251
|
Shin J, Ma S, Hofer E, Patel Y, Vosberg DE, Tilley S, Roshchupkin GV, Sousa AMM, Jian X, Gottesman R, Mosley TH, Fornage M, Saba Y, Pirpamer L, Schmidt R, Schmidt H, Carrion-Castillo A, Crivello F, Mazoyer B, Bis JC, Li S, Yang Q, Luciano M, Karama S, Lewis L, Bastin ME, Harris MA, Wardlaw JM, Deary IE, Scholz M, Loeffler M, Witte AV, Beyer F, Villringer A, Armstrong NJ, Mather KA, Ames D, Jiang J, Kwok JB, Schofield PR, Thalamuthu A, Trollor JN, Wright MJ, Brodaty H, Wen W, Sachdev PS, Terzikhan N, Evans TE, Adams HHHH, Ikram MA, Frenzel S, van der Auwera-Palitschka S, Wittfeld K, Bülow R, Grabe HJ, Tzourio C, Mishra A, Maingault S, Debette S, Gillespie NA, Franz CE, Kremen WS, Ding L, Jahanshad N, the ENIGMA Consortium, Sestan N, Pausova Z, Seshadri S, Paus T, for the neuroCHARGE Working Group. Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes. Cereb Cortex 2020; 30:4121-4139. [PMID: 32198502 PMCID: PMC7947185 DOI: 10.1093/cercor/bhaa035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.
Collapse
Affiliation(s)
- Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 0A4 ON, M5G 0A4, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, University of Toronto, Toronto, M4G 1R8 ON, Canada
| | - Shaojie Ma
- Department of Genetics, Yale University School of Medicine, New Haven, 06510 CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, 06510 CT, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Yash Patel
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, University of Toronto, Toronto, M4G 1R8 ON, Canada
| | - Daniel E Vosberg
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, University of Toronto, Toronto, M4G 1R8 ON, Canada
| | - Steven Tilley
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, University of Toronto, Toronto, M4G 1R8 ON, Canada
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus MC, 3015 Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - André M M Sousa
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, 06510 CT, USA
| | - Xueqiu Jian
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, 77030 Houston, 77030 TX, USA
| | | | - Thomas H Mosley
- University of Mississippi Medical Center, Jackson, 39216 MS, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, 77030 Houston, 77030 TX, USA
| | - Yasaman Saba
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria
| | - Lukas Pirpamer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 Nijmegen, The Netherlands
| | - Fabrice Crivello
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, F-33000 Bordeaux, France
| | - Bernard Mazoyer
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, F-33000 Bordeaux, France
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101 WA, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, EH8 9YL Edinburgh, UK
- Department of Psychology, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Sherif Karama
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, QC, Canada
| | - Lindsay Lewis
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, QC, Canada
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, EH8 9YL Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, EH8 9YL Edinburgh, UK
| | - Mathew A Harris
- Centre for Clinical Brain Sciences, University of Edinburgh, EH8 9YL Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, EH8 9YL Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Ian E Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, EH8 9YL Edinburgh, UK
- Department of Psychology, University of Edinburgh, EH8 9JZ Edinburgh, UK
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04109 Leipzig, Germany
- LIFE Research Center for Civilization Diseases, 04103 Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04109 Leipzig, Germany
- LIFE Research Center for Civilization Diseases, 04103 Leipzig, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, 04109 Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, 04109 Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, 04109 Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, 6150 Perth, WA, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
- Neuroscience Research Australia, 2031 Sydney, NSW, Australia
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, 3052 Melbourne, VIC, Australia
- Academic Unit for Psychiatry of Old Age, St. Vincent's Health, The University of Melbourne, 3010 Melbourne, VIC, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre, The University of Sydney, 2050 Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, 2031 Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, 2031 Sydney, NSW, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, 4072 St Lucia, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, QLD, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052 Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, 2031 Sydney, NSW, Australia
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Tavia E Evans
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Hieab H H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Centre, 3015 Rotterdam, The Netherlands
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, 37075, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, 37075, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17489 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, 37075, Germany
| | - Christophe Tzourio
- Inserm, Bordeaux Population Health Research Center, University of Bordeaux, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
- Department of Neurology, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Aniket Mishra
- Inserm, Bordeaux Population Health Research Center, University of Bordeaux, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
| | - Sophie Maingault
- Institut des Maladies Neurodégénratives, UMR 5293, CEA, CNRS, University of Bordeaux, Ubordeaux, F-33000 Bordeaux, France
| | - Stephanie Debette
- Inserm, Bordeaux Population Health Research Center, University of Bordeaux, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
- Department of Neurology, CHU de Bordeaux, F-33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, 02118 MA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioural Genetics, Virginia Commonwealth University, Richmond, 23284 VA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, 92093 CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 92093 CA, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, 92093 CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 92093 CA, USA
- VA San Diego Center of Excellence for Stress and Mental Health, San Diego, 92161 CA, USA
| | - Linda Ding
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, 90033 CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, 90033 CA, USA
| | | | - Nenad Sestan
- Department of Genetics, Yale University School of Medicine, New Haven, 06510 CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, 06510 CT, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 0A4 ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8 ON, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, M5S 1A8 ON, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Epidemiology and Biostatistics, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, 78229 TX, USA
| | - Tomas Paus
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, University of Toronto, Toronto, M4G 1R8 ON, Canada
- Department of Psychology, University of Toronto, Toronto, M5S 3G3 ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8 ON, Canada
| | | |
Collapse
|
252
|
Abstract
Frontotemporal dementia (FTD) encompasses a group of clinical syndromes, including behavioral-variant FTD, nonfluent variant primary progressive aphasia, semantic variant primary progressive aphasia, FTD motor neuron disease, progressive supranuclear palsy syndrome, and corticobasal syndrome. Early on in its course, FTD is commonly seen in psychiatric clinics. We review the clinical features and diagnostic criteria in FTD spectrum disorders.
Collapse
Affiliation(s)
- Kyan Younes
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA.
| | - Bruce L Miller
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA. https://twitter.com/brucemillerucsf
| |
Collapse
|
253
|
Luo X, Guo X, Tan Y, Zhang Y, Garcia-Milian R, Wang Z, Shi J, Yu T, Ji J, Wang X, Xu J, Zhang H, Zuo L, Lu L, Wang K, Li CSR. KTN1 variants and risk for attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:234-244. [PMID: 32190980 PMCID: PMC7210069 DOI: 10.1002/ajmg.b.32782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022]
Abstract
Individuals with attention deficit hyperactivity disorder (ADHD) show gray matter volume (GMV) reduction in the putamen. KTN1 variants may regulate kinectin 1 expression in the putamen and influence putamen structure and function. We aim to test the hypothesis that the KTN1 variants may represent a genetic risk factor of ADHD. Two independent family-based Caucasian samples were analyzed, including 922 parent-child trios (a total of 2,757 subjects with 924 ADHD children) and 735 parent-child trios (a total of 1,383 subjects with 613 ADHD children). The association between ADHD and a total of 143 KTN1 SNPs was analyzed in the first sample, and the nominally-significant (p < .05) risk SNPs were classified into independent haplotype blocks. All SNPs, including imputed SNPs within these blocks, and haplotypes across each block, were explored for replication of associations in both samples. The potential biological functions of all risk SNPs were predicted using a series of bioinformatics analyses, their regulatory effects on the putamen volumes were tested, and the KTN1 mRNA expression was examined in three independent human putamen tissue samples. We found that fifteen SNPs were nominally associated with ADHD (p < .05) in the first sample, and three of them remained significant even after correction for multiple testing (1.3 × 10-10 ≤ p ≤ 1.2 × 10-4 ; α = 2.5 × 10-3 ). These 15 risk SNPs were located in five haplotype blocks, and 13 SNPs within four of these blocks were associated with ADHD in the second sample. Six haplotypes within these blocks were also significantly (1.2 × 10-7 ≤ p ≤ .009) associated with ADHD in these samples. These risk variants were located in disease-related transposons and/or transcription-related functional regions. Major alleles of these risk variants significantly increased putamen volumes. Finally, KTN1 mRNA was significantly expressed in putamen across three independent cohorts. We concluded that the KTN1 variants were significantly associated with ADHD. KTN1 may play a functional role in the development of ADHD.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China;,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA;,Corresponding authors: Xingguang Luo, MD, PhD and Chiang-Shan R. Li, MD, PhD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520. (X.L.); (C.-S.R.L.)
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300222, China
| | - Rolando Garcia-Milian
- Curriculum & Research Support Department, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Yu
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jiawu Ji
- Department of Psychiatry, Fuzhou Neuropsychiatric Hospital, Fujian Medical University, Fuzhou 350008, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children’s Health Hospital, Zhuhai, Guangdong, China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lu Lu
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA;,Corresponding authors: Xingguang Luo, MD, PhD and Chiang-Shan R. Li, MD, PhD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520. (X.L.); (C.-S.R.L.)
| |
Collapse
|
254
|
Schmaal L, Pozzi E, C Ho T, van Velzen LS, Veer IM, Opel N, Van Someren EJW, Han LKM, Aftanas L, Aleman A, Baune BT, Berger K, Blanken TF, Capitão L, Couvy-Duchesne B, R Cullen K, Dannlowski U, Davey C, Erwin-Grabner T, Evans J, Frodl T, Fu CHY, Godlewska B, Gotlib IH, Goya-Maldonado R, Grabe HJ, Groenewold NA, Grotegerd D, Gruber O, Gutman BA, Hall GB, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Hilland E, Irungu B, Jonassen R, Kelly S, Kircher T, Klimes-Dougan B, Krug A, Landrø NI, Lagopoulos J, Leerssen J, Li M, Linden DEJ, MacMaster FP, M McIntosh A, Mehler DMA, Nenadić I, Penninx BWJH, Portella MJ, Reneman L, Rentería ME, Sacchet MD, G Sämann P, Schrantee A, Sim K, Soares JC, Stein DJ, Tozzi L, van Der Wee NJA, van Tol MJ, Vermeiren R, Vives-Gilabert Y, Walter H, Walter M, Whalley HC, Wittfeld K, Whittle S, Wright MJ, Yang TT, Zarate C, Thomopoulos SI, Jahanshad N, Thompson PM, Veltman DJ. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry 2020; 10:172. [PMID: 32472038 PMCID: PMC7260219 DOI: 10.1038/s41398-020-0842-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.
