparison with Normal-Weight Children. Nutrients 2023; 15:1734. [PMID: 37049573 PMCID: PMC10097123 DOI: 10.3390/nu15071734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity in childhood is associated with several steroid changes, which result from excess body mass. The aim of this study was to evaluate steroid metabolism in children with obesity compared with those with normal weight, especially in relation to sex and puberty progress. We analyzed the clinical data of 191 children, aged between 5 and 18 years, with 115 affected (64 girls and 51 boys) and 76 unaffected (35 girls and 41 boys) by obesity. Routine clinical assessment and pubertal stage evaluation based upon Tanner's scale were performed. In addition, to evaluate the impact of puberty, children with pre-adolescence and advanced puberty were divided into separate subgroups. Then, 24 h urine steroid excretion profiles were analyzed by gas chromatography/mass spectrometry. Significant differences in the excretion of steroid metabolites were found between normal weight children and children with obesity, especially in the prepubertal cohort. In this group, we observed enhanced activity in all the pathways of adrenal steroidogenesis. Raised excretion of mineralocorticoid derivatives such as tetrahydro-11-deoxycorticosterone, tetrahydrocorticosterone, and 5α-tetrahydrocorticosterone supported increased activity of this track. No significant differences were detected in the excreted free forms of cortisol and cortisone, while the excretion of their characteristic tetrahydro-derivatives was different. In pre-adolescent children with obesity, α-cortol and especially α-cortolone appeared to be excreted more abundantly than β-cortol or β-cortolone. Furthermore, in children with obesity, we observed elevated androgen excretion with an enhanced backdoor pathway. As puberty progressed, remarkable reduction in the differences between adolescents with and without obesity was demonstrated.
Collapse
Affiliation(s)
- Marta Sumińska
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Rafał Podgórski
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Department of Biochemistry, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Artur Mazur
- Department of Pediatrics, Childhood Endocrinology and Diabetes, Collegium of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
46
|
Hashim KN, Chin KY, Ahmad F. The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet. Molecules 2023; 28:2790. [PMID: 36985762 PMCID: PMC10056699 DOI: 10.3390/molecules28062790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
Collapse
Affiliation(s)
- Khairun-Nisa Hashim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
47
|
Chen W, Meng F, Zeng X, Cao X, Bu G, Du X, Yu G, Kong F, Li Y, Gan T, Han X. Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice. Int J Mol Sci 2023; 24:ijms24032308. [PMID: 36768630 PMCID: PMC9916485 DOI: 10.3390/ijms24032308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.
Collapse
|
48
|
de Steenwinkel FDO, Dolhain RJEM, Hazes JMW, Hokken-Koelega ACS. Does prednisone use in pregnant women with rheumatoid arthritis induce insulin resistance in the offspring? Clin Rheumatol 2023; 42:47-54. [PMID: 36040672 PMCID: PMC9823030 DOI: 10.1007/s10067-022-06347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The use of long-term corticosteroids during pregnancy has been growing over the past decades. Corticosteroids can be given when an auto-inflammatory disease like rheumatoid arthritis (RA) is too active. Several studies have shown that long-term corticosteroids use in pregnancy is associated with maternal and fetal adverse outcomes, like preeclampsia, shorter gestational age, lower birth weight, and rapid catch-up growth. These last two outcomes could influence the insulin resistance later in life. Our objective was to investigate whether prednisone use in pregnant women with RA induces insulin resistance in offspring. METHODS One hundred three children were included after their mother had participated in a prospective cohort study on RA and pregnancy. Forty-two children were in utero exposed to prednisone and 61 were non-exposed. To assess insulin resistance, we measured homeostasis model of assessment insulin resistance (HOMA-IR) and serum adiponectin and lipid levels, corrected for body fat distribution. RESULTS An average of 6 mg prednisone on a daily use gave no difference in mean HOMA-IR (SD) between the children who were prednisone-exposed in utero (1.10 (0.84)) and those non-exposed (1.09 (0.49)). No difference was found in mean adiponectin level, body fat distribution, or lipid levels such as total cholesterol, fasting triglyceride, or high-density lipoprotein. CONCLUSION Children who are prednisone-exposed in utero (low dose) have no increased risk for insulin resistance at the age of approximately 7 years. These findings are reassuring because the prednisone use during pregnancy is increasing worldwide. Further research has to be performed to evaluate if the insulin resistance remains absent in the future. Key Points • What is already known on this topic-long-term corticosteroids use in pregnancy is associated with fetal adverse outcomes, like lower birth weight and rapid catch-up growth which can influence the insulin resistance later in life. • What this study adds-long-term corticosteroids use in pregnant women with rheumatoid arthritis has no increased risk for insulin resistance in the offspring. • How this study might affect research, practice, or policy-findings are reassuring because prednisone use during pregnancy is increasing worldwide. Further research should evaluate if the insulin resistance remains absent in the future.
