1
|
Li P, Ye H, Guo F, Zheng J, Shen W, Xie D, Shi S, Zhang Y, Fa Y, Zhao Z. Construction of cynomolgus monkey type 2 diabetes models by combining genetic prediction model with high-energy diet. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167616. [PMID: 39672349 DOI: 10.1016/j.bbadis.2024.167616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is a significant health concern. Research using non-human primates, which develop T2D with similar symptoms and pancreatic changes as humans, is crucial but limited by long timelines and low success rates. RESULTS We targeted capture sequenced 61 normal and 81 T2D cynomolgus monkeys using a primer panel that captured 269 potential regulatory regions potentially associated with T2D in the cynomolgus monkey genome. 80 variants were identified to be associated with T2D and were used to construct a genetic prediction model. Among 8 machine learning algorithms tested, we found that the best prediction performance was achieve when the model using support vector machine with polynomial kernel as the machine learning algorithm (AUC = 0.933). Including age and sex in this model did not significantly improve the prediction performance. Using the genetic prediction model, we further screened 22 monkeys and found 13 were high risk while 9 were low risk. After feeding the 22 monkeys with high-energy food for 32 weeks, we found all the 9 low risk monkeys did not develop T2D while 4 out of 13 high risk monkeys (31 %) develop T2D. CONCLUSIONS This method greatly increased the success rate of establishing T2D monkey models while decreased the time needed compared to traditional methods. Therefore, we developed a new high-efficiency method to establish T2D monkey models by combining the genetic prediction model and high-energy diet, which will greatly contribute to the research on the clinical characteristics, pathogenesis, complications and potential new treatments.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Huahu Ye
- Academy of Military Medical Sciences, Beijing, China
| | - Feng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianhua Zheng
- Academy of Military Medical Sciences, Beijing, China
| | - Wenlong Shen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Dejian Xie
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Yunzhi Fa
- Academy of Military Medical Sciences, Beijing, China
| | - Zhihu Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Tian C, Yang Q, Lv H, Yue F. Integrative analysis of gut microbiota and fecal metabolites in cynomolgus monkeys with spontaneous type 2 diabetes mellitus. Microb Pathog 2025; 199:107228. [PMID: 39675442 DOI: 10.1016/j.micpath.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/16/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Accumulating evidence suggests that gut microbiota (GM) is clearly associated with the pathogenesis of type 2 diabetes mellitus (T2DM). However, the underlying mechanism of GM dysbiosis participates the onset of T2DM is not fully understood. The spontaneous T2DM cynomolgus monkeys are a powerful model for understanding the pathological mechanism of T2DM. METHODS Fecal samples were collected from 7 spontaneous T2DM cynomolgus monkeys and 7 healthy controls matched with similar age for multi-omics analysis, including shotgun metagenomic sequencing, untargeted metabolomics profiling, and targeted metabolomics focusing on short chain fatty acids (SCFAs). Lastly, the correlation network between differential gut microbial species and fecal metabolites was performed to explore the potential biomarkers of T2DM. RESULTS We found that 17 low-abundance species showed significant differences between the two groups. Analysis of gut microbial functions revealed that 16 KEGG pathways and 51 KEGG modules were significantly different in the two groups. Meanwhile, 276 fecal DEMs were identified, and these DEMs were enriched in the KEGG pathways, including Nucleotide metabolism, ABC transporters, Purine metabolism and so on. Lastly, Spearman correlation network analysis showed that the species of Anaerostipes_hadrus and Lachnoanaerobaculum_umeaense, and the metabolites including Glycerophospho-N-palmitoyl ethanolamine and 2-Hydroxycinnamic acid might serve as potential biomarkers of T2DM. CONCLUSIONS Our study provides novel insights into specific alterations in the GM composition, gene functions, and fecal metabolic profiles in spontaneous T2DM cynomolgus monkeys.
Collapse
Affiliation(s)
- Chaoyang Tian
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, China.
| | - Qunhui Yang
- Hainan Jingang Biotech Co., Ltd, Haikou, 570100, China
| | - Haizhou Lv
- Hainan Jingang Biotech Co., Ltd, Haikou, 570100, China
| | - Feng Yue
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Prajapati AK, Shah G. Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 2024; 76:141. [PMID: 39432214 PMCID: PMC11493927 DOI: 10.1186/s43044-024-00568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression. Pressure overload and volume overload are common etiologies of HF, with pressure overload often stemming from conditions like hypertension, leading to left ventricular hypertrophy and fibrosis. In contrast, volume overload can arise from chronic valvular regurgitant disease, also inducing left ventricular hypertrophy. MAIN BODY In vitro cell culture techniques serve as vital tools in studying HF pathophysiology, allowing researchers to investigate cellular responses and potential therapeutic targets. Additionally, biomarkers, measurable biological characteristics, play a crucial role in diagnosing and predicting HF. Some notable biomarkers include adrenomedullin, B-type natriuretic peptide, copeptin, galectin-3, interleukin-6, matrix metalloproteinases (MMPs), midregional pro-atrial natriuretic peptide, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide and tissue inhibitors of metalloproteinases (TIMPs). These biomarkers aid in HF diagnosis, assessing its severity, and monitoring treatment response, contributing to a deeper understanding of the disease and potentially leading to improved management strategies and outcomes. CONCLUSIONS This review provides comprehensive insights into various in vivo models of HF, commonly utilized cell lines in HF research, and pivotal biomarkers with diagnostic relevance for HF. By synthesizing this information, researchers gain valuable resources to further explore HF pathogenesis, identify novel therapeutic targets, and enhance diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Anil Kumar Prajapati
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Gaurang Shah
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Liu X, Zheng H, Wang F, Atia T, Fan B, Wang Q. Developments in the study of Chinese herbal medicine's assessment index and action mechanism for diabetes mellitus. Animal Model Exp Med 2024; 7:433-443. [PMID: 38973219 PMCID: PMC11369031 DOI: 10.1002/ame2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.
Collapse
Affiliation(s)
- Xin‐Yue Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Han‐Wen Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Feng‐Zhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tul‐Wahab Atia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
5
|
Huang H, Pu J, Zhou Y, Fan Y, Zhang Y, Li Y, Chen Y, Wang Y, Yu X, Dmitry B, Zhou Z, Wang J. A spontaneous hyperglycaemic cynomolgus monkey presents cognitive deficits, neurological dysfunction and cataract. Clin Exp Pharmacol Physiol 2024; 51:e13863. [PMID: 38650114 DOI: 10.1111/1440-1681.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.