Collapse
Affiliation(s)
- Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Elena Pozzi
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Lybomir Aftanas
- FSSBI Scientific Research Institute of Physiology & Basic Medicine, Laboratory of Affective, Cognitive & Translational Neuroscience, Novosibirsk, Russia
- Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Tessa F Blanken
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Liliana Capitão
- Department of Psychiatry, Oxford University, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | | | - Kathryn R Cullen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christopher Davey
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), University Medical Center Göttingen, Göttingen, Germany
| | - Jennifer Evans
- Experimental Therapeutics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), University Medical Center Göttingen, Göttingen, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Sean N Hatton
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Eva Hilland
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benson Irungu
- Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rune Jonassen
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Sinead Kelly
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Nils Inge Landrø
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
| | - Frank P MacMaster
- Psychiatry and Pediatrics, University of Calgary, Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Andrew M McIntosh
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Marburg University Hospital UKGM, Marburg, Germany
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Maria J Portella
- Institut d'Investigació Biomèdica-Sant Pau, Barcelona, Spain
- CIBERSAM, Madrid, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, location AMC, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, location AMC, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine/National University of Singapore, Singapore, Singapore
| | - Jair C Soares
- Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan J Stein
- SA MRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Leonardo Tozzi
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nic J A van Der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José van Tol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert Vermeiren
- Curium-LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena, Germany
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Heather C Whalley
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Tony T Yang
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Carlos Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, Bethesda, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
255
|
Kim BH, Choi YH, Yang JJ, Kim S, Nho K, Lee JM. Identification of Novel Genes Associated with Cortical Thickness in Alzheimer’s Disease: Systems Biology Approach to Neuroimaging Endophenotype. J Alzheimers Dis 2020; 75:531-545. [DOI: 10.3233/jad-191175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center of Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
256
|
Rao S, Luo N, Sui J, Xu Q, Zhang F. Effect of the SIRT1 gene on regional cortical grey matter density in the Han Chinese population. Br J Psychiatry 2020; 216:254-258. [PMID: 30567608 DOI: 10.1192/bjp.2018.270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Our previous genome-wide association study (CONVERGE sample) identified significant association between single nucleotide polymorphisms (SNPs) near the SIRT1 gene and major depressive disorder (MDD) in Chinese populations. AIMS To investigate whether SNPs across the SIRT1 gene locus affect regional grey matter density in the Han Chinese population. METHOD T1-weighted structural magnetic resonance imaging was conducted on 92 healthy participants from Eastern China. Grey matter was segmented from the image, which consisted of voxel-wise grey matter density. The effect of SIRT1 SNPs on grey matter density was determined by a multiple linear regression framework. RESULTS SNP rs4746720 was significantly associated with grey matter density in two brain cortical regions: the orbital part of the right inferior frontal gyrus and the orbital part of the left inferior frontal gyrus (family-wise error-corrected P < 0.05; voxel-wise P < 0.001). Also, rs4746720 exceeded genome-wide significance in association with MDD in our CONVERGE sample (P = 3.32 × 10-08, odds ratio 1.161). CONCLUSIONS Our results provided evidence for a potential role of the SIRT1 gene in the brain, implying a possible pathophysiological mechanism underlying susceptibility to MDD.
Collapse
Affiliation(s)
- Shuquan Rao
- Assistant Professor, School of Life Science and Engineering, Southwest Jiaotong University, China
| | - Na Luo
- Candidate, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, University of Chinese Academy of Sciences, China
| | - Jing Sui
- Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, University of Chinese Academy of Sciences, China; The Mind Research Network, USA; and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Qi Xu
- Professor, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, China
| | - Fuquan Zhang
- Professor, Wuxi Mental Health Center, Nanjing Medical University, China
| |
Collapse
|
257
|
Ohi K, Shimada T, Kataoka Y, Yasuyama T, Kawasaki Y, Shioiri T, Thompson PM. Genetic correlations between subcortical brain volumes and psychiatric disorders. Br J Psychiatry 2020; 216:280-283. [PMID: 32000869 DOI: 10.1192/bjp.2019.277] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Psychiatric disorders as well as subcortical brain volumes are highly heritable. Large-scale genome-wide association studies (GWASs) for these traits have been performed. We investigated the genetic correlations between five psychiatric disorders and the seven subcortical brain volumes and the intracranial volume from large-scale GWASs by linkage disequilibrium score regression. We revealed weak overlaps between the genetic variants associated with psychiatric disorders and subcortical brain and intracranial volumes, such as in schizophrenia and the hippocampus and bipolar disorder and the accumbens. We confirmed shared aetiology and polygenic architecture across the psychiatric disorders and the specific subcortical brain and intracranial volume.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Associate Professor, Medical Research Institute, Kanazawa Medical University; Department of Neuropsychiatry, Kanazawa Medical University; Department of General Internal Medicine, Kanazawa Medical University; and Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Japan
| | - Takamitsu Shimada
- Assistant Professor, Department of Neuropsychiatry, Kanazawa Medical University, Japan
| | - Yuzuru Kataoka
- Graduate Student, Department of Neuropsychiatry, Kanazawa Medical University, Japan
| | - Toshiki Yasuyama
- Assistant Professor, Department of Neuropsychiatry, Kanazawa Medical University, Japan
| | - Yasuhiro Kawasaki
- Professor, Department of Neuropsychiatry, Kanazawa Medical University, Japan
| | - Toshiki Shioiri
- Professor, Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Japan
| | - Paul M Thompson
- Professor, Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, USA
| |
Collapse
|
258
|
Holland D, Frei O, Desikan R, Fan CC, Shadrin AA, Smeland OB, Sundar VS, Thompson P, Andreassen OA, Dale AM. Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet 2020; 16:e1008612. [PMID: 32427991 PMCID: PMC7272101 DOI: 10.1371/journal.pgen.1008612] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/04/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from a reference panel of 11 million SNPs, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities (as a fraction of the reference panel) ranging from ≃ 2 × 10-5 to ≃ 4 × 10-3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.
Collapse
Affiliation(s)
- Dominic Holland
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rahul Desikan
- Department of Radiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Chun-Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California, San Diego, La Jolla, California, United States of America
- Department of Cognitive Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Alexey A. Shadrin
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B. Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - V. S. Sundar
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California, San Diego, La Jolla, California, United States of America
| | - Paul Thompson
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California, San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
259
|
Daghlas I, Rist PM, Chasman DI. Effect of genetic liability to migraine on cognition and brain volume: A Mendelian randomization study. Cephalalgia 2020; 40:998-1002. [DOI: 10.1177/0333102420916751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To investigate potential causality between genetic liability to migraine and Alzheimer’s disease, intelligence, and brain volume using two-sample Mendelian randomization. Methods The exposure consisted of independent genetic variants associated with migraine in the largest (59,674 cases/316,078 controls) published genome-wide association study. Outcomes included Alzheimer’s disease (71,880 cases/383,378 controls), a measure of general intelligence (n = 269,867), intracranial volume (n = 11,373), and seven subcortical brain volumes (n ∼ 13,000), all with available genome-wide association study summary statistics. Mendelian randomization effects were estimated using inverse-variance weighted analysis. Results Genetic liability to migraine did not associate with Alzheimer’s disease (odds ratio [95% confidence interval] 1.01 [1.00–1.02], p = 0.07), intelligence (standardized beta [95% confidence interval] 0.01 [0.00–0.02], p = 0.13), or any brain volume measures (all p > 0.05). No individual migraine variant associated with any of the outcomes at genome-wide significance. Conclusions These data do not support a causal effect of migraine liability on Alzheimer’s disease, intelligence, or brain volume.