Collapse
Affiliation(s)
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Johanna M W Hazes
- Department of Rheumatology, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Paediatrics, Subdivision of Endocrinology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Mitić R, Cantoni F, Börlin CS, Post MJ, Jackisch L. A simplified and defined serum-free medium for cultivating fat across species. iScience 2022; 26:105822. [PMID: 36636339 PMCID: PMC9830212 DOI: 10.1016/j.isci.2022.105822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cultivated meat is a promising technology with the potential to mitigate the ethical and environmental issues associated with traditional meat. Fat plays a key role in the meat flavor; therefore, development of suitable adipogenic protocols for livestock is essential. The traditional adipogenic cocktail containing IBMX, dexamethasone, insulin and rosiglitazone is not food-compatible. Here, we demonstrate that of the four inducers only insulin and rosiglitazone are necessary in both serum-free (DMAD) and serum-containing media, with DMAD outperforming FBS. Two glucocorticoid receptor activators, progesterone and hydrocortisone, found in DMAD and FBS, affect differentiation homogeneity, without playing an essential role in activating adipogenic genes. Importantly, this protocol leads to mature adipocytes in 3D culture. This was demonstrated in both media types and in four species: ruminant and monogastric. We therefore propose a simplified one-step adipogenic protocol which, given the replacement of rosiglitazone by a food-compatible PPARγ agonist, is suitable for making cultivated fat.
Collapse
Affiliation(s)
- Rada Mitić
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | | | | | - Mark J. Post
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | - Laura Jackisch
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Corresponding author
| |
Collapse
|
50
|
Kim HJ, Kim SW, Lee SH, Jung DW, Williams DR. Inhibiting 5-lipoxygenase prevents skeletal muscle atrophy by targeting organogenesis signalling and insulin-like growth factor-1. J Cachexia Sarcopenia Muscle 2022; 13:3062-3077. [PMID: 36221153 PMCID: PMC9745465 DOI: 10.1002/jcsm.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy can occur in response to numerous factors, such as ageing and certain medications, and produces a major socio-economic burden. At present, there are no approved drugs for treating skeletal muscle atrophy. Arachidonate 5-lipoxygenase (Alox5) is a drug target for a number of diseases. However, pharmacological targeting of Alox5, and its role in skeletal muscle atrophy, is unclear. METHODS The potential effects of gene knockdown and pharmacological targeting of Alox5 on skeletal muscle atrophy were investigated using cell-based models, animal models and human skeletal muscle primary cells. Malotilate, a clinically safe drug developed for enhancing liver regeneration and Alox5 inhibitor, was investigated as a repurposing candidate. Mechanism(s) of action in skeletal muscle atrophy was assessed by measuring the expression level or activation status of key regulatory pathways and validated using gene knockdown and RNA sequencing. RESULTS Myotubes treated with the atrophy-inducing glucocorticoid, dexamethasone, were protected from catabolic responses by treatment with malotilate (+41.29%, P < 0.01). Similar anti-atrophy effects were achieved by gene knockdown of Alox5 (+30.4%, P < 0.05). Malotilate produced anti-atrophy effects without affecting the myogenic differentiation programme. In an in vivo model of skeletal muscle atrophy, malotilate treatment preserved muscle force/strength (grip strength: +35.72%, latency to fall: +553.1%, P < 0.05), increased mass and fibre cross-sectional area (quadriceps: +23.72%, soleus: +33.3%, P < 0.01) and down-regulated atrogene expression (Atrogin-1: -61.58%, Murf-1: -66.06%, P < 0.01). Similar, beneficial effects of malotilate treatment were observed in an ageing muscle model, which also showed the preservation of fast-twitch fibres (Type 2a: +56.48%, Type 2b: +37.32%, P < 0.01). Leukotriene B4, a product of Alox5 activity with inflammatory and catabolic functions, was found to be elevated in skeletal muscle undergoing atrophy (quadriceps: +224.4%, P < 0.001). Cellular transcriptome analysis showed that targeting Alox5 up-regulated biological processes regulating organogenesis and increased the expression of insulin-like growth factor-1, a key anti-atrophy hormone (+226.5%, P < 0.05). Interestingly, these effects were restricted to the atrophy condition and not observed in normal skeletal muscle cultures with Alox5 inhibition. Human myotubes were also protected from atrophy by pharmacological targeting of Alox5 (+23.68%, P < 0.05). CONCLUSIONS These results shed new light on novel drug targets and mechanisms underpinning skeletal muscle atrophy. Alox5 is a regulator and drug target for muscle atrophy, and malotilate is an attractive compound for repurposing studies to treat this disease.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sang-Hoon Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|