Collapse
Affiliation(s)
- Hongdi Huang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jianglin Pu
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Yufang Zhou
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Fan
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yali Zhang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yanling Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yangzhuo Chen
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaomei Yu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bulgin Dmitry
- Research Institute of Medical Primatology, National Research Centre "Kurchatov Institute", Sochi, Russia
| | - Zhu Zhou
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Capitanio JP, Del Rosso LA, Yee J, Lemoy MJMF. An analysis of risk factors for spontaneously occurring type 2 diabetes mellitus in rhesus macaques (Macaca mulatta). J Med Primatol 2024; 53:e12695. [PMID: 38454195 PMCID: PMC10936567 DOI: 10.1111/jmp.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2D) is a chronic disease with a high prevalence worldwide. Human literature suggests factors beyond well-known risk factors (e.g., age, body mass index) for T2D: cytomegalovirus serostatus, season of birth, maternal age, birth weight, and depression. Nothing is known, however, about whether these variables are influential in primate models of T2D. METHODS Using a retrospective methodology, we identified 22 cases of spontaneously occurring T2D among rhesus monkeys at our facility. A control sample of n = 1199 was identified. RESULTS Animals born to mothers that were ≤5.5 years of age, and animals that showed heightened Activity and Emotionality in response to brief separation in infancy, had a greater risk for development of T2D in adulthood. CONCLUSIONS Knowledge of additional risk factors for T2D could help colony managers better identify at-risk animals and enable diabetes researchers to select animals that might be more responsive to their manipulations.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, California, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, California, USA
| | - JoAnn Yee
- California National Primate Research Center, University of California, Davis, California, USA
| | | |
Collapse
|
7
|
Yu D, Wan H, Tong C, Guang L, Chen G, Su J, Zhang L, Wang Y, Xiao Z, Zhai J, Yan L, Ma W, Liang K, Liu T, Wang Y, Peng Z, Luo L, Yu R, Li W, Qi H, Wang H, Shyh-Chang N. A multi-tissue metabolome atlas of primate pregnancy. Cell 2024; 187:764-781.e14. [PMID: 38306985 DOI: 10.1016/j.cell.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lu Guang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gang Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jiali Su
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lan Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wenwu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kun Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Taoyan Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuefan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehang Peng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ruoxuan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
8
|
Ruggiero AD, Vemuri R, Blawas M, Long M, DeStephanis D, Williams AG, Chen H, Justice JN, Macauley SL, Day SM, Kavanagh K. Long-term dasatinib plus quercetin effects on aging outcomes and inflammation in nonhuman primates: implications for senolytic clinical trial design. GeroScience 2023; 45:2785-2803. [PMID: 37261678 PMCID: PMC10643765 DOI: 10.1007/s11357-023-00830-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Cellular senescence increases with aging and results in secretion of pro-inflammatory factors that induce local and systemic tissue dysfunction. We conducted the first preclinical trial in a relevant middle-aged nonhuman primate (NHP) model to allow estimation of the main translatable effects of the senolytic combination dasatinib (D) and quercetin (Q), with and without caloric restriction (CR). A multi-systemic survey of age-related changes, including those on immune cells, adipose tissue, the microbiome, and biomarkers of systemic organ and metabolic health are reported. Age-, weight-, sex-, and glycemic control-matched NHPs (D + Q, n = 9; vehicle [VEH] n = 7) received two consecutive days of D + Q (5 mg/kg + 50 mg/kg) monthly for 6 months, where in month six, a 10% CR was implemented in both D + Q and VEH NHPs to induce equal weight reductions. D + Q reduced senescence marker gene expressions in adipose tissue and circulating PAI-1 and MMP-9. Improvements were observed in immune cell types with significant anti-inflammatory shifts and reductions in microbial translocation biomarkers, despite stable microbiomes. Blood urea nitrogen showed robust improvements with D + Q. CR resulted in significant positive body composition changes in both groups with further improvement in immune cell profiles and decreased GDF15 (p = 0.05), and the interaction of D + Q and CR dramatically reduced glycosylated hemoglobin A1c (p = 0.03). This work indicates that 6 months of intermittent D + Q exposure is safe and may combat inflammaging via immune benefits and improved intestinal barrier function. We also saw renal benefits, and with CR, improved metabolic health. These data are intended to provide direction for the design of larger controlled intervention trials in older patients.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Megan Blawas
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masha Long
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Abigail G Williams
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shannon L Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven M Day
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
9
|
Zhai L, Xiao H, Lin C, Wong HLX, Lam YY, Gong M, Wu G, Ning Z, Huang C, Zhang Y, Yang C, Luo J, Zhang L, Zhao L, Zhang C, Lau JYN, Lu A, Lau LT, Jia W, Zhao L, Bian ZX. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat Commun 2023; 14:4986. [PMID: 37591886 PMCID: PMC10435514 DOI: 10.1038/s41467-023-40552-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jingyuan Luo
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok-Ting Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Jia
- Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
10
|
AlHmoud IW, Walmer RW, Kavanagh K, Chang EH, Johnson KA, Bikdash M. Classifying Kidney Disease in a Vervet Model Using Spatially Encoded Contrast-Enhanced Ultrasound Perfusion Parameters. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:761-772. [PMID: 36463005 PMCID: PMC11217529 DOI: 10.1016/j.ultrasmedbio.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
Early stages of diabetic kidney disease (DKD) are difficult to diagnose in patients with type 2 diabetes. This work was aimed at identifying contrast-enhanced ultrasound (CEUS) perfusion parameters, a microcirculatory biomarker indicative of early DKD progression. CEUS kidney flash-replenishment data were acquired in control, insulin resistant and diabetic vervet monkeys (N = 16). By use of a mono-exponential model, time-intensity curve parameters related to blood volume (A), velocity (β) and flow rate (perfusion index [PI]) were extracted from 10 concentric kidney layers to study spatial perfusion patterns that could serve as strong indicators of disease. Mean squared error (MSE) was used to assess model performance. Features calculated from the perfusion parameters were inputs for the linear regression models to determine which features could distinguish between cohorts. The mono-exponential model performed well, with average MSEs (±standard deviation) of 0.0254 (±0.0210), 0.0321 (±0.0242) and 0.0287 (±0.0130) for the control, insulin resistant and diabetic cohorts, respectively. Perfusion index features, with blood pressure, were the best classifiers between cohorts (p < 0.05). CEUS has the potential to detect early microvascular changes, providing insight into disease-related structural changes in the kidney. The sensitivity of this technique should be explored further by assessing various stages of DKD.
Collapse
Affiliation(s)
- Issa W AlHmoud
- Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Rachel W Walmer
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA; College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Emily H Chang
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kennita A Johnson
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.
| | - Marwan Bikdash
- Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
11
|
Tian C, Qiu M, Lv H, Yue F, Zhou F. Preliminary serum and fecal metabolomics study of spontaneously diabetic cynomolgus monkeys based on LC-MS/MS. J Med Primatol 2022; 51:355-366. [PMID: 35993379 DOI: 10.1111/jmp.12610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Using untargeted metabolomics techniques, the goal of the study is to differentially screen serum and feces metabolite profiles of spontaneously diabetic and healthy cynomolgus monkeys, to explore potential serum and fecal biomarkers and analyze affected metabolic pathways. METHODS We adopted the diagnostic criteria for T2DM recommended by ADA for humans: FSG ≥7.0 mmol/L (126 mg/dl) and HbA1c ≥ 6.5%. The serum and feces samples from three diagnosed spontaneously T2DM cynomolgus monkeys and 11 age-matched healthy controls were enrolled in the study. We employed LC-MS/MS-based untargeted metabolomic methods to reveal the differential metabolite profiles of serum and feces samples between the two groups and to analyze the affected metabolic pathways in MetaboAnalyst 5.0 based on KEGG library. RESULTS Six and 44 differential metabolites were identified in serum and feces samples, respectively, and the corresponding affected commonly metabolic pathways involved several metabolic ways, such as arginine biosynthesis, pantothenate and CoA biosynthesis, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, and histidine metabolism. CONCLUSION The differential potential serum and feces biomarkers obtained from the LC-MS/MS based untargeted metabolomic may help to explain the potential pathophysiological mechanisms of T2DM and offer pivotal information for the early diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Chaoyang Tian
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| | - Mingyin Qiu
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Haizhou Lv
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Feng Yue
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
12
|
Silverstein-Metzler MG, Frye BM, Justice JN, Clarkson TB, Appt SE, Jeffrey Carr J, Register TC, Albu-Shamah M, Shaltout HA, Shively CA. Psychosocial stress increases risk for type 2 diabetes in female cynomolgus macaques consuming a western diet. Psychoneuroendocrinology 2022; 139:105706. [PMID: 35259592 PMCID: PMC8977247 DOI: 10.1016/j.psyneuen.2022.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/23/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022]
Abstract
Chronic psychosocial stress is associated with increased risk of many chronic diseases including type 2 diabetes mellitus. However, it is difficult to establish a causal relationship between stress and diabetes in human studies because stressors often are self-reported and may be distant in time from metabolic consequences. Macaques are useful models of the effects of chronic psychosocial stress on health and may develop obesity and diabetes similar to human beings. Thus, we studied the relationships between social subordination stress - a well-validated psychological stressor in macaques - and body composition and carbohydrate metabolism in socially housed, middle-aged female cynomolgus monkeys (Macaca fascicularis; n = 42). Following an 8-week baseline phase, the monkeys were fed a Western diet for 36 months (about equivalent to 10 human years). Social status was determined based on the outcomes of agonistic interactions (X¯= 33.3 observation hours/monkey). Phenotypes collected included plasma cortisol, body composition, circulating markers of glucose metabolism, activity levels, and heart rate variability measured as RMSSD (root of mean square of successive differences) and SDDN (standard deviation of beat to beat interval) after 1.5- and 3-years on diet. Mixed model analyses of variance revealed that aggression received, submissions sent, and cortisol were higher, and RMSSD and SDNN were lower in subordinates than dominants (social status: p < 0.05). After 3 years of Western diet consumption, fasting triglyceride, glucose and insulin concentrations, calculated insulin resistance (HOMA-IR), body weight and body fat mass increased in all animals (time: all p's < 0.05); however, the increase in fasting glucose and HOMA-IR was significantly greater in subordinates than dominants (time x social status: p's < 0.05). Impaired glucose metabolism, (glucose > 100 mg/dl) incidence was significantly higher in subordinates (23%) than dominants (0%) (Fisher's exact test, p < 0.05). These findings suggest that chronic psychosocial stress, on a Western diet background, significantly increases type 2 diabetes risk in middle-aged female primates.