Collapse
Affiliation(s)
- Iyas Daghlas
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pamela M Rist
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
260
|
Smeland OB, Bahrami S, Frei O, Shadrin A, O'Connell K, Savage J, Watanabe K, Krull F, Bettella F, Steen NE, Ueland T, Posthuma D, Djurovic S, Dale AM, Andreassen OA. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry 2020; 25:844-853. [PMID: 30610197 PMCID: PMC6609490 DOI: 10.1038/s41380-018-0332-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders associated with cognitive impairment, which is considered a major determinant of functional outcome. Despite this, the etiology of the cognitive impairment is poorly understood, and no satisfactory cognitive treatments exist. Increasing evidence indicates that genetic risk for SCZ may contribute to cognitive impairment, whereas the genetic relationship between BD and cognitive function remains unclear. Here, we combined large genome-wide association study data on SCZ (n = 82,315), BD (n = 51,710), and general intelligence (n = 269,867) to investigate overlap in common genetic variants using conditional false discovery rate (condFDR) analysis. We observed substantial genetic enrichment in both SCZ and BD conditional on associations with intelligence indicating polygenic overlap. Using condFDR analysis, we leveraged this enrichment to increase statistical power and identified 75 distinct genomic loci associated with both SCZ and intelligence, and 12 loci associated with both BD and intelligence at conjunctional FDR < 0.01. Among these loci, 20 are novel for SCZ, and four are novel for BD. Most SCZ risk alleles (61 of 75, 81%) were associated with poorer cognitive performance, whereas most BD risk alleles (9 of 12, 75%) were associated with better cognitive performance. A gene set analysis of the loci shared between SCZ and intelligence implicated biological processes related to neurodevelopment, synaptic integrity, and neurotransmission; the same analysis for BD was underpowered. Altogether, the study demonstrates that both SCZ and BD share genetic influences with intelligence, albeit in a different manner, providing new insights into their genetic architectures.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| | - Shahram Bahrami
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Kevin O'Connell
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Jeanne Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Florian Krull
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, section Complex Trait Genetics, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| |
Collapse
|
261
|
Yang J, Feng X, Laine AF, Angelini ED, Alzheimer’s Disease Neuroimaging Initiative. Characterizing Alzheimer's Disease With Image and Genetic Biomarkers Using Supervised Topic Models. IEEE J Biomed Health Inform 2020; 24:1180-1187. [PMID: 31380772 PMCID: PMC8938901 DOI: 10.1109/jbhi.2019.2928831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroimaging and genetic biomarkers have been widely studied from discriminative perspectives towards Alzheimer's disease (AD) classification, since neuroanatomical patterns and genetic variants are jointly critical indicators for AD diagnosis. Generative methods, designed to model common occurring patterns, could potentially advance the understanding of this disease, but have not been fully explored for AD characterization. Moreover, the introduction of a supervised component into the generative process can constrain the model for more discriminative characterization. In this study, we propose an original method based on supervised topic modeling to characterize AD from a generative perspective, yet maintaining discriminative power at differentiating disease populations. Our topic modeling jointly exploits discretized image features and categorical genetic features. Diagnostic information - cognitively normal (CN), mild cognitive impairment (MCI) and AD - is introduced as a supervision variable. Experimental results on the ADNI cohort demonstrate that our model, while achieving competitive discriminative performance, can discover topics revealing both well-known and novel neuroanatomical patterns including temporal, parietal and frontal regions; as well as associations between genetic factors and neuroanatomical patterns.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Andrew F. Laine
- Departments of Biomedical Engineering, Radiology and Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, USA
| | - Elsa D. Angelini
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA, and NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, UK
| | | |
Collapse
|
262
|
Solstrand Dahlberg L, Viessmann O, Linnman C. Heritability of cervical spinal cord structure. Neurol Genet 2020; 6:e401. [PMID: 32185240 PMCID: PMC7061306 DOI: 10.1212/nxg.0000000000000401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Measures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings. METHODS Twin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed. RESULTS We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%-91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes (p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was correlated with the participant's height (p = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach. CONCLUSIONS This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including-but not limited to-spinal cord injury and MS.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Olivia Viessmann
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Clas Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
263
|
Ho TC, Gutman B, Pozzi E, Grabe HJ, Hosten N, Wittfeld K, Völzke H, Baune B, Dannlowski U, Förster K, Grotegerd D, Redlich R, Jansen A, Kircher T, Krug A, Meinert S, Nenadic I, Opel N, Dinga R, Veltman DJ, Schnell K, Veer I, Walter H, Gotlib IH, Sacchet MD, Aleman A, Groenewold NA, Stein DJ, Li M, Walter M, Ching CRK, Jahanshad N, Ragothaman A, Isaev D, Zavaliangos‐Petropulu A, Thompson PM, Sämann PG, Schmaal L. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Hum Brain Mapp 2020; 43:341-351. [PMID: 32198905 PMCID: PMC8675412 DOI: 10.1002/hbm.24988] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD‐related differences in subcortical regions using shape analysis. In this meta‐analysis of subcortical shape from the ENIGMA‐MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta‐analysis. Relative to CTL, patients with adolescent‐onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = −0.164 to −0.180). Relative to first‐episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = −0.173 to −0.184). Our results suggest that previously reported MDD‐associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.
Collapse
Affiliation(s)
- Tiffany C. Ho
- Department of Psychiatry & Weill Institute for Neurosciences San Francisco California USA
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- Department of Psychology Stanford University Stanford California USA
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois USA
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry The University of Melbourne & Melbourne Health Melbourne Australia
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Norbert Hosten
- Department of Diagnostic Radiology and Neuroradiology University Medicine Greifswald Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Henry Völzke
- Institute for Community Medicine University Medicine Greifswald Germany
| | - Bernhard Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry, Melbourne Medical School The University of Melbourne Melbourne Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | | | | | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Andreas Jansen
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Tilo Kircher
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Axel Krug
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Susanne Meinert
- Department of Psychiatry University of Münster Münster Germany
| | - Igor Nenadic
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Richard Dinga
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Knut Schnell
- Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany
| | - Ilya Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ian H. Gotlib
- Department of Psychology Stanford University Stanford California USA
| | - Matthew D. Sacchet
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- McLean Hospital and Department of Psychiatry Harvard Medical School Belmont Massachusetts USA
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
| | - Nynke A. Groenewold
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
- University of Groningen, University Medical Center Groningen Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE) Groningen The Netherlands
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town South Africa
| | - Meng Li
- Max Planck Institute for Biological Cybernetics Tuebingen Germany
| | - Martin Walter
- Department of Psychiatry University Tuebingen Germany
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
264
|
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Ching CRK, McMahon MAB, Shatokhina N, Zsembik LCP, Thomopoulos SI, Zhu AH, Strike LT, Agartz I, Alhusaini S, Almeida MAA, Alnæs D, Amlien IK, Andersson M, Ard T, Armstrong NJ, Ashley-Koch A, Atkins JR, Bernard M, Brouwer RM, Buimer EEL, Bülow R, Bürger C, Cannon DM, Chakravarty M, Chen Q, Cheung JW, Couvy-Duchesne B, Dale AM, Dalvie S, de Araujo TK, de Zubicaray GI, de Zwarte SMC, den Braber A, Doan NT, Dohm K, Ehrlich S, Engelbrecht HR, Erk S, Fan CC, Fedko IO, Foley SF, Ford JM, Fukunaga M, Garrett ME, Ge T, Giddaluru S, Goldman AL, Green MJ, Groenewold NA, Grotegerd D, Gurholt TP, Gutman BA, Hansell NK, Harris MA, Harrison MB, Haswell CC, Hauser M, Herms S, Heslenfeld DJ, Ho NF, Hoehn D, Hoffmann P, Holleran L, Hoogman M, Hottenga JJ, Ikeda M, Janowitz D, Jansen IE, Jia T, Jockwitz C, Kanai R, Karama S, Kasperaviciute D, Kaufmann T, Kelly S, Kikuchi M, Klein M, Knapp M, Knodt AR, Krämer B, Lam M, Lancaster TM, Lee PH, Lett TA, Lewis LB, Lopes-Cendes I, Luciano M, Macciardi F, Marquand AF, Mathias SR, Melzer TR, Milaneschi Y, et alGrasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Ching CRK, McMahon MAB, Shatokhina N, Zsembik LCP, Thomopoulos SI, Zhu AH, Strike LT, Agartz I, Alhusaini S, Almeida MAA, Alnæs D, Amlien IK, Andersson M, Ard T, Armstrong NJ, Ashley-Koch A, Atkins JR, Bernard M, Brouwer RM, Buimer EEL, Bülow R, Bürger C, Cannon DM, Chakravarty M, Chen Q, Cheung JW, Couvy-Duchesne B, Dale AM, Dalvie S, de Araujo TK, de Zubicaray GI, de Zwarte SMC, den Braber A, Doan NT, Dohm K, Ehrlich S, Engelbrecht HR, Erk S, Fan CC, Fedko IO, Foley SF, Ford JM, Fukunaga M, Garrett ME, Ge T, Giddaluru S, Goldman AL, Green MJ, Groenewold NA, Grotegerd D, Gurholt TP, Gutman BA, Hansell NK, Harris MA, Harrison MB, Haswell CC, Hauser M, Herms S, Heslenfeld DJ, Ho NF, Hoehn D, Hoffmann P, Holleran L, Hoogman M, Hottenga JJ, Ikeda M, Janowitz D, Jansen IE, Jia T, Jockwitz C, Kanai R, Karama S, Kasperaviciute D, Kaufmann T, Kelly S, Kikuchi M, Klein M, Knapp M, Knodt AR, Krämer B, Lam M, Lancaster TM, Lee PH, Lett TA, Lewis LB, Lopes-Cendes I, Luciano M, Macciardi F, Marquand AF, Mathias SR, Melzer TR, Milaneschi Y, Mirza-Schreiber N, Moreira JCV, Mühleisen TW, Müller-Myhsok B, Najt P, Nakahara S, Nho K, Loohuis LMO, Orfanos DP, Pearson JF, Pitcher TL, Pütz B, Quidé Y, Ragothaman A, Rashid FM, Reay WR, Redlich R, Reinbold CS, Repple J, Richard G, Riede BC, Risacher SL, Rocha CS, Mota NR, Salminen L, Saremi A, Saykin AJ, Schlag F, Schmaal L, Schofield PR, Secolin R, Shapland CY, Shen L, Shin J, Shumskaya E, Sønderby IE, Sprooten E, Tansey KE, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Turner JA, Uhlmann A, Vallerga CL, van derMeer D, van Donkelaar MMJ, van Eijk L, van Erp TGM, van Haren NEM, van Rooij D, van Tol MJ, Veldink JH, Verhoef E, Walton E, Wang M, Wang Y, Wardlaw JM, Wen W, Westlye LT, Whelan CD, Witt SH, Wittfeld K, Wolf C, Wolfers T, Wu JQ, Yasuda CL, Zaremba D, Zhang Z, Zwiers MP, Artiges E, Assareh AA, Ayesa-Arriola R, Belger A, Brandt CL, Brown GG, Cichon S, Curran JE, Davies GE, Degenhardt F, Dennis MF, Dietsche B, Djurovic S, Doherty CP, Espiritu R, Garijo D, Gil Y, Gowland PA, Green RC, Häusler AN, Heindel W, Ho BC, Hoffmann WU, Holsboer F, Homuth G, Hosten N, Jack CR, Jang M, Jansen A, Kimbrel NA, Kolskår K, Koops S, Krug A, Lim KO, Luykx JJ, Mathalon DH, Mather KA, Mattay VS, Matthews S, Van Son JM, McEwen SC, Melle I, Morris DW, Mueller BA, Nauck M, Nordvik JE, Nöthen MM, O’Leary DS, Opel N, Martinot MLP, Pike GB, Preda A, Quinlan EB, Rasser PE, Ratnakar V, Reppermund S, Steen VM, Tooney PA, Torres FR, Veltman DJ, Voyvodic JT, Whelan R, White T, Yamamori H, Adams HHH, Bis JC, Debette S, Decarli C, Fornage M, Gudnason V, Hofer E, Ikram MA, Launer L, Longstreth WT, Lopez OL, Mazoyer B, Mosley TH, Roshchupkin GV, Satizabal CL, Schmidt R, Seshadri S, Yang Q, Alzheimer’s Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson’s Progression Markers Initiative, Alvim MKM, Ames D, Anderson TJ, Andreassen OA, Arias-Vasquez A, Bastin ME, Baune BT, Beckham JC, Blangero J, Boomsma DI, Brodaty H, Brunner HG, Buckner RL, Buitelaar JK, Bustillo JR, Cahn W, Cairns MJ, Calhoun V, Carr VJ, Caseras X, Caspers S, Cavalleri GL, Cendes F, Corvin A, Crespo-Facorro B, Dalrymple-Alford JC, Dannlowski U, de Geus EJC, Deary IJ, Delanty N, Depondt C, Desrivières S, Donohoe G, Espeseth T, Fernández G, Fisher SE, Flor H, Forstner AJ, Francks C, Franke B, Glahn DC, Gollub RL, Grabe HJ, Gruber O, Håberg AK, Hariri AR, Hartman CA, Hashimoto R, Heinz A, Henskens FA, Hillegers MHJ, Hoekstra PJ, Holmes AJ, Hong LE, Hopkins WD, Pol HEH, Jernigan TL, Jönsson EG, Kahn RS, Kennedy MA, Kircher TTJ, Kochunov P, Kwok JBJ, Le Hellard S, Loughland CM, Martin NG, Martinot JL, McDonald C, McMahon KL, Meyer-Lindenberg A, Michie PT, Morey RA, Mowry B, Nyberg L, Oosterlaan J, Ophoff RA, Pantelis C, Paus T, Pausova Z, Penninx BWJH, Polderman TJC, Posthuma D, Rietschel M, Roffman JL, Rowland LM, Sachdev PS, Sämann PG, Schall U, Schumann G, Scott RJ, Sim K, Sisodiya SM, Smoller JW, Sommer IE, St Pourcain B, Stein DJ, Toga AW, Trollor JN, Van der Wee NJA, van ‘t Ent D, Völzke H, Walter H, Weber B, Weinberger DR, Wright MJ, Zhou J, Stein JL, Thompson PM, Medland SE, Enhancing NeuroImaging Genetics through Meta-Analysis Consortium (ENIGMA)—Genetics working group. The genetic architecture of the human cerebral cortex. Science 2020; 367:eaay6690. [PMID: 32193296 PMCID: PMC7295264 DOI: 10.1126/science.aay6690] [Show More Authors] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
Abstract
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Katrina L. Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jodie N. Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Personalized Healthcare, Genentech, Inc., South San Francisco, CA, USA
| | - Penelope A. Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Graduate Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary Agnes B. McMahon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Leo C. P. Zsembik