Collapse
Affiliation(s)
| | - Brett M Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Jamie N Justice
- Internal Medicine/Gerontology and Geriatric Medicine, Wake Forest School of Medicine, USA
| | - Thomas B Clarkson
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Susan E Appt
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - J Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, USA
| | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Mays Albu-Shamah
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Hossam A Shaltout
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, USA
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
13
|
Amato R, Gardin JF, Tooze JA, Cline JM. Organ Weights in Relation to Age and Sex in Cynomolgus Monkeys ( Macaca fascicularis). Toxicol Pathol 2022; 50:574-590. [PMID: 35383510 DOI: 10.1177/01926233221088283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Laboratory animal research is an important contributor to both human and animal medicine. Currently, there is extensive use of cynomolgus monkeys (Macaca fascicularis) in pathology and toxicology research. The purpose of this study was to define reference values for absolute and percentage organ weights in M fascicularis of different ages and sex. Organ weights were obtained from necropsies of 1022 cynomolgus monkeys at the Wake Forest School of Medicine from 1997 to 2018. Distributions of absolute and percentage weights for each organ were described; sex and age groups were compared using analysis of variance. Age effects on percentage of body weights for each organ were analyzed within each sex. Diet effects were also analyzed. This evaluation showed that male body weights and absolute organ weights were greater for all age groups; however, female organ to body weight percentages were greater for most organs. Percentage of organ weight to body weight declined for the adrenals, brain, lung, thyroid and thymus during maturation, whereas percentage weight of pancreas, prostate, testes, and uterus increased. Animals consuming a high-fat, Western-type diet had a lower body weight than animals consuming a carbohydrate-rich chow diet. This information will be useful for further toxicology and pathology studies concerning cynomolgus monkeys.
Collapse
Affiliation(s)
| | - Jean F Gardin
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet A Tooze
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - J Mark Cline
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Birdwell L, Levesque D, Machiah D, Gumber S. Clinicopathologic characteristics of pancreatic islet amyloidosis in the rhesus macaque (Macaca mulatta) and Sooty Mangabey (Cercocebus atys). J Med Primatol 2022; 51:155-164. [PMID: 35357015 DOI: 10.1111/jmp.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diabetes mellitus type 2 has been linked to pancreatic islet amyloid deposition in humans and nonhuman primates. The authors hypothesized that diabetic primates would have significant differences in pathology than non-diabetic groups. METHODS This retrospective study used histopathology and immunohistochemistry to characterize and compare pancreatic islet amyloidosis in 58 diabetic and non-diabetic rhesus macaque (RM) and sooty mangabeys (SM). RESULTS The pancreatic tissues from diabetic RM and SM showed higher histopathology scores for islet amyloid deposit distribution, severity, and calcification deposits compared to their respective non-diabetic cohorts. Further, these tissues from RM and SM with amyloid deposits showed immunoreactivity to insulin, glucagon, islet amyloid polypeptide, serum amyloid P, and glucagon-like peptide 1. CONCLUSIONS Histopathology results showed that the defined amyloid characteristics are associated with clinical diabetes in both species. The immunohistochemistry results collectively suggest differences in pancreatic hormones and islet amyloid components among both species and diabetic status.
Collapse
Affiliation(s)
- Leeza Birdwell
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Denyse Levesque
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Bakker J, de la Garza MA. Naturally Occurring Endocrine Disorders in Non-Human Primates: A Comprehensive Review. Animals (Basel) 2022; 12:407. [PMID: 35203115 PMCID: PMC8868238 DOI: 10.3390/ani12040407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/23/2023] Open
Abstract
Literature concerning veterinary medicine of non-human primates is continuously updated, yet endocrine disorders remain underreported. While case or survey reports of individual endocrinopathies are available, a comprehensive review is not. An exhaustive literature search on this subject via widely used academic search systems, (e.g., Google Scholar, PubMed, BioOne complete and Web of Science), and peer-reviewed publications, proceedings, and newsletters was performed. Selected major endocrine entities will be described with emphasis on clinical signs, morphologic appearances, concomitant diseases, as well as available treatment options. Mostly, no clinical signs were noted and on gross pathology, the endocrine organs were unremarkable. An endocrine-related diagnosis was frequently made as an incidental finding after standard histopathological examination. During the review, the pancreas represented the most affected endocrine organ and diabetes mellitus represented the most clinically significant disorder. Currently, no standard procedure for diagnosing, monitoring, or treating endocrine disorders in non-human primates exists.
Collapse
Affiliation(s)
- Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Animal Science Department (ASD), 2288GJ Rijswijk, The Netherlands
| | | |
Collapse
|
16
|
Nugent JL, Singh A, Wirth KM, Oppler SH, Hocum Stone L, Janecek JL, Sheka AC, Kizy S, Moore MEG, Staley C, Hering BJ, Ramachandran S, Ikramuddin S, Graham ML. A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. iScience 2021; 24:103421. [PMID: 34877488 PMCID: PMC8633018 DOI: 10.1016/j.isci.2021.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Julia L Nugent
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Amar Singh
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Keith M Wirth
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Hunter Oppler
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Jody L Janecek
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Adam C Sheka
- Department of Surgery, University of Minnesota, MN, USA
| | - Scott Kizy
- Department of Surgery, University of Minnesota, MN, USA
| | - Meghan E G Moore
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, MN, USA.,BioTechnology Institute, University of Minnesota, MN, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | - Sabarinathan Ramachandran
- Department of Surgery, University of Minnesota, MN, USA.,Schulze Diabetes Institute, Department of Surgery, University of Minnesota, MN, USA
| | | | - Melanie L Graham
- Department of Surgery, University of Minnesota, MN, USA.,Preclinical Research Center, Department of Surgery, University of Minnesota, 295 Animal Science/Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
17
|
Zijlmans DGM, Maaskant A, Sterck EHM, Langermans JAM. Retrospective Evaluation of a Minor Dietary Change in Non-Diabetic Group-Housed Long-Tailed Macaques ( Macaca fascicularis). Animals (Basel) 2021; 11:2749. [PMID: 34573715 PMCID: PMC8472355 DOI: 10.3390/ani11092749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Macaques in captivity are prone to becoming overweight and obese, which may cause several health problems. A diet that mimics the natural diet of macaques may prevent these problems and improve animal welfare. Adjusting captive diets towards a more natural composition may include increasing fiber content and lowering the glycemic index, i.e., reducing the impact on blood glucose levels. Such a dietary change was implemented in our long-tailed macaque (Macaca fascicularis) breeding colony. The basic diet of monkey chow pellets remained the same, while the supplementary provisioning of bread was replaced by grains and vegetables. This study is a retrospective evaluation, based on electronic health records, that investigated whether this minor dietary change had a beneficial effect on relative adiposity and overweight-related health parameters in 44 non-diabetic, group-housed, female long-tailed macaques. Relative adiposity was measured with a weight-for-height index and blood samples were collected during yearly health checks. Glycemic response and lipid metabolism were evaluated using several biochemical parameters. Relative adiposity and overweight status did not differ after dietary change. Yet, relatively heavy individuals generally lost body weight, while relatively lean individuals gained body weight, leading to a more balanced body weight dynamic. Dietary change did not affect HbA1c and triglyceride levels, while fructosamine and cholesterol levels were significantly reduced. Thus, the minor dietary change had no significant effect on overweight status, but some biochemical parameters related to the risk of diabetes and cardiovascular disease were positively affected. This study emphasizes the importance of evaluating husbandry changes and that critically reviewing husbandry practices can provide valuable insights to improve animal health and welfare.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
18
|
Comparative analysis of the transcriptome of T2DM Bama mini-pigs with T2DM patients. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Richter C, Hinkel R. Research('s) Sweet Hearts: Experimental Biomedical Models of Diabetic Cardiomyopathy. Front Cardiovasc Med 2021; 8:703355. [PMID: 34368257 PMCID: PMC8342758 DOI: 10.3389/fcvm.2021.703355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.
Collapse
Affiliation(s)
- Claudia Richter
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany.,Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
20
|
Albarazanji K, Nawrocki AR, Gao B, Wang X, Wang Y(J, Xiao YF. Effects of mixed meal tolerance test on gastric emptying, glucose and lipid homeostasis in obese nonhuman primates. Sci Rep 2021; 11:11866. [PMID: 34088949 PMCID: PMC8178340 DOI: 10.1038/s41598-021-91027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Meal ingestion elicits a variety of neuronal, physiological and hormonal responses that differ in healthy, obese or diabetic individuals. The mixed meal tolerance test (MMTT) is a well-established method to evaluate pancreatic β-cell reserve and glucose homeostasis in both preclinical and clinical research in response to calorically defined meal. Nonhuman primates (NHPs) are highly valuable for diabetic research as they can naturally develop type 2 diabetes mellitus (T2DM) in a way similar to the onset and progression of human T2DM. The purpose of this study was to investigate the reproducibility and effects of a MMTT containing acetaminophen on plasma glucose, insulin, C-peptide, incretin hormones, lipids, acetaminophen appearance (a surrogate marker for gastric emptying) in 16 conscious obese cynomolgus monkeys (Macaca fascicularis). Plasma insulin, C-peptide, TG, aGLP-1, tGIP, PYY and acetaminophen significantly increased after meal/acetaminophen administration. A subsequent study in 6 animals showed that the changes of plasma glucose, insulin, C-peptide, lipids and acetaminophen were reproducible. There were no significant differences in responses to the MMTT among the obese NHPs with (n = 11) or without (n = 5) hyperglycemia. Our results demonstrate that mixed meal administration induces significant secretion of several incretins which are critical for maintaining glucose homeostasis. In addition, the responses to the MMTTs are reproducible in NHPs, which is important when the MMTT is used for evaluating post-meal glucose homeostasis in research.
Collapse
Affiliation(s)
- Kamal Albarazanji
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, Cardiovascular and Metabolism, 1400 McKean Rd., Spring House, PA 19477 USA
| | - Andrea R. Nawrocki
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, Cardiovascular and Metabolism, 1400 McKean Rd., Spring House, PA 19477 USA
| | - Bin Gao
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, Cardiovascular and Metabolism, 1400 McKean Rd., Spring House, PA 19477 USA
| | - Xiaoli Wang
- Cardiovascular and Metabolic Diseases, Crown Bioscience, Inc., 6 Beijing West Road, Taicang, Jiangsu Province 215400 People’s Republic of China
| | - Yixin (Jim) Wang
- Cardiovascular and Metabolic Diseases, Crown Bioscience, Inc., 6 Beijing West Road, Taicang, Jiangsu Province 215400 People’s Republic of China
| | - Yong-Fu Xiao
- Cardiovascular and Metabolic Diseases, Crown Bioscience, Inc., 6 Beijing West Road, Taicang, Jiangsu Province 215400 People’s Republic of China
| |
Collapse
|
21
|
Puglisi SC, Mackiewicz AL, Ardeshir A, Garzel LM, Christe KL. Comparison of Insulins Glargine and Degludec in Diabetic Rhesus Macaques ( Macaca mulatta) with CGM Devices. Comp Med 2021; 71:247-255. [PMID: 34034855 DOI: 10.30802/aalas-cm-20-000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study's 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (Macaca mulatta) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.
Collapse
Affiliation(s)
| | | | - Amir Ardeshir
- California National Primate Research Center, Davis, California
| | | | | |
Collapse
|
22
|
Wang X, Jin S, Hu W. A Role of Glucose Overload in Diabetic Cardiomyopathy in Nonhuman Primates. J Diabetes Res 2021; 2021:9676754. [PMID: 33860059 PMCID: PMC8026299 DOI: 10.1155/2021/9676754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes (T2D) plays a major role in the development of heart failure. Patients with T2D have an increased risk to develop HF than healthy subjects, and they always have very poor outcomes and survival rates. However, the underlying mechanisms for this are still unclear. To help develop new therapeutic interventions, well-characterized animal models for preclinical and translational investigations in T2D and HF are urgently needed. Although studies in rodents are more often used, the research findings in rodents have often failed to be translated into humans due to the significant metabolic differences between rodents and humans. Nonhuman primates (NHPs) serve as valuable translational models between basic studies in rodent models and clinical studies in humans. NHPs can recapitulate the natural progress of these diseases in humans and study the underlying mechanism due to their genetic similarity and comparable spontaneous T2D rates to humans. In this review, we discuss the importance of using NHPs models in understanding diabetic cardiomyopathy (DCM) in humans with aspects of correlations between hyperglycemia and cardiac dysfunction progression, glucose overload, and altered glucose metabolism promoting cardiac oxidative stress and mitochondria dysfunction, glucose, and its effect on cardiac resynchronization therapy with defibrillator (CRT-d), the currently available diabetic NHPs models and the limitations involved in the use of NHP models.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110034, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110034, China
| | - Weina Hu
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110034, China
| |
Collapse
|
23
|
Ruggiero AD, Davis A, Sherrill C, Westwood B, Hawkins GA, Palmer ND, Chou JW, Reeves T, Cox LA, Kavanagh K. Skeletal muscle extracellular matrix remodeling with worsening glycemic control in nonhuman primates. Am J Physiol Regul Integr Comp Physiol 2020; 320:R226-R235. [PMID: 33206559 DOI: 10.1152/ajpregu.00240.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys (Cholorcebus aethiops sabaeus) to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys (n = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys (n = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ashley Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Hypertension, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D Palmer
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Tony Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
24
|
Stone VM, Hankaniemi MM, Laitinen OH, Sioofy-Khojine AB, Lin A, Diaz Lozano IM, Mazur MA, Marjomäki V, Loré K, Hyöty H, Hytönen VP, Flodström-Tullberg M. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz2433. [PMID: 32494709 PMCID: PMC7202868 DOI: 10.1126/sciadv.aaz2433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Coxsackievirus B (CVB) enteroviruses are common human pathogens known to cause severe diseases including myocarditis, chronic dilated cardiomyopathy, and aseptic meningitis. CVBs are also hypothesized to be a causal factor in type 1 diabetes. Vaccines against CVBs are not currently available, and here we describe the generation and preclinical testing of a novel hexavalent vaccine targeting the six known CVB serotypes. We show that the vaccine has an excellent safety profile in murine models and nonhuman primates and that it induces strong neutralizing antibody responses to the six serotypes in both species without an adjuvant. We also demonstrate that the vaccine provides immunity against acute CVB infections in mice, including CVB infections known to cause virus-induced myocarditis. In addition, it blocks CVB-induced diabetes in a genetically permissive mouse model. Our preclinical proof-of-concept studies demonstrate the successful generation of a promising hexavalent CVB vaccine with high immunogenicity capable of preventing CVB-induced diseases.
Collapse
Affiliation(s)
- V. M. Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M. M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - O. H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - A. Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - I. M. Diaz Lozano
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M. A. Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - V. Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - K. Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H. Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - V. P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - M. Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
25
|
Yuan W, Fukuda S, Inoue T, Okochi H, Sasaki E, Shimoda M. Establishment of a diabetes mellitus type 1 model in the common marmoset. Sci Rep 2019; 9:14546. [PMID: 31601983 PMCID: PMC6787219 DOI: 10.1038/s41598-019-51199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023] Open
Abstract
Common marmosets have attracted considerable attention as a small standard primate model in biomedical research. However, no marmoset diabetes model is available. Here, we established a marmoset diabetes model via the combination of partial pancreatectomy and intravenous streptozotocin (STZ). A partial pancreatectomy was performed in 11 common marmosets and multiple STZ doses were intravenously administered. Diabetes was diagnosed upon sustained hyperglycaemia (nonfasting blood glucose level >200 mg/dl). Blood glucose and biochemistry were periodically assessed, in addition to glucose tolerance testing, continual blood glucose determination using a continuous glucose monitoring system, urine testing and histological evaluation. In 8 of the 11 animals (73%), diabetes mellitus was induced. The diabetic marmosets also showed abnormal intravenous and oral glucose tolerance test results. Blood glucose levels decreased in response to human insulin administration. The hyperglycaemic state was irreversible and persisted for more than 3 months, and the animals’ condition was manageable via daily insulin administration. Thus, diabetes can be successfully induced and maintained in the common marmoset via partial pancreatectomy and STZ administration. This protocol effectively generates a valuable animal model for studying disease pathogenesis, risk factors and therapeutic interventions, including islet transplantation.