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Alyssa H. Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Lachlan T. Strike
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Ingrid Agartz
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Neurology Department, Yale School of Medicine, New Haven, CT, USA
| | - Marcio A. A. Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Dag Alnæs
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inge K. Amlien
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Tyler Ard
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua R. Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
| | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rachel M. Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Elizabeth E. L. Buimer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Robin Bülow
- Institute for Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Bürger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dara M. Cannon
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joshua W. Cheung
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Baptiste Couvy-Duchesne
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anders M. Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Tânia K. de Araujo
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Brazil
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Greig I. de Zubicaray
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anouk den Braber
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Nhat Trung Doan
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hannah-Ruth Engelbrecht
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
| | - Iryna O. Fedko
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonya F. Foley
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Judith M. Ford
- San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Sudheer Giddaluru
- NORMENT K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Nynke A. Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Tiril P. Gurholt
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Boris A. Gutman
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Narelle K. Hansell
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Mathew A. Harris
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Marc B. Harrison
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Courtney C. Haswell
- Duke UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
| | - Michael Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Stefan Herms
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, Germany
| | - Dirk J. Heslenfeld
- Department of Cognitive and Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - New Fei Ho
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - David Hoehn
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Per Hoffmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Iris E. Jansen
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Neurology, Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ryota Kanai
- Department of Neuroinformatics, Araya, Inc., Tokyo, Japan
- Sackler Centre for Consciousness Science, School of Psychology, University of Sussex, Falmer, UK
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Sherif Karama
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dalia Kasperaviciute
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Genomics England, Queen Mary University of London, London, UK
| | - Tobias Kaufmann
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sinead Kelly
- Public Psychiatry Division, Massachusetts Mental Health Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Knapp
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Annchen R. Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Max Lam
- Research Division, Institute of Mental Health, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tristram A. Lett
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lindsay B. Lewis
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC, Canada
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Brazil
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine University of California, Irvine, Irvine, CA, USA
| | - Andre F. Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, Netherlands
| | - Samuel R. Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Tracy R. Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Brain Research New Zealand-Rangahau Roro Aotearoa, Christchurch, New Zealand
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, Netherlands
| | - Nazanin Mirza-Schreiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Jose C. V. Moreira
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- IC-Institute of Computing, Campinas, Brazil
| | - Thomas W. Mühleisen
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, Liverpool, UK
| | - Pablo Najt
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Soichiro Nakahara
- Department of Psychiatry and Human Behavior, School of Medicine University of California, Irvine, Irvine, CA, USA
- Drug Discovery Research, Astellas Pharmaceuticals, Miyukigaoka, Tsukuba, Ibaraki , Japan
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Loes M. Olde Loohuis
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, Christchurch, New Zealand
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Toni L. Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Brain Research New Zealand-Rangahau Roro Aotearoa, Christchurch, New Zealand
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Faisal M. Rashid
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - William R. Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Céline S. Reinbold
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Geneviève Richard
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Brandalyn C. Riede
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristiane S. Rocha
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Brazil
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Nina R. Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, Netherlands
| | - Lauren Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Arvin Saremi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fenja Schlag
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence for Youth Mental Health, Melbourne, VIC, Australia
- The Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Vrije Universiteit University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rodrigo Secolin
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Brazil
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Population Neuroscience & Developmental Neuroimaging, Bloorview Research Institute, University of Toronto, East York, ON, Canada
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Ida E. Sønderby
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Emma Sprooten
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Katherine E. Tansey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Diana Tordesillas-Gutiérrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
- Centro Investigacion Biomedica en Red Salud Mental, Santander, Spain
| | - Jessica A. Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Mind Research Network, Albuquerque, NM, USA
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Costanza L. Vallerga
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Dennis van derMeer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | - Liza van Eijk
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Theo G. M. van Erp
- Department of Psychiatry and Human Behavior, School of Medicine University of California, Irvine, Irvine, CA, USA
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, Netherlands
| | - Marie-José van Tol
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Esther Walton
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, Bristol, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Mingyuan Wang
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Yunpeng Wang
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Lars T. Westlye
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Christopher D. Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases Rostock/Greifswald, Greifswald, Germany
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Thomas Wolfers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Clarissa L. Yasuda
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- Department of Neurology, FCM, UNICAMP, Campinas, Brazil
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Zuo Zhang
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Marcel P. Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Eric Artiges
- INSERM ERL Developmental Trajectories and Psychiatry; Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, Université de Paris, and CNRS 9010, Centre Borelli, Gif-sur-Yvette, France
| | - Amelia A. Assareh
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Rosa Ayesa-Arriola
- Centro Investigacion Biomedica en Red Salud Mental, Santander, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Santander, Spain
| | - Aysenil Belger
- Duke UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Department of Psychiatry and Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine L. Brandt
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gregory G. Brown
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Michelle F. Dennis
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Colin P. Doherty
- Department of Neurology, St James’s Hospital, Dublin, Ireland
- Academic Unit of Neurology, TBSI, Dublin, Ireland
- Future Neuro, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ryan Espiritu
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel Garijo
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Yolanda Gil
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Robert C. Green
- Brigham and Women’s Hospital, Boston, MA, USA
- The Broad Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander N. Häusler
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Wolfgang U. Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases Rostock/Greifswald, Greifswald, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Georg Homuth
- University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | | | - MiHyun Jang
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Nathan A. Kimbrel
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Knut Kolskår
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Sanne Koops
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Kelvin O. Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Jurjen J. Luykx
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- GGNet Mental Health, Apeldoorn, Netherlands
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Mental Health Service 116d, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - Karen A. Mather
- Neuroscience Research Australia, Sydney, NSW, Australia
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Venkata S. Mattay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Matthews
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Jaqueline Mayoral Van Son
- Centro Investigacion Biomedica en Red Salud Mental, Santander, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Santander, Spain
| | - Sarah C. McEwen
- Pacific Brain Health Center, Santa Monica, CA, USA
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Ingrid Melle
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Derek W. Morris
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Bryon A. Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | | | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Daniel S. O’Leary
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Marie-Laure Paillère Martinot
- INSERM ERL Developmental Trajectories and Psychiatry; Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, Université de Paris, and CNRS 9010, Centre Borelli, Gif-sur-Yvette, France
- APHP.Sorbonne Université, Child and Adolescent Psychiatry Department, Pitié Salpêtrière Hospital, Paris, France
| | - G. Bruce Pike
- Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Adrian Preda
- School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Erin B. Quinlan
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Paul E. Rasser
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Priority Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Varun Ratnakar
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Vidar M. Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Paul A. Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Fábio R. Torres
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Brazil
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, Netherlands
| | - James T. Voyvodic
- Duke UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Robert Whelan
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Radiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hieab H. H. Adams
- Department of Epidemiology, Erasmus MC Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie Debette
- INSERM, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, University of Bordeaux, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, Bordeaux, France
| | - Charles Decarli
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - W. T. Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard Mazoyer
- Neurodegenerative Diseases Institute UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
| | - Thomas H. Mosley
- MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gennady V. Roshchupkin
- Department of Epidemiology, Erasmus MC Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
- Medical Informatics, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Epidemiology & Biostatistics, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | - Marina K. M. Alvim
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- Department of Neurology, FCM, UNICAMP, Campinas, Brazil
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, VIC, Australia
- National Ageing Research Institute, Melbourne, VIC, Australia
| | - Tim J. Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Brain Research New Zealand-Rangahau Roro Aotearoa, Christchurch, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand
| | - Ole A. Andreassen
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, Netherlands
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jean C. Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham, VA Healthcare System, Durham, NC, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, Australia
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Randy L. Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| | - Juan R. Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Randwick, NSW, Australia
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Gianpiero L. Cavalleri
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Fernando Cendes
- BRAINN-Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- Department of Neurology, FCM, UNICAMP, Campinas, Brazil
| | - Aiden Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- Centro Investigacion Biomedica en Red Salud Mental, Santander, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Santander, Spain