Collapse
Affiliation(s)
- Wenji Yuan
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, 3 Chome-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken, 210-0821, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, 3 Chome-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken, 210-0821, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
26
|
Kavanagh K, Day SM, Pait MC, Mortiz WR, Newgard CB, Ilkayeva O, Mcclain DA, Macauley SL. Type-2-Diabetes Alters CSF but Not Plasma Metabolomic and AD Risk Profiles in Vervet Monkeys. Front Neurosci 2019; 13:843. [PMID: 31555072 PMCID: PMC6722201 DOI: 10.3389/fnins.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies suggest that individuals with type 2 diabetes (T2D) have a twofold to fourfold increased risk for developing Alzheimer's disease (AD), however, the exact mechanisms linking the two diseases are unknown. In both conditions, the majority of pathophysiological changes, including glucose and insulin dysregulation, insulin resistance, and AD-related changes in Aβ and tau, occur decades before the onset of clinical symptoms and diagnosis. In this study, we investigated the relationship between metabolic biomarkers associated with T2D and amyloid pathology including Aβ levels, from cerebrospinal fluid (CSF) and fasting plasma of healthy, pre-diabetic (PreD), and T2D vervet monkeys (Chlorocebus aethiops sabaeus). Consistent with the human disease, T2D monkeys have increased plasma and CSF glucose levels as they transition from normoglycemia to PreD and diabetic states. Although plasma levels of acylcarnitines and amino acids remained largely unchanged, peripheral hyperglycemia correlated with decreased CSF acylcarnitines and CSF amino acids, including branched chain amino acid (BCAA) concentrations, suggesting profound changes in cerebral metabolism coincident with systemic glucose dysregulation. Moreover, CSF Aβ 40 and CSF Aβ 42 levels decreased in T2D monkeys, a phenomenon observed in the human course of AD which coincides with increased amyloid deposition within the brain. In agreement with previous studies in mice, CSF Aβ 40 and CSF Aβ 42 were highly correlated with CSF glucose levels, suggesting that glucose levels in the brain are associated with changes in Aβ metabolism. Interestingly, CSF Aβ 40 and CSF Aβ 42 levels were also highly correlated with plasma but not CSF lactate levels, suggesting that plasma lactate might serve as a potential biomarker of disease progression in AD. Moreover, CSF glucose and plasma lactate levels were correlated with CSF amino acid and acylcarnitine levels, demonstrating alterations in cerebral metabolism occurring with the onset of T2D. Together, these data suggest that peripheral metabolic changes associated with the development of T2D produce alterations in brain metabolism that lead to early changes in the amyloid cascade, similar to those observed in pre-symptomatic AD.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen M. Day
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Morgan C. Pait
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - William R. Mortiz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Donald A. Mcclain
- Section of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon L. Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
Cherbuin N, Walsh EI. Sugar in mind: Untangling a sweet and sour relationship beyond type 2 diabetes. Front Neuroendocrinol 2019; 54:100769. [PMID: 31176793 DOI: 10.1016/j.yfrne.2019.100769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
It is widely recognised that type 2 diabetes (T2D) represents a major disease burden but it is only recently that its role in neurodegeneration has attracted more attention. This research has shown that T2D is associated with impaired cerebral health, cognitive decline and dementia. However, the impact on the brain of progressive metabolic changes associated with the pre-clinical development of the disease is less clear. The aim of this review is to comprehensively summarise how the emergence of risk factors and co-morbid conditions linked to the development of T2D impact cerebral health. Particular attention is directed at characterising how normal but elevated blood glucose levels in individuals without T2D contribute to neurodegenerative processes, and how the main risk factors for T2D including obesity, physical activity and diet modulate these effects. Where available, evidence from the animal and human literature is contrasted, and sex differences in risk and outcomes are highlighted.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Butler AA, Zhang J, Price CA, Stevens JR, Graham JL, Stanhope KL, King S, Krauss RM, Bremer AA, Havel PJ. Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates. J Biol Chem 2019; 294:9706-9719. [PMID: 30988006 PMCID: PMC6597842 DOI: 10.1074/jbc.ra119.007528] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mouse studies linking adropin, a peptide hormone encoded by the energy homeostasis-associated (ENHO) gene, to biological clocks and to glucose and lipid metabolism suggest a potential therapeutic target for managing diseases of metabolism. However, adropin's roles in human metabolism are unclear. In silico expression profiling in a nonhuman primate diurnal transcriptome atlas (GSE98965) revealed a dynamic and diurnal pattern of ENHO expression. ENHO expression is abundant in brain, including ventromedial and lateral hypothalamic nuclei regulating appetite and autonomic function. Lower ENHO expression is present in liver, lung, kidney, ileum, and some endocrine glands. Hepatic ENHO expression associates with genes involved in glucose and lipid metabolism. Unsupervised hierarchical clustering identified 426 genes co-regulated with ENHO in liver, ileum, kidney medulla, and lung. Gene Ontology analysis of this cluster revealed enrichment for epigenetic silencing by histone H3K27 trimethylation and biological processes related to neural function. Dietary intervention experiments with 59 adult male rhesus macaques indicated low plasma adropin concentrations were positively correlated with fasting glucose, plasma leptin, and apolipoprotein C3 (APOC3) concentrations. During consumption of a high-sugar (fructose) diet, which induced 10% weight gain, animals with low adropin had larger increases of plasma leptin and more severe hyperglycemia. Declining adropin concentrations were correlated with increases of plasma APOC3 and triglycerides. In summary, peripheral ENHO expression associates with pathways related to epigenetic and neural functions, and carbohydrate and lipid metabolism, suggesting co-regulation in nonhuman primates. Low circulating adropin predicts increased weight gain and metabolic dysregulation during consumption of a high-sugar diet.
Collapse
Affiliation(s)
- Andrew A Butler
- From the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104,
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104
| | - Jinsong Zhang
- From the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104
| | - Candice A Price
- the Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, California 95616
| | - Joseph R Stevens
- From the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - James L Graham
- the Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, California 95616
| | - Kimber L Stanhope
- the Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, California 95616
| | - Sarah King
- the Children's Hospital Oakland Research Institute, Oakland, California 94609, and
| | - Ronald M Krauss
- the Children's Hospital Oakland Research Institute, Oakland, California 94609, and
| | - Andrew A Bremer
- the Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232
| | - Peter J Havel
- the Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, Davis, California 95616,
| |
Collapse
|
29
|
Type II Diabetes Mellitus Accelerates Age-Dependent Aβ Pathology in Cynomolgus Monkey Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:133-145. [PMID: 31062328 DOI: 10.1007/978-981-13-3540-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer's disease (AD). However, it remains unclear how DM accelerates AD pathology in the brain. Cynomolgus monkey (Macaca fascicularis) is one of the nonhuman primates used for biomedical research, and we can observe spontaneous formation of AD pathology, such as senile plaques (SPs) and neurofibrillary tangles (NFTs), with the advance of aging. Furthermore, obesity is occasionally observed and frequently leads to development of type II DM (T2DM) in laboratory-housed cynomolgus monkeys. These findings suggest that cynomolgus monkey is a useful species to study the relationship between T2DM and AD pathology. In T2DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices almost 5 years earlier than healthy control monkeys. Moreover, age-related endocytic pathology, such as intraneuronal accumulation of enlarged endosomes, was exacerbated in T2DM-affected monkey brains. Since accumulating evidences suggest that endocytic dysfunction is involved in Aβ pathology, T2DM may aggravate age-related endocytic dysfunction, leading to the acceleration of Aβ pathology.
Collapse
|
30
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
31
|
Wang J, Zhang L, Xiao R, Li Y, Liao S, Zhang Z, Yang W, Liang B. Plasma lipidomic signatures of spontaneous obese rhesus monkeys. Lipids Health Dis 2019; 18:8. [PMID: 30621707 PMCID: PMC6323686 DOI: 10.1186/s12944-018-0952-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Obesity plays crucial roles in the pathogenesis of metabolic diseases such as hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes (T2D). The underlying mechanisms linking obesity to metabolic diseases are still less understandable. Methods Previously, we screened a group of spontaneously obese rhesus monkeys. Here, we performed a plasma lipidomic analysis of normal and obese monkeys using gas chromatography/mass spectroscopy (GC/MS) and ultra-high performance liquid chromatography/mass spectroscopy (UPLC/MS). Results In total, 143 lipid species were identified, quantified, and classified into free fatty acids (FFA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylglycerol (PG), lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA), and sphingomyelin (SM). Data analysis showed that the obese monkeys had increased levels of fatty acids palmitoleic acid (C16:1) and arachidonic acid (C20:4), FFA especially palmitic acid (C16:0), as well as certain PC species and SM species. Surprisingly, the plasma level of LPA-C16:0 was approximately four-fold greater in the obese monkeys. Conversely, the levels of most PE species were obviously reduced in the obese monkeys. Conclusion Collectively, our work suggests that lipids such as FFA C16:0 and 16:0-LPA may be potential candidates for the diagnosis and study of obesity-related diseases.
Collapse
Affiliation(s)
- Junlong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ruyue Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Shasha Liao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wenhui Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
32
|
Engineering of a GLP-1 analogue peptide/anti-PCSK9 antibody fusion for type 2 diabetes treatment. Sci Rep 2018; 8:17545. [PMID: 30510163 PMCID: PMC6277417 DOI: 10.1038/s41598-018-35869-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.
Collapse
|
33
|
Ding H, Kiguchi N, Kishioka S, Ma T, Peters CM, Ko MC. Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys. J Diabetes 2018; 10:886-895. [PMID: 29749036 PMCID: PMC6172150 DOI: 10.1111/1753-0407.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Given that diabetes-associated complications are closely associated with neuroinflammation, it is imperative to study potential changes in neuroinflammatory modulators in the central nervous system of diabetic primates. METHODS The mRNA levels of pro- and anti-inflammatory cytokines, toll-like receptors (TLRs), growth factors, and cannabinoid receptors were compared in the spinal dorsal horn (SDH) and thalamus of naturally occurring type 2 diabetic monkeys and an age-matched control group using reverse transcription and quantitative real-time polymerase chain reaction. RESULTS In the SDH of diabetic monkeys, mRNA levels of proinflammatory cytokines (i.e. interleukin [IL]-1β and tumor necrosis factor [TNF] α), TLR1, and TLR2 were increased, whereas mRNA levels of IL-10, an anti-inflammatory cytokine, were decreased. No changes were observed in the mRNA levels of growth factors and cannabinoid receptors. In line with the mRNA data, TNFα immunoreactivity was significantly increased in diabetic monkeys. Moreover, mRNA expression levels of IL-1β, TNFα, TLR1, and TLR2 in the SDH were positively correlated with plasma glucose concentrations in all monkeys. CONCLUSIONS Several ligands and receptors involved in neuroinflammation are simultaneously dysregulated in the spinal cord of diabetic monkeys. This primate disease model will facilitate the design of novel treatment approaches to ameliorate neuroinflammation-driven adverse effects in diabetic patients.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Norikazu Kiguchi
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Tao Ma
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
34
|
Comparative genome-wide survey of single nucleotide variation uncovers the genetic diversity and potential biomedical applications among six Macaca species. Int J Mol Sci 2018; 19:ijms19103123. [PMID: 30314376 PMCID: PMC6212917 DOI: 10.3390/ijms19103123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Macaca is of great importance in evolutionary and biomedical research. Aiming at elucidating genetic diversity patterns and potential biomedical applications of macaques, we characterized single nucleotide variations (SNVs) of six Macaca species based on the reference genome of Macaca mulatta. Using eight whole-genome sequences, representing the most comprehensive genomic SNV study in Macaca to date, we focused on discovery and comparison of nonsynonymous SNVs (nsSNVs) with bioinformatic tools. We observed that SNV distribution patterns were generally congruent among the eight individuals. Outlier tests of nsSNV distribution patterns detected 319 bins with significantly distinct genetic divergence among macaques, including differences in genes associated with taste transduction, homologous recombination, and fat and protein digestion. Genes with specific nsSNVs in various macaques were differentially enriched for metabolism pathways, such as glycolysis, protein digestion and absorption. On average, 24.95% and 11.67% specific nsSNVs were putatively deleterious according to PolyPhen2 and SIFT4G, respectively, among which the shared deleterious SNVs were located in 564–1981 genes. These genes displayed enrichment signals in the ‘obesity-related traits’ disease category for all surveyed macaques, confirming that they were suitable models for obesity related studies. Additional enriched disease categories were observed in some macaques, exhibiting promising potential for biomedical application. Positively selected genes identified by PAML in most tested Macaca species played roles in immune and nervous system, growth and development, and fat metabolism. We propose that metabolism and body size play important roles in the evolutionary adaptation of macaques.
Collapse
|
35
|
Luo Q, Chen S, Deng J, Shi L, Huang C, Cheng A, Liu W, Fang J, Tang L, Geng Y, Chen Z. Endocannabinoid hydrolase and cannabinoid receptor 1 are involved in the regulation of hypothalamus-pituitary-adrenal axis in type 2 diabetes. Metab Brain Dis 2018; 33:1483-1492. [PMID: 29948652 DOI: 10.1007/s11011-018-0255-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/28/2018] [Indexed: 11/30/2022]
Abstract
Hypothalamus-pituitary-adrenal (HPA) axis, as the key moderator in energy metabolism, plays an important role in diabetes. The endogenous cannabinoid system (eCBs) involves in neuronal functions, and simultaneously cannabinoid receptors are almost expressed in all regions of the hypothalamus according to a spate of reports. However, few data investigate the changes of eCBs and HPA axis in type 2 diabetes. In this study, five diabetes mellitus rhesus monkeys, five prediabetes rhesus monkeys and five healthy rhesus monkeys were observed. In the present study, we detected cell swelling and necrosis extensively in the paraventricular nucleus (PVN) and neurohypophysis in prediabetes and overt diabetes monkeys. The adrenocorticotropic hormone in the pituitary gland, adrenocorticotropic hormone receptor, and 11β-hydroxysteroid dehydrogenase in the adrenal gland were all hyper-secreted and expressed from healthy to overt diabetes. Meanwhile, the cortisol concentration in the adrenal gland was increased along with the progress of diabetes. It could be concluded that hyperfunction of the HPA axis exists in the type 2 Diabetes pathogenesis. However, we also found a weakened expression and secretion of corticotrophin releasing hormone and glucocorticoids receptor in PVN. The expression of corticotropin releasing hormone receptor 1 in pituitary gland decreased in prediabetes monkeys, but increased in overt diabetes monkeys. The downregulation of cannabinoid receptor 1 and upregulation of monoglycerol lipase and fatty acid amide hydrolase in PVN was involved in the pathogenesis of type 2 diabetes. Collectively, we can conclude that changes in endocannabinoid hydrolase and cannabinoid receptor might indicate the effect of downregulation of eCBs. It can be assumed that hyper-function of the HPA axis from healthy to overt diabetes is due to the undermining inhibition of eCBs. However, the regulatory mechanism of eCBs targets on the HPA axis need to be further explored.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Shanshan Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
- Animal Disease Control and Prevention Centres, Yilong, Sichuan, 637676, China
| | - Juan Deng
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Liangqin Shi
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Anchun Cheng
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Animal Disease Control and Prevention Centres, Yilong, Sichuan, 637676, China
| | - Jing Fang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Li Tang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Yi Geng
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, 611130, China.
| |
Collapse
|
36
|
Wang J, Xu S, Gao J, Zhang L, Zhang Z, Yang W, Li Y, Liao S, Zhou H, Liu P, Liang B. SILAC-based quantitative proteomic analysis of the livers of spontaneous obese and diabetic rhesus monkeys. Am J Physiol Endocrinol Metab 2018; 315:E294-E306. [PMID: 29664677 DOI: 10.1152/ajpendo.00016.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder that affects more than 10% of the population worldwide. Obesity is a major cause of insulin resistance and contributes to the development of T2DM. Liver is an essential metabolic organ that plays crucial roles in the pathogenesis of obesity and diabetes. However, the underlying mechanisms of liver in the transition of obesity to diabetes are not fully understood. The nonhuman primate rhesus monkey is an appropriate animal for research of human diseases. Here, we first screened and selected three individuals of spontaneously diabetic rhesus monkeys. Interestingly, the diabetic monkeys were obese with a high body mass index at the beginning, but gradually lost their body weight during one year of observation. Furthermore, we performed stable isotope labeling with amino acids in cell culture-based quantitative proteomics to identify proteins and signaling pathways with altered expression in the liver of obese and diabetic monkeys. In total, 3,509 proteins were identified and quantified, of which 185 proteins displayed an altered expression level. Gene ontology analysis revealed that the expression of proteins involved in fatty acids β-oxidation and galactose metabolism was increased in obese monkeys; while proteins involved in oxidative phosphorylation and branched chain amino acid (BCAA) degradation were upregulated in diabetic monkeys. In addition, we observed mild apoptosis in the liver of diabetic monkeys, suggesting liver injury at the late onset of diabetes. Taken together, our liver proteomics may reveal a distinct metabolic transition from fatty acids β-oxidation in obese monkey to BCAA degradation in diabetic monkeys.
Collapse
Affiliation(s)
- Junlong Wang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Wenhui Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shasha Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Bin Liang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
37
|
Efficacy of sustained delivery of GC-1 from a Nanofluidic system in a spontaneously obese non-human primate: a case study. Biomed Microdevices 2018; 20:49. [DOI: 10.1007/s10544-018-0296-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Cabana F, Jasmi R, Maguire R. Great ape nutrition: low-sugar and high-fibre diets can lead to increased natural behaviours, decreased regurgitation and reingestion, and reversal of prediabetes. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/izy.12172] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- F. Cabana
- Wildlife Nutrition Centre; Wildlife Reserves Singapore; 80 Mandai Lake Road Singapore 729826
| | - R. Jasmi
- Wildlife Nutrition Centre; Wildlife Reserves Singapore; 80 Mandai Lake Road Singapore 729826
| | - R. Maguire
- Veterinary Services; Wildlife Reserves Singapore; 80 Mandai Lake Road Singapore 729826
| |
Collapse
|
39
|
Wang B, Sun G, Qiao W, Liu Y, Qiao J, Ye W, Wang H, Wang X, Lindquist R, Wang Y, Xiao YF. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys. J Endocrinol Invest 2017; 40:967-977. [PMID: 28365864 PMCID: PMC5559582 DOI: 10.1007/s40618-017-0651-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/05/2017] [Indexed: 12/12/2022]
Abstract
AIMS Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. MATERIALS AND METHODS Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. RESULTS AND DISCUSSION Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. CONCLUSION Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.