- Hospital Universitario Virgen Del Rocio, IBiS, Universidad De Sevilla, Sevilla, Spain
| | - John C. Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Brain Research New Zealand-Rangahau Roro Aotearoa, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Future Neuro, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Thomas Espeseth
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, Netherlands
| | - Simon E. Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas J. Forstner
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, Netherlands
| | - David C. Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children’s Hospital and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Randy L. Gollub
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases Rostock/Greifswald, Greifswald, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - Asta K. Håberg
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, Netherlands
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frans A. Henskens
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Health Behaviour Research Group, University of Newcastle, Callaghan, NSW, Australia
| | - Manon H. J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Avram J. Holmes
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - L. Elliot Hong
- Maryland Psychiatry Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William D. Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Terry L. Jernigan
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Cognitive Science, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Center for Human Development, University of California San Diego, La Jolla, CA, USA
| | - Erik G. Jönsson
- NORMENT-K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - René S. Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin A. Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter Kochunov
- Maryland Psychiatry Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John B. J. Kwok
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Neurogenetics and Epigenetics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Carmel M. Loughland
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter New England Mental Health Service, Newcastle, NSW, Australia
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jean-Luc Martinot
- INSERM ERL Developmental Trajectories and Psychiatry; Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, Université de Paris, and CNRS 9010, Centre Borelli, Gif-sur-Yvette, France
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Katie L. McMahon
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Herston Imaging Research Facility, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Rajendra A. Morey
- Duke UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jaap Oosterlaan
- Emma Children’s Hospital Academic Medical Center, Amsterdam, Netherlands
- Department of Pediatrics, Vrije Universiteit Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- NorthWestern Mental Health, Sunshine Hospital, St Albans, VIC, Australia
| | - Tomas Paus
- Bloorview Research Institute, University of Toronto, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Developing Brain, Child Mind Institute, New York, NY, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, Netherlands
| | - Tinca J. C. Polderman
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Danielle Posthuma
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Clinical Genetics, Vrije Universiteit Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joshua L. Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Laura M. Rowland
- Maryland Psychiatry Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, NSW, Australia
| | | | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- PONS Research Group, Department of Psychiatry and Psychotherapie, Charité Campus Mitte, Humboldt University Berlin, Berlin, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Division of Molecular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Kang Sim
- General Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, ChalfontSt-Peter, UK
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
| | - Iris E. Sommer
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Medical and Biological Psychology, University of Bergen, Bergen, Norway
| | - Beate St Pourcain
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Dan J. Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Department of Developmental Disability Neuropsychiatry, University of New South Wales, Sydney, NSW, Australia
| | | | - Dennis van ‘t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Germany
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Psychiatry, Neurology, Neuroscience, Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret J. Wright
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Juan Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason L. Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
265
|
Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S, Bralten J, Bruin WB, Bülow R, Chen J, Chye Y, Dannlowski U, de Kovel CGF, Donohoe G, Eyler LT, Faraone SV, Favre P, Filippi CA, Frodl T, Garijo D, Gil Y, Grabe HJ, Grasby KL, Hajek T, Han LKM, Hatton SN, Hilbert K, Ho TC, Holleran L, Homuth G, Hosten N, Houenou J, Ivanov I, Jia T, Kelly S, Klein M, Kwon JS, Laansma MA, Leerssen J, Lueken U, Nunes A, Neill JO, Opel N, Piras F, Piras F, Postema MC, Pozzi E, Shatokhina N, Soriano-Mas C, Spalletta G, Sun D, Teumer A, Tilot AK, Tozzi L, van der Merwe C, Van Someren EJW, van Wingen GA, Völzke H, Walton E, Wang L, Winkler AM, Wittfeld K, Wright MJ, Yun JY, Zhang G, Zhang-James Y, Adhikari BM, Agartz I, Aghajani M, Aleman A, Althoff RR, Altmann A, Andreassen OA, Baron DA, Bartnik-Olson BL, Marie Bas-Hoogendam J, Baskin-Sommers AR, Bearden CE, Berner LA, Boedhoe PSW, Brouwer RM, Buitelaar JK, Caeyenberghs K, Cecil CAM, Cohen RA, Cole JH, Conrod PJ, De Brito SA, de Zwarte SMC, Dennis EL, Desrivieres S, Dima D, Ehrlich S, Esopenko C, Fairchild G, Fisher SE, Fouche JP, Francks C, et alThompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S, Bralten J, Bruin WB, Bülow R, Chen J, Chye Y, Dannlowski U, de Kovel CGF, Donohoe G, Eyler LT, Faraone SV, Favre P, Filippi CA, Frodl T, Garijo D, Gil Y, Grabe HJ, Grasby KL, Hajek T, Han LKM, Hatton SN, Hilbert K, Ho TC, Holleran L, Homuth G, Hosten N, Houenou J, Ivanov I, Jia T, Kelly S, Klein M, Kwon JS, Laansma MA, Leerssen J, Lueken U, Nunes A, Neill JO, Opel N, Piras F, Piras F, Postema MC, Pozzi E, Shatokhina N, Soriano-Mas C, Spalletta G, Sun D, Teumer A, Tilot AK, Tozzi L, van der Merwe C, Van Someren EJW, van Wingen GA, Völzke H, Walton E, Wang L, Winkler AM, Wittfeld K, Wright MJ, Yun JY, Zhang G, Zhang-James Y, Adhikari BM, Agartz I, Aghajani M, Aleman A, Althoff RR, Altmann A, Andreassen OA, Baron DA, Bartnik-Olson BL, Marie Bas-Hoogendam J, Baskin-Sommers AR, Bearden CE, Berner LA, Boedhoe PSW, Brouwer RM, Buitelaar JK, Caeyenberghs K, Cecil CAM, Cohen RA, Cole JH, Conrod PJ, De Brito SA, de Zwarte SMC, Dennis EL, Desrivieres S, Dima D, Ehrlich S, Esopenko C, Fairchild G, Fisher SE, Fouche JP, Francks C, Frangou S, Franke B, Garavan HP, Glahn DC, Groenewold NA, Gurholt TP, Gutman BA, Hahn T, Harding IH, Hernaus D, Hibar DP, Hillary FG, Hoogman M, Hulshoff Pol HE, Jalbrzikowski M, Karkashadze GA, Klapwijk ET, Knickmeyer RC, Kochunov P, Koerte IK, Kong XZ, Liew SL, Lin AP, Logue MW, Luders E, Macciardi F, Mackey S, Mayer AR, McDonald CR, McMahon AB, Medland SE, Modinos G, Morey RA, Mueller SC, Mukherjee P, Namazova-Baranova L, Nir TM, Olsen A, Paschou P, Pine DS, Pizzagalli F, Rentería ME, Rohrer JD, Sämann PG, Schmaal L, Schumann G, Shiroishi MS, Sisodiya SM, Smit DJA, Sønderby IE, Stein DJ, Stein JL, Tahmasian M, Tate DF, Turner JA, van den Heuvel OA, van der Wee NJA, van der Werf YD, van Erp TGM, van Haren NEM, van Rooij D, van Velzen LS, Veer IM, Veltman DJ, Villalon-Reina JE, Walter H, Whelan CD, Wilde EA, Zarei M, Zelman V. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020; 10:100. [PMID: 32198361 PMCID: PMC7083923 DOI: 10.1038/s41398-020-0705-1] [Show More Authors] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
Collapse
Affiliation(s)
- Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Joanna Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sara Bertolín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Willem B Bruin
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Carolien G F de Kovel
- Biometris Wageningen University and Research, Wageningen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Gary Donohoe
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline Favre
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
| | - Courtney A Filippi
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Garijo
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
| | - Yolanda Gil
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Laura K M Han
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sean N Hatton
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tiffany C Ho
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laurena Holleran
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Josselin Houenou
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
- APHP, Mondor University Hospitals, School of Medicine, DMU Impact, Psychiatry Department, Créteil, France
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Max A Laansma
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Joseph O' Neill
- Child & Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Merel C Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM-G17, Madrid, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Amanda K Tilot
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Leonardo Tozzi
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Celia van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Psychiatry and Integrative Neurophysiology, VU University, Amsterdam UMC, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Lei Wang
- Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anderson M Winkler
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bhim M Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Research & Innovation, GGZ InGeest, Amsterdam, The Netherlands
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert R Althoff
- Psychiatry, Pediatrics, and Psychological Sciences, University of Vermont, Burlington, VT, USA
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David A Baron
- Provost and Senior Vice President, Western University of Health Sciences, Pomona, CA, USA
| | | | - Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, USA
- Clinical and Health Psychology, Gainesville, FL, USA
| | - James H Cole
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Patricia J Conrod
- Universite de Montreal, Centre de Recherche CHU Ste-Justine, Montreal, QC, Canada
| | - Stephane A De Brito
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emily L Dennis
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | | | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SU/UCT MRC Unit on Risk & Resilience in Mental Disorders, University of Stellenbosch, Stellenbosch, South Africa
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of British Columbia, Vancouver, Canada
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hugh P Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Boris A Gutman
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Institute for Information Transmission Problems, Kharkevich Institute, Moscow, Russian Federation
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ian H Harding
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Dennis Hernaus
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Frank G Hillary
- Department of Psychology, Penn State University, University Park, PA, USA
- Social Life and Engineering Sciences Imaging Center, University Park, PA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - George A Karkashadze
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
| | - Eduard T Klapwijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Rebecca C Knickmeyer
- Department of Pediatrics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- CBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang-Zhen Kong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sook-Lei Liew
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Chan Division of Occupational Science and Occupational Therapy, Los Angeles, CA, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Psychiatry, San Diego, CA, USA
| | - Agnes B McMahon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- The Kavli Foundation, Los Angeles, CA, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rajendra A Morey
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
- Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Sven C Mueller
- Experimental Clinical & Health Psychology, Ghent University, Ghent, Belgium
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | | | - Leyla Namazova-Baranova
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
- Department of Pediatrics, Russian National Research Medical University MoH RF, Moscow, Russian Federation
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Daniel S Pine
- National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, Charite, Humboldt University, Berlin, Germany
| | - Mark S Shiroishi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - David F Tate
- Department of Neurology, TBI and Concussion Center, Salt Lake City, UT, USA
- Missouri Institute of Mental Health, Berkeley, MO, USA
| | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research and Early Development, Biogen Inc, Cambridge, MA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - Vladimir Zelman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
266
|
Fu J, Liu F, Qin W, Xu Q, Yu C. Individual-Level Identification of Gene Expression Associated with Volume Differences among Neocortical Areas. Cereb Cortex 2020; 30:3655-3666. [PMID: 32186704 DOI: 10.1093/cercor/bhz333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
The human cerebral cortex is the source of many complex behaviors and is a vulnerable target of various neuropsychiatric disorders, but transcriptional profiles linked to cerebral cortical volume (CCV) differences across brain areas remain unknown. Here, we screened CCV-related genes using an across-sample spatial correlation analysis in 6 postmortem brains and then individually validated these correlations in 1091 subjects with different ages and ethnicities. We identified 62 genes whose transcriptional profiles were repeatedly associated with CCV in more than 90% of individuals. CCV-related genes were specifically expressed in neurons and in developmental periods from middle childhood to young adulthood, were enriched in ion channels and developmental processes, and showed significant overlap with genes linked to brain functional activity and mental disorders. The identified genes represent the conserved transcriptional architecture of the human cerebral cortex, suggesting a link between conserved gene transcription and neocortical structural properties.