Collapse
Affiliation(s)
- B Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - G Sun
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - W Qiao
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - Y Liu
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - J Qiao
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - W Ye
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - H Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - X Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - R Lindquist
- Data Sciences International, St. Paul, MN, USA
| | - Y Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China
| | - Y-F Xiao
- Crown Bioscience, Inc., Taicang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
40
|
Wang B, Qiao W, Ye W, Wang X, Liu Y, Wang YJ, Xiao YF. Comparison of Continuous Glucose Monitoring between Dexcom G4 Platinum and HD-XG Systems in Nonhuman Primates (Macaca Fascicularis). Sci Rep 2017; 7:9596. [PMID: 28851965 PMCID: PMC5575167 DOI: 10.1038/s41598-017-09806-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/28/2017] [Indexed: 01/26/2023] Open
Abstract
Timely knowing glucose level helps diabetic patients to manage the disease, including decisions about food, physical activity and medication. This study compared two continuous glucose monitoring systems in conscious and moving-free nonhuman primates (NHPs, Macaca fascicularis). Each normoglycemic or diabetic monkey was implanted with one Dexcom G4 Platinum subcutaneously or one HD-XG glucose sensor arterially for glucose monitoring. The glucose levels measured by both telemetry devices significantly correlated with the glucometer readings. The data of oral glucose tolerance test (oGTT) showed that the glucose levels measured by either Dexcom G4 Platinum or HD-XG transmitter were very similar to glucometer readings. However, compared to HD-XG transmitter or glucometer, Dexcom G4 Platinum detected a decreased glucose peak of ivGTT with approximately 10 min delay due to interstitial glucose far behind blood glucose change. Our data showed the advantages of the telemetry systems are: (1) consecutive data collection (day and night); (2) no bleeding; (3) no anesthesia (moving freely); (4) recording natural response without physical restriction and stress; (5) less labor intensity during ivGTT and other tests; (6) quick outcomes without lab tests. This article summarized and compared the differences of the general characteristics of two continuous glucose monitoring systems in diabetic research.
Collapse
Affiliation(s)
- Bingdi Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Wei Qiao
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Weiwei Ye
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Xiaoli Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Yongqiang Liu
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Yixin Jim Wang
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China
| | - Yong-Fu Xiao
- Crown Bioscience, Inc., Taicang, Jiangsu Province, China.
| |
Collapse
|
41
|
Fanning KM, Pfisterer B, Davis AT, Presley TD, Williams IM, Wasserman DH, Cline JM, Kavanagh K. Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 2017; 313:R290-R297. [PMID: 28701320 DOI: 10.1152/ajpregu.00108.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Radiation exposure accelerates the onset of age-related diseases such as diabetes, cardiovascular disease, and neoplasia and, thus, lends insight into in vivo mechanisms common to these disorders. Fibrosis and extracellular matrix (ECM) remodeling, which occur with aging and overnutrition and following irradiation, are risk factors for development of type 2 diabetes mellitus. We previously demonstrated an increased incidence of skeletal muscle insulin resistance and type 2 diabetes mellitus in monkeys that had been exposed to whole body irradiation 5-9 yr prior. We hypothesized that irradiation-induced fibrosis alters muscle architecture, predisposing irradiated animals to insulin resistance and overt diabetes. Rhesus macaques (Macaca mulatta, n = 7-8/group) grouped as nonirradiated age-matched controls (Non-Rad-CTL), irradiated nondiabetic monkeys (Rad-CTL), and irradiated monkeys that subsequently developed diabetes (Rad-DM) were compared. Prior radiation exposure resulted in persistent skeletal muscle ECM changes, including a relative overabundance of collagen IV and a trend toward increased transforming growth factor-β1. Preservation of microvascular markers differentiated the irradiated diabetic and nondiabetic groups. Microvascular density and plasma nitrate and heat shock protein 90 levels were lower in Rad-DM than Rad-CTL. These results are consistent with a protective effect of abundant microvasculature in maintaining glycemic control within radiation-induced fibrotic muscle.
Collapse
Affiliation(s)
- K M Fanning
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - B Pfisterer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - A T Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - T D Presley
- Department of Chemistry, Winston Salem State University, Winston-Salem, North Carolina; and
| | - I M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - D H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - J M Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - K Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
42
|
Yue F, Zhang G, Quintero JE, Gash DM, Zhang Z. Role of social interaction, exercise, diet, and age on developing and untreated diabetes in cynomolgus monkeys. Exp Gerontol 2017. [PMID: 28625601 DOI: 10.1016/j.exger.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is the most common form of diabetes that occurs in both human and nonhuman primates. Although spontaneously diabetic nonhuman primates are used extensively in diabetic related research and are a proven valuable tool for the study of the natural history of diabetes, little is known about the key factors that can cause this metabolic disorder and the preventative measures that could be employed to minimize the consequences of diabetes. Using a model of developing and untreated diabetes, this study describes the effects of housing arrangement (socially group- versus individually single-housed), exercise, diet, age, and sex on fasting plasma glucose, key lipids associated with diabetes, and bodyweight in two large cohorts of nonhuman primates. Key findings include exercise/housing arrangement's contribution to significant differences in bodyweight, levels of fasting plasma glucose, total cholesterol, and high- and low-density lipoproteins. Age also had profound effects on glucose, triglyceride and high-density lipoproteins, particularly in single-caged animals. Moreover, females had higher fasting glucose, total cholesterol and triglyceride levels than male counterparts within the same housing situations. These factors may be critical to identifying preventive measures that could eventually be used to minimize obesity and diabetes in humans.
Collapse
Affiliation(s)
- Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Guodong Zhang
- Wincon TheraCells Biotechnologies Co., Ltd., 3 Gaoxin 3 Rd, Nanning 530003, Guangxi, China; Department of Bio-engineering, Guangxi Medical University, 22 Shuangyong Rd, Nanning 530021, Guangxi, China; Guangxi Dongya Center for Nonhuman Primate Research and Technical Development, 3 Gaoxin 3 Rd, Nanning 530003, Guangxi, China
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Don M Gash
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhiming Zhang
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
43
|
Kavanagh K, Davis AT, Peters DE, Le Grand A, Bharadwaj MS, Molina AJA. Regulators of mitochondrial quality control differ in subcutaneous fat of metabolically healthy and unhealthy obese monkeys. Obesity (Silver Spring) 2017; 25:689-696. [PMID: 28236433 PMCID: PMC5373959 DOI: 10.1002/oby.21762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Obesity exists with and without accompanying cardiometabolic disease, termed metabolically unhealthy obesity (MUO) and healthy obesity (MHO), respectively. Underlying differences in the ability of subcutaneous (SQ) fat to respond to nutrient excess are emerging as a key pathway. This study aimed to document the first spontaneous animal model of MHO and MUO and differences in SQ adipose tissue. METHODS Vervet monkeys (Chlorocebus aethiops; N = 171) were screened for metabolic syndrome. A subset of MHO and MUO monkeys (n = 6/group) had SQ fat biopsies collected for histological evaluations and examination of key mitochondrial proteins. RESULTS Obesity was seen in 20% of monkeys, and within this population, 31% were healthy, which mirrors human prevalence estimates. MUO monkeys had more than 60% lower adiponectin concentrations despite similar fat cell size, uncoupling protein 3, and activated macrophage abundance. However, alternatively activated/anti-inflammatory macrophages were 70% lower. Deficiencies of 50% or more in mitochondrial quality control regulators and selected mitochondrial fission and fusion markers were observed in the SQ fat of MUO monkeys despite comparable mitochondrial content. CONCLUSIONS A novel and translatable spontaneously obese animal model of MHO and MUO, occurring independently of dietary factors, was characterized. Differences in mitochondrial quality and inflammatory cell populations of subcutaneous fat may underpin divergent metabolic health.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Wake Forest School of Medicine, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| | - Ashley T Davis
- Wake Forest School of Medicine, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| | - Diane E Peters
- Wake Forest School of Medicine, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| | - Andre Le Grand
- Wake Forest School of Medicine, Animal Resources Program, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| | - Manish S Bharadwaj
- Wake Forest School of Medicine, Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| | - Anthony JA Molina
- Wake Forest School of Medicine, Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA 27157
| |
Collapse
|
44
|
Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJA. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol 2016; 10:65-77. [PMID: 27693859 PMCID: PMC5045569 DOI: 10.1016/j.redox.2016.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Blood based bioenergetic profiling strategies are emerging as potential reporters of systemic mitochondrial function; however, the extent to which these measures reflect the bioenergetic capacity of other tissues is not known. The premise of this work is that highly metabolically active tissues, such as skeletal and cardiac muscle, are susceptible to differences in systemic bioenergetic capacity. Therefore, we tested whether the respiratory capacity of blood cells, monocytes and platelets, are related to contemporaneous respirometric assessments of skeletal and cardiac muscle mitochondria. 18 female vervet/African green monkeys (Chlorocebus aethiops sabaeus) of varying age and metabolic status were examined for this study. Monocyte and platelet maximal capacity correlated with maximal oxidative phosphorylation capacity of permeabilized skeletal muscle (R=0.75, 95% confidence interval [CI]: 0.38-0.97; R=0.51, 95%CI: 0.05-0.81; respectively), isolated skeletal muscle mitochondrial respiratory control ratio (RCR; R=0.70, 95%CI: 0.35-0.89; R=0.64, 95%CI: 0.23-0.98; respectively), and isolated cardiac muscle mitochondrial RCR (R=0.55, 95%CI: 0.22-0.86; R=0.58, 95%CI: 0.22-0.85; respectively). These results suggest that blood based bioenergetic profiling may be used to report on the bioenergetic capacity of muscle tissues. Blood cell respirometry represents an attractive alternative to tissue based assessments of mitochondrial function in human studies based on ease of access and the minimal participant burden required by these measures.
Collapse
Affiliation(s)
- Daniel J Tyrrell
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Manish S Bharadwaj
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony J A Molina
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
45
|
Kiguchi N, Ding H, Peters CM, Kock ND, Kishioka S, Cline JM, Wagner JD, Ko MC. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys. Biochim Biophys Acta Mol Basis Dis 2016; 1863:274-283. [PMID: 27751964 DOI: 10.1016/j.bbadis.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nancy D Kock
- Department of Pathology, Center for Comparative Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - J Mark Cline
- Department of Pathology, Center for Comparative Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Janice D Wagner
- Department of Pathology, Center for Comparative Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
46
|
Yue F, Zhang G, Tang R, Zhang Z, Teng L, Zhang Z. Age- and sex-related changes in fasting plasma glucose and lipoprotein in cynomolgus monkeys. Lipids Health Dis 2016; 15:111. [PMID: 27342143 PMCID: PMC4919873 DOI: 10.1186/s12944-016-0280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background The age-related dysfunction of glucose and lipid metabolism has a long-standing relationship with cardiovascular and neurodegenerative disease. However, the effects of metabolic dysfunction on men and women are different. Reasons for these sex differences remains unclear. Cynomolgus monkeys have been used, in the past, for the study of human metabolic diseases due to their biologically proximity to humans. Nevertheless, few studies to date have focused on both age- and sex-related differences in glucose and lipid metabolism. The present study was designed to specifically address these questions by using a large cohort of cynomolgus monkeys (N = 1,399) including 433 males and 966 females with ages ranging 4 to 24 years old. Methods Fasting plasma glucose (FPG) and lipid parameters including total cholesterol (T-Cho), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured. All these parameters were compared between ages and sexes. Results Among the entire cohort, age was strongly correlated with levels of FPG, TG and HDL. Consequently, sex-related analysis revealed that females had significantly higher average levels of FPG, T-Cho, TG, HDL-C and LDL-C than their male counterparts. In addition, more female (28.5 %) than male (16 %) monkeys qualified for impaired fasting plasma glucose (IFPG). In those IFPG animals, sex-related differences were also detected i.e. females had significantly increased levels of T-Cho, TG and LDL-C. Conclusions The result, for the first time, demonstrated the similarities and differences in detail between male and female cynomolgus monkeys in relationship to age-related glucose and lipoprotein metabolisms, and differences under various physiological conditions. The detailed glucose and lipoprotein profiling should provide additional and important insights for prediabetic conditions. Cynomolgus monkeys appear to be an excellent model for translational research of diabetes and for novel therapeutic strategies testing to overt diabetes.
Collapse
Affiliation(s)
- Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Wincon TheraCells Biotechnologies Co., LTD, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China
| | - Guodong Zhang
- Wincon TheraCells Biotechnologies Co., LTD, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China.,Department of Bio-engineering, Guangxi Medical University, 22 Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Rongping Tang
- Wincon TheraCells Biotechnologies Co., LTD, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China.,Guangxi Dongya Center for Nonhuman Primate Research and Technical Development, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China
| | - Zhouquan Zhang
- Wincon TheraCells Biotechnologies Co., LTD, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China
| | - Liqiong Teng
- Wincon TheraCells Biotechnologies Co., LTD, 3 Gaoxin 3 Rd, Nanning, 530003, Guangxi, China
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
47
|
Silverstein-Metzler MG, Shively CA, Clarkson TB, Appt SE, Carr J, Kritchevsky SB, Jones SR, Register TC. Sertraline inhibits increases in body fat and carbohydrate dysregulation in adult female cynomolgus monkeys. Psychoneuroendocrinology 2016; 68:29-38. [PMID: 26939086 PMCID: PMC5319600 DOI: 10.1016/j.psyneuen.2016.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are widely prescribed for depression and other disorders. SSRIs have become one of the most commonly used drugs in the United States, particularly by women. Acute effects on body composition and carbohydrate metabolism have been reported, but little is known regarding the effects of chronic SSRI use. We evaluated the effects of chronic administration of a commonly prescribed SSRI, sertraline HCl, on body weight and composition, fat distribution, carbohydrate metabolism, as well as activity, in adult female depressed and nondepressed cynomolgus monkeys (Macaca fascicularis; n=42) using a placebo-controlled, longitudinal, randomized study design. Phenotypes were evaluated prior to and after 18 months of oral sertraline (20mg/kg) or placebo. Over the 18 month treatment period, the placebo group experienced increases in body weight, body fat (visceral and subcutaneous) fasting insulin concentrations, and homeostasis model assessment of insulin resistance scores (HOMA-IR). Sertraline treatment prevented increases in body weight, fat, insulin, and HOMA-IR (all p<0.05), without significantly altering activity levels. Sertraline treatment altered adiponectin in an unusual way - reducing circulating adiponectin in depressed monkeys without affecting fat mass or body weight. Deleterious effects on adiponectin, a potentially insulin-sensitizing and atheroprotective protein, may result in adverse effects on cardiovascular health despite otherwise beneficial effects on body composition and carbohydrate metabolism.
Collapse
Affiliation(s)
- Marnie G. Silverstein-Metzler
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA,Integrated Physiology and Pharmacology Graduate Program, Wake Forest School of Medicine, USA
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Thomas B. Clarkson
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - Susan E. Appt
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA
| | - J.Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, USA
| | - Stephen B. Kritchevsky
- Internal Medicine/Gerontology and Geriatric Medicine, Wake Forest School of Medicine, USA
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, USA
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, USA,Corresponding author at: Department of Pathology-Comparative Medicine, Medical Center Blvd. Winston, Salem, NC 27157-1040, USA. Fax: +1 336 716 1515. (T.C. Register)
| |
Collapse
|
48
|
Vaughan KL, Mattison JA. Obesity and Aging in Humans and Nonhuman Primates: A Mini-Review. Gerontology 2016; 62:611-617. [PMID: 27120471 PMCID: PMC5073030 DOI: 10.1159/000445800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in the US is increasing exponentially across gender, age and ethnic groups. Obesity and a long-term hypercaloric diet result in what appears to be accelerated aging, often leading to a multi-systemic deterioration known as the metabolic syndrome. Due to their physiological similarity to humans as well as comparable rates of spontaneous obesity and diabetes mellitus, nonhuman primates provide a useful translational model for the human condition. They allow for an in vivo study of disease progression, interaction of comorbidities, and novel interventions. However, defining obesity in aged humans and nonhuman primates is difficult as the physiological changes that occur with aging are not accounted for using our current systems (BMI - body mass index and BCS - body condition score). Nonetheless, nonhuman primate studies have greatly contributed to our understanding of obesity and metabolic dysfunction and should continue to play a large role in translational research. Here, methods for defining obesity and metabolic syndrome in humans and nonhuman primates are described along with the prevalence and effects of these conditions.
Collapse
Affiliation(s)
- Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, Md., USA
| | | |
Collapse
|
49
|
Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS. Best Pract Res Clin Obstet Gynaecol 2016; 37:12-24. [PMID: 27118251 DOI: 10.1016/j.bpobgyn.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023]
Abstract
Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research.
Collapse
|
50
|
Reference values of hematology, biochemistry, and blood type in cynomolgus monkeys from cambodia origin. Lab Anim Res 2016; 32:46-55. [PMID: 27051442 PMCID: PMC4816996 DOI: 10.5625/lar.2016.32.1.46] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 03/03/2016] [Indexed: 11/21/2022] Open
Abstract
Cynomolgus monkeys as nonhuman primates are valuable animal models because they have a high level of human gene homology. There are many reference values for hematology and biochemistry of Cynomolgus monkeys that are needed for proper clinical diagnosis and biomedical research conduct. The body weight information and blood type are also key success factors in allogeneic or xenogeneic models. Moreover, the biological parameters could be different according to the origin of the Cynomolgus monkey. However, there are limited references provided, especially of Cambodia origin. In this study, we measured average body weight of 2,518 Cynomolgus monkeys and analyzed hematology and serum biochemistry using 119 males, and determined blood types in 642 monkeys with Cambodia origin. The average body weight of male Cynomolgus monkeys were 2.56±0.345 kg and female group was 2.43±0.330 kg at the age from 2 to 3 years. The male group showed relatively sharp increased average body weight from the 3 to 4 age period compared to the female group. In hematology and biochemistry, it was found that most of the data was similar when compared to other references even though some results showed differences. The ABO blood type result showed that type A, B, AB, and O was approximately 15.6, 33.3, 44.2, and 6.9%, respectively. The main blood type in this facility was B and AB. These biological background references of Cambodia origin could be used to provide important information to researchers who are using them in their biomedical research.
Collapse
|