Collapse
Affiliation(s)
- Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | |
Collapse
|
267
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|
268
|
Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism 2020; 11:19. [PMID: 32164788 PMCID: PMC7069029 DOI: 10.1186/s13229-020-00324-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. Methods Mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. Results Dlg2–/– mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2–/– mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2–/– dorsolateral striatum was significantly reduced. Conclusion These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.
Collapse
Affiliation(s)
- Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea.
| |
Collapse
|
269
|
Du J, Hou K, Mi S, Ji H, Ma S, Ba Y, Hu S, Xie R, Chen L. Malignant Evaluation and Clinical Prognostic Values of m6A RNA Methylation Regulators in Glioblastoma. Front Oncol 2020; 10:208. [PMID: 32211315 PMCID: PMC7075451 DOI: 10.3389/fonc.2020.00208] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation, the most common form of mRNA modification and regulated by the m6A RNA methylation regulators ("writers," "erasers," and "readers"), has been reported to be associated with the progression of the malignant tumor. However, its role in glioblastoma (GBM) has been poorly known. This study aimed to identify the expression, potential functions, and prognostic values of m6A RNA methylation regulators in GBM. Here, we revealed that the 13 central m6A RNA methylation regulators were firmly related to the clinical and molecular phenotype of GBM. Taking advantage of consensus cluster analysis, we obtained two categories of GBM samples and found malignancy-related processes of m6A methylation regulators and compounds that specifically targeted the malignant processes. Besides, we also obtained a list of genes with poor prognosis in GBM. Finally, we derived a risk-gene signature with three selected m6A RNA methylation regulators, which allowed us to extend the in-depth study and dichotomized the OS of patients with GBM into high- and low-risk subgroups. Notably, this risk-gene signature could be used as independent prognostic markers and accurate clinicopathological parameter predictors. In conclusion, m6A RNA methylation regulators are a type of vital participant in the malignant progression of GBM, with a critical potential in the prognostic stratification and treatment strategies of GBM.
Collapse
Affiliation(s)
- Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
270
|
Xiang B, Yang J, Zhang J, Yu M, Huang C, He W, Lei W, Chen J, Liu K. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109764. [PMID: 31676466 DOI: 10.1016/j.pnpbp.2019.109764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
Numerous variants associated with increased risk for SCZ have undergone positive selection and were associated with human brain development, but which brain regions and developmental stages were influenced by the positive selection for SCZ risk alleles are unclear. We analyzed SCZ using summary statistics from a genome-wide association study (GWAS) from the Psychiatric Genomics Consortium (PGC). Machine-learning scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele has reached fixation) and incomplete selection (loci where a selected allele has not yet reached fixation). Based on the p value of single nucleotide polymorphisms (SNPs) with selection scores in the top 5%, we formed five subgroups: p < 0.0001, 0.001, 0.01, 0.05, or 0.1. We found that 48 and 29 genes (p < 0.0001) in complete and incomplete selection, respectively, were enrichedfor the transcriptionalco-expressionprofilein theprenatal dorsolateral prefrontal cortex (DFC), inferior parietal cortex (IPC), and ventrolateral prefrontal cortex (VFC). Core genes (GNA13, TBC1D19, and ZMYM4) involved in regulating early brain development were identified in these three brain regions. RNA sequencing for primary cortical neurons that were transfected Gna13 overexpressed lentivirus demonstrated that 135 gene expression levels changed in the Gna13 overexpressed groups compared with the controls. Gene-set analysis identified important associations among common variants of these 13 genes, which were associated with neurodevelopment and putamen volume [p = 0.031; family-wise error correction (FWEC)], SCZ (p = 0.022; FWEC). The study indicate that certain SCZ risk alleles were likely to undergo positive selection during human evolution due to their involvement in the development of prenatal DFC, IPC and VFC, and suggest that SCZ is related to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Bo Xiang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Juanjuan Yang
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, Suzhou, Jiangsu Province, China
| | - Jin Zhang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chaohua Huang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wenying He
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Lei
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Chen
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
271
|
Choi KW, Han KM, Kim H, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Comparison of shape alterations of the thalamus and caudate nucleus between drug-naïve major depressive disorder patients and healthy controls. J Affect Disord 2020; 264:279-285. [PMID: 32056762 DOI: 10.1016/j.jad.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although structural alterations have been reported in patients with major depressive disorder (MDD), very few studies have compared the shape alterations of the subcortical regions between drug-naïve MDD patients and healthy controls (HCs). Therefore, we investigated and compared the subcortical shape alterations and volumetric changes between drug-naïve MDD patients and HCs in this study. METHODS This study included 45 drug-naïve MDD patients and 83 HCs, who underwent three-dimensional (3-D) T1-weighted structural magnetic resonance imaging. Surface-based vertex analysis (SVA) was performed with automated segmentation of the bilateral caudate nuclei, putamina, nuclei accumbens, thalami, pallidum, hippocampi, amygdalae, and brainstem. SVA revealed regional contractions of the thalamus (bilateral medial and lateral nuclei) and right caudate nucleus (medial wall and anterosuperior areas) in the drug-naïve MDD patients when compared to HCs RESULTS: In volume analysis, the drug-naïve MDD patients showed a significant decrease in the volume of bilateral thalami compared with HCs (after Bonferroni correction p < 0.003). We identified morphometric contractions in bilateral thalami and right caudate nucleus in the drug-naïve MDD patients (p < 0.05). CONCLUSIONS The present study implied that with cortical shape changes, the subcortical brain alterations could contribute to emotional dysregulation in the drug-naïve MDD patients.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
272
|
Xu Q, Guo L, Cheng J, Wang M, Geng Z, Zhu W, Zhang B, Liao W, Qiu S, Zhang H, Xu X, Yu Y, Gao B, Han T, Yao Z, Cui G, Liu F, Qin W, Zhang Q, Li MJ, Liang M, Chen F, Xian J, Li J, Zhang J, Zuo XN, Wang D, Shen W, Miao Y, Yuan F, Lui S, Zhang X, Xu K, Zhang LJ, Ye Z, Yu C. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol Psychiatry 2020; 25:517-529. [PMID: 31827248 PMCID: PMC7042768 DOI: 10.1038/s41380-019-0627-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 02/05/2023]
Abstract
The Chinese Imaging Genetics (CHIMGEN) study establishes the largest Chinese neuroimaging genetics cohort and aims to identify genetic and environmental factors and their interactions that are associated with neuroimaging and behavioral phenotypes. This study prospectively collected genomic, neuroimaging, environmental, and behavioral data from more than 7000 healthy Chinese Han participants aged 18-30 years. As a pioneer of large-sample neuroimaging genetics cohorts of non-Caucasian populations, this cohort can provide new insights into ethnic differences in genetic-neuroimaging associations by being compared with Caucasian cohorts. In addition to micro-environmental measurements, this study also collects hundreds of quantitative macro-environmental measurements from remote sensing and national survey databases based on the locations of each participant from birth to present, which will facilitate discoveries of new environmental factors associated with neuroimaging phenotypes. With lifespan environmental measurements, this study can also provide insights on the macro-environmental exposures that affect the human brain as well as their timing and mechanisms of action.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 450003, Zhengzhou, China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, 450003, Zhengzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, 210008, Nanjing, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorder, 410008, Changsha, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, 030001, Taiyuan, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, 310009, Hangzhou, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Bo Gao
- Department of Radiology, Yantai Yuhuangding Hospital, 264000, Yantai, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, 300350, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, 300350, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hosptial, Fudan University, 200040, Shanghai, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), 710038, Xi'an, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Mulin Jun Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, 300203, Tianjin, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital, 570311, Haikou, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, 730050, Lanzhou, China
| | - Xi-Nian Zuo
- Department of Psychology, University of Chinese Academy of Sciences (CAS), 100049, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, 300192, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Fei Yuan
- Department of Radiology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, 300162, Tianjin, China
| | - Su Lui
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 610041, Chengdu, China
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, 230026, Hefei, China
- School of Life Sciences, University of Science & Technology of China, 230026, Hefei, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, 221006, Xuzhou, China
- School of Medical Imaging, Xuzhou Medical University, 221004, Xuzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
273
|
Sønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn N, Blangero J, Boomsma DI, Bralten J, Brattbak HR, Brodaty H, Brouwer RM, Bülow R, Calhoun V, Caspers S, Cavalleri G, Chen CH, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivières S, Donohoe G, Draganski B, Ehrlich S, Espeseth T, Fisher SE, Franke B, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe H, Groenewold NA, Haavik J, Håberg A, Hashimoto R, Hehir-Kwa JY, Heinz A, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff HE, Ikeda M, Jahanshad N, Jernigan T, Jockwitz C, Johansson S, Jonsdottir GA, Jönsson EG, Kahn R, Kaufmann T, Kelly S, Kikuchi M, Knowles EEM, Kolskår KK, Kwok JB, Hellard SL, Leu C, Liu J, Lundervold AJ, Lundervold A, Martin NG, Mather K, Mathias SR, McCormack M, McMahon KL, McRae A, Milaneschi Y, Moreau C, Morris D, Mothersill D, Mühleisen TW, Murray R, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff R, Paus T, Pausova Z, Penninx B, Peralta JM, Pike B, Prieto C, et alSønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn N, Blangero J, Boomsma DI, Bralten J, Brattbak HR, Brodaty H, Brouwer RM, Bülow R, Calhoun V, Caspers S, Cavalleri G, Chen CH, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivières S, Donohoe G, Draganski B, Ehrlich S, Espeseth T, Fisher SE, Franke B, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe H, Groenewold NA, Haavik J, Håberg A, Hashimoto R, Hehir-Kwa JY, Heinz A, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff HE, Ikeda M, Jahanshad N, Jernigan T, Jockwitz C, Johansson S, Jonsdottir GA, Jönsson EG, Kahn R, Kaufmann T, Kelly S, Kikuchi M, Knowles EEM, Kolskår KK, Kwok JB, Hellard SL, Leu C, Liu J, Lundervold AJ, Lundervold A, Martin NG, Mather K, Mathias SR, McCormack M, McMahon KL, McRae A, Milaneschi Y, Moreau C, Morris D, Mothersill D, Mühleisen TW, Murray R, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff R, Paus T, Pausova Z, Penninx B, Peralta JM, Pike B, Prieto C, Pudas S, Quinlan E, Quintana DS, Reinbold CS, Marques TR, Reymond A, Richard G, Rodriguez-Herreros B, Roiz-Santiañez R, Rokicki J, Rucker J, Sachdev P, Sanders AM, Sando SB, Schmaal L, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Sisodiya S, Steen VM, Stein DJ, Steinberg S, Strike L, Teumer A, Thalamuthu A, Tordesillas-Gutierrez D, Turner J, Ueland T, Uhlmann A, Ulfarsson MO, van 't Ent D, van der Meer D, van Haren NEM, Vaskinn A, Vassos E, Walters GB, Wang Y, Wen W, Whelan CD, Wittfeld K, Wright M, Yamamori H, Zayats T, Agartz I, Westlye LT, Jacquemont S, Djurovic S, Stefánsson H, Stefánsson K, Thompson P, Andreassen OA. Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Mol Psychiatry 2020; 25:584-602. [PMID: 30283035 PMCID: PMC7042770 DOI: 10.1038/s41380-018-0118-1] [Show More Authors] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Abstract
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Ida E Sønderby
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Nhat Trung Doan
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
- Janssen Research and Development, La Jolla, CA, USA
| | - Sandra Martin-Brevet
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Abdel Abdellaoui
- Biological Psychology, Vrije Universiteit Amsterdam, van Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - David Ames
- National Ageing Research Institute, Melbourne, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Wilhelm-Johnen-Str., 52425, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University of Dusseldorf, Merowingerplatz 1A, 40225, Dusseldorf, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Wilhelm-Johnen-Str., 52425, Juelich, Germany
| | - Michael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden
| | | | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, Canada
| | - Nicholas Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, One West University Blvd., 78520, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, One West University Blvd., 78520, Brownsville, TX, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Vrije Universiteit, van der Boechorststraat 1, 1081BT, Amsterdam, Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans-Richard Brattbak
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Henry Brodaty
- Centre for Healthy Brain Ageing and Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Vince Calhoun
- The Mind Research Network, The University of New Mexico, Albuquerque, NM, Mexico
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Wilhelm-Johnen-Str., 52425, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University of Dusseldorf, Merowingerplatz 1A, 40225, Dusseldorf, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Wilhelm-Johnen-Str., 52425, Juelich, Germany
| | - Gianpiero Cavalleri
- The Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Juelich, Leo-Brandt-Strasse 5, 52425, Jülich, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Simone Ciufolini
- Psychosis Studies, Insitute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespingy Park, SE5 8AF, London, United Kingdom
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Benedicto Crespo-Facorro
- Department of Medicine and Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, 39008, Santander, Spain
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, 39011, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, One West University Blvd., 78520, Brownsville, TX, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, Anzio Road, 7925, Cape Town, South Africa
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit, van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
- Amsterdam Neuroscience, VU University medical center, van der Boechorststraat 1, 1081 BT, Amsterdam, NH, Netherlands
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sonja M C de Zwarte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Norman Delanty
- The Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience, University of California at Davis, 4860 Y Street, Suite 3700, Sacramento, California, 95817, USA
| | - Anouk den Braber
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit, van der Boechorststraat 1, 1081 BT, Amsterdam, Netherlands
- Alzheimer Center and Department of Neurology, VU University Medical Center, De Boelelaan 1105, 1081HV, Amsterdam, Netherlands
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, H91 TK33, Galway, Ireland
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Bogdan Draganski
- LREN - Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129, USA
| | - Thomas Espeseth
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Thomas Gareau
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - David C Glahn
- Yale University School of Medicine, 40 Temple Street, Suite 6E, 6511, New Haven, Vaud, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, 300 George Street, 6106, Hartford, CT, USA
| | - Hans Grabe
- Department of Psychiatry und Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Anzio Road, 7925, Cape Town, South Africa
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Asta Håberg
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Andreas Heinz
- Dept. of Psychiatry and Psychotherapie, Charite, Humboldt University, Chariteplatz 1, 10017, Berlin, Germany
| | - Manon H J Hillegers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Child and adolescent Psychiatry / Psychology, Erasmus medical center-Sophia's Childerens hospitaal, Rotterdam, Wytemaweg 8, 3000 CB, Rotterdam, The Netherlands
| | - Per Hoffmann
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Laurena Holleran
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Jouke-Jan Hottenga
- Biological Psychology, Vrije Universiteit Amsterdam, van Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Hilleke E Hulshoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | - Terry Jernigan
- Center for Human Development, University of California San Diego, San Diego, CA, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Wilhelm-Johnen-Str., 52425, Juelich, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Wilhelm-Johnen-Str., 52425, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefan Johansson
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | | | - Erik G Jönsson
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital Solna, R5:00, SE-17176, Stockholm, Sweden
| | - Rene Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias Kaufmann
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sinead Kelly
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Emma E M Knowles
- Department of Psychiatry, Yale University, 40 Temple Street, 6515, New Haven, CT, USA
| | - Knut K Kolskår
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - John B Kwok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Stephanie Le Hellard
- NORMENT - KG Jebsen Centre, Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Lies veg 87, 5021, Bergen, Norway
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Institute of Neurology, University College London, London, United Kingdom
| | - Jingyu Liu
- The Mind Research Network, 1101 Yale Blvd., 87106, Albuquerque, CT, USA
- Dept. of Electrical and Computer Engineering, University of New Mexico, 87131, Albuquerque, New Mexico, USA
| | - Astri J Lundervold
- K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
- Department of Biological and Medical Psychology, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karen Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Samuel R Mathias
- Department of Psychiatry, Yale University, 40 Temple Street, 6515, New Haven, CT, USA
| | - Mark McCormack
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, D02 YN77, Dublin, Ireland
- Centre for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Allan McRae
- Program in Complex Trait Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands, Oldenaller 1, 1081 HJ, Amsterdam, The Netherlands
| | - Clara Moreau
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Derek Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, H91 TK33, Galway, Ireland
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - David Mothersill
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Juelich, Leo-Brandt-Strasse 5, 52425, Jülich, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Robin Murray
- Departments of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jan E Nordvik
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, 90095, USA
| | - Roel Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, 90095, USA
| | - Tomas Paus
- Rotman Research Institute, University of Toronto, Toronto, M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A1, Canada
- Center for Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Department of Psychology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, Canada
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, VU University Medical, Amsterdam, Netherlands
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, One West University Blvd., 78520, Brownsville, TX, USA
| | - Bruce Pike
- Departments of Radiology & Clinical Neuroscience, University of Calgary, Calgary, T2N 1N4, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden
- Department of Integrative Medical Biology, Linnéus väg 9, 901 87, Umeå, Sweden
| | - Erin Quinlan
- Centre for Population Neuroscience and Stratified Medicine, Social, Genetic and Development Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
| | - Daniel S Quintana
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Céline S Reinbold
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, United Kingdom
- Psychiatry Imaging Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode building, CH-1015, Lausanne, Switzerland
| | - Genevieve Richard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Borja Rodriguez-Herreros
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Roberto Roiz-Santiañez
- Department of Medicine and Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, 39008, Santander, Spain
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, 39011, Spain
| | - Jarek Rokicki
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - James Rucker
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Anne-Marthe Sanders
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, University Hospital of Trondheim, Edvard Griegs gate 8, N-7006, Trondheim, Norway
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, 3502, Parkville, New Mexico, Australia
- Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, 3502, Parkville, Victoria, Australia
- Department of Psychiatry, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew J Schork
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, USA
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, Canada
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, 90095, USA
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, London, UK
| | - Vidar M Steen
- NORMENT - KG Jebsen Centre, Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Lies veg 87, 5021, Bergen, Norway
| | - Dan J Stein
- Dept of Psychiatry, University of Cape Town, Groote Schuur Hospital, Anzio Rd, 7925, Cape Town, South Africa
- MRC Unit on Risk & Resilience in Mental Disorders, Stellenbosch, South Africa
| | | | - Lachlan Strike
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbu Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Diana Tordesillas-Gutierrez
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, 39011, Spain
- Neuroimaging Unit, Technological Facilities. Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, 39011, Spain
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Torill Ueland
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Anzio Road, 7925, Cape Town, South Africa
- Department of Psychiatry, Stellenbosch University, TBH Francie van Zijl Avenue, 7500, Cape Town, South Africa
- Department of Psychiatry, 1 South Prospect Street, 5401, Burlington, Vermont, USA
| | - Magnus O Ulfarsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | - Dennis van 't Ent
- Biological Psychology, Vrije Universiteit Amsterdam, van Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Dennis van der Meer
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Neeltje E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja Vaskinn
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Evangelos Vassos
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
| | - G Bragi Walters
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yunpeng Wang
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, D02 YN77, Dublin, Ireland
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Greifswald, Greifswald, Germany
| | - Margie Wright
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Ingrid Agartz
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, H3C 3J7, Canada
| | - Srdjan Djurovic
- NORMENT - KG Jebsen Centre, Department of Clinical Science, University of Bergen, Jonas Lies veg 87, 5021, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Kirkeveien 166, 424, Oslo, Norway
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
274
|
Ohi K, Otowa T, Shimada M, Sasaki T, Tanii H. Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychol Med 2020; 50:692-704. [PMID: 30919790 DOI: 10.1017/s003329171900059x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psychiatric disorders and related intermediate phenotypes are highly heritable and have a complex, overlapping polygenic architecture. A large-scale genome-wide association study (GWAS) of anxiety disorders identified genetic variants that are significant on a genome-wide. The current study investigated the genetic etiological overlaps between anxiety disorders and frequently cooccurring psychiatric disorders and intermediate phenotypes. METHODS Using case-control and factor score models, we investigated the genetic correlations of anxiety disorders with eight psychiatric disorders and intermediate phenotypes [the volumes of seven subcortical brain regions, childhood cognition, general cognitive ability and personality traits (subjective well-being, loneliness, neuroticism and extraversion)] from large-scale GWASs (n = 7556-298 420) by linkage disequilibrium score regression. RESULTS Among psychiatric disorders, the risk of anxiety disorders was positively genetically correlated with the risks of major depressive disorder (MDD) (rg ± standard error = 0.83 ± 0.16, p = 1.97 × 10-7), schizophrenia (SCZ) (0.28 ± 0.09, p = 1.10 × 10-3) and attention-deficit/hyperactivity disorder (ADHD) (0.34 ± 0.13, p = 8.40 × 10-3). Among intermediate phenotypes, significant genetic correlations existed between the risk of anxiety disorders and neuroticism (0.81 ± 0.17, p = 1.30 × 10-6), subjective well-being (-0.73 ± 0.18, p = 4.89 × 10-5), general cognitive ability (-0.23 ± 0.08, p = 4.70 × 10-3) and putamen volume (-0.50 ± 0.18, p = 5.00 × 10-3). No other significant genetic correlations between anxiety disorders and psychiatric or intermediate phenotypes were observed (p > 0.05). The case-control model yielded stronger genetic effect sizes than the factor score model. CONCLUSIONS Our findings suggest that common genetic variants underlying the risk of anxiety disorders contribute to elevated risks of MDD, SCZ, ADHD and neuroticism and reduced quality of life, putamen volume and cognitive performance. We suggest that the comorbidity of anxiety disorders is partly explained by common genetic variants.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Takeshi Otowa
- Graduate School of Clinical Psychology, Professional Degree Program in Clinical Psychology, Teikyo Heisei University, Tokyo, Japan
| | - Mihoko Shimada
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Mie, Japan
- Department of Health Promotion and Disease Prevention, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
275
|
Wang Z, Meng L, Shen L, Ji HF. Impact of modifiable risk factors on Alzheimer's disease: A two-sample Mendelian randomization study. Neurobiol Aging 2020; 91:167.e11-167.e19. [PMID: 32204957 DOI: 10.1016/j.neurobiolaging.2020.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/13/2023]
Abstract
With the steadily increasing prevalence of Alzheimer's disease (AD) and great difficulties encountered for AD drug development presently, much interest has been devoted to identifying modifiable risk factors to lower the risk of AD, while the causal associations between risk factors and AD remain inconclusive. The present study conducted a comprehensive evaluation of the causal associations between risk factors and AD development by taking the recent advancements of Mendelian randomization (MR). Inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode were used for complementary calculation. A total of 45 risk factors and corresponding studies were covered in the study. This two-sample MR (2SMR) analysis provided a suggestive association between genetically predicted higher years of schooling and reduced risks of AD, and each standard deviation (3.71 years) increased in years of schooling was associated with a 41% reduction in the risk of AD (IVW, OR: 0.59, 95% CI: 0.45-0.77). At the same time, it was genetically predicted that urate might be a risk factor in AD, and it was found that each standard deviation increase in urate levels (1.33 mg/dL) was associated with a 0.09-fold increase in the risk of AD (IVW, OR: 1.09, 95% CI: 1.01-1.18). To summarize, the 2SMR analysis indicated a suggestive association between genetically predicted higher years of schooling and reduced risks of AD, and between genetically predicted higher urate levels and increased risks of AD. The findings provide useful clues to help combat AD and warrants future studies.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
276
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
277
|
Burke Quinlan E, Banaschewski T, Barker GJ, Bokde AL, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Walter H, Whelan R, Schumann G. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry 2020; 25:243-253. [PMID: 31676814 PMCID: PMC6978138 DOI: 10.1038/s41380-019-0555-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/24/2023]
Abstract
Mental disorders represent an increasing personal and financial burden and yet treatment development has stagnated in recent decades. Current disease classifications do not reflect psychobiological mechanisms of psychopathology, nor the complex interplay of genetic and environmental factors, likely contributing to this stagnation. Ten years ago, the longitudinal IMAGEN study was designed to comprehensively incorporate neuroimaging, genetics, and environmental factors to investigate the neural basis of reinforcement-related behavior in normal adolescent development and psychopathology. In this article, we describe how insights into the psychobiological mechanisms of clinically relevant symptoms obtained by innovative integrative methodologies applied in IMAGEN have informed our current and future research aims. These aims include the identification of symptom groups that are based on shared psychobiological mechanisms and the development of markers that predict disease course and treatment response in clinical groups. These improvements in precision medicine will be achieved, in part, by employing novel methodological tools that refine the biological systems we target. We will also implement our approach in low- and medium-income countries to understand how distinct environmental, socioeconomic, and cultural conditions influence the development of psychopathology. Together, IMAGEN and related initiatives strive to reduce the burden of mental disorders by developing precision medicine approaches globally.
Collapse
Affiliation(s)
- Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany,Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [or depending on journal requirements can be: Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2 - 12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; DIGITEO labs, Gif sur Yvette; France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany,University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany, and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China
| | | |
Collapse
|
278
|
Adhikari BM, Jahanshad N, Shukla D, Turner J, Grotegerd D, Dannlowski U, Kugel H, Engelen J, Dietsche B, Krug A, Kircher T, Fieremans E, Veraart J, Novikov DS, Boedhoe PSW, van der Werf YD, van den Heuvel OA, Ipser J, Uhlmann A, Stein DJ, Dickie E, Voineskos AN, Malhotra AK, Pizzagalli F, Calhoun VD, Waller L, Veer IM, Walter H, Buchanan RW, Glahn DC, Hong LE, Thompson PM, Kochunov P. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol. Brain Imaging Behav 2020; 13:1453-1467. [PMID: 30191514 DOI: 10.1007/s11682-018-9941-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large-scale consortium efforts such as Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and other collaborative efforts show that combining statistical data from multiple independent studies can boost statistical power and achieve more accurate estimates of effect sizes, contributing to more reliable and reproducible research. A meta- analysis would pool effects from studies conducted in a similar manner, yet to date, no such harmonized protocol exists for resting state fMRI (rsfMRI) data. Here, we propose an initial pipeline for multi-site rsfMRI analysis to allow research groups around the world to analyze scans in a harmonized way, and to perform coordinated statistical tests. The challenge lies in the fact that resting state fMRI measurements collected by researchers over the last decade vary widely, with variable quality and differing spatial or temporal signal-to-noise ratio (tSNR). An effective harmonization must provide optimal measures for all quality data. Here we used rsfMRI data from twenty-two independent studies with approximately fifty corresponding T1-weighted and rsfMRI datasets each, to (A) review and aggregate the state of existing rsfMRI data, (B) demonstrate utility of principal component analysis (PCA)-based denoising and (C) develop a deformable ENIGMA EPI template based on the representative anatomy that incorporates spatial distortion patterns from various protocols and populations.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Dinesh Shukla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Jennifer Engelen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Jonathan Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Erin Dickie
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, New York, NY, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Vince D Calhoun
- The Mind Research Network & The University of New Mexico, Albuquerque, NM, USA
| | - Lea Waller
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Ilja M Veer
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Hernik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
279
|
Ning K, Zhao L, Matloff W, Sun F, Toga AW. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep 2020; 10:10. [PMID: 32001736 PMCID: PMC6992742 DOI: 10.1038/s41598-019-56089-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
Brain age is a metric that quantifies the degree of aging of a brain based on whole-brain anatomical characteristics. While associations between individual human brain regions and environmental or genetic factors have been investigated, how brain age is associated with those factors remains unclear. We investigated these associations using UK Biobank data. We first trained a statistical model for obtaining relative brain age (RBA), a metric describing a subject's brain age relative to peers, based on whole-brain anatomical measurements, from training set subjects (n = 5,193). We then applied this model to evaluation set subjects (n = 12,115) and tested the association of RBA with tobacco smoking, alcohol consumption, and genetic variants. We found that daily or almost daily consumption of tobacco and alcohol were both significantly associated with increased RBA (P < 0.001). We also found SNPs significantly associated with RBA (p-value < 5E-8). The SNP most significantly associated with RBA is located in MAPT gene. Our results suggest that both environmental and genetic factors are associated with structural brain aging.
Collapse
Affiliation(s)
- Kaida Ning
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA
| | - Will Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fengzhu Sun
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, 90033, USA.
| |
Collapse
|
280
|
Elsheikh SSM, Chimusa ER, Mulder NJ, Crimi A. Genome-Wide Association Study of Brain Connectivity Changes for Alzheimer's Disease. Sci Rep 2020; 10:1433. [PMID: 31996736 PMCID: PMC6989662 DOI: 10.1038/s41598-020-58291-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023] Open
Abstract
Variations in the human genome have been found to be an essential factor that affects susceptibility to Alzheimer's disease. Genome-wide association studies (GWAS) have identified genetic loci that significantly contribute to the risk of Alzheimers. The availability of genetic data, coupled with brain imaging technologies have opened the door for further discoveries, by using data integration methodologies and new study designs. Although methods have been proposed for integrating image characteristics and genetic information for studying Alzheimers, the measurement of disease is often taken at a single time point, therefore, not allowing the disease progression to be taken into consideration. In longitudinal settings, we analyzed neuroimaging and single nucleotide polymorphism datasets obtained from the Alzheimer's Disease Neuroimaging Initiative for three clinical stages of the disease, including healthy control, early mild cognitive impairment and Alzheimer's disease subjects. We conducted a GWAS regressing the absolute change of global connectivity metrics on the genetic variants, and used the GWAS summary statistics to compute the gene and pathway scores. We observed significant associations between the change in structural brain connectivity defined by tractography and genes, which have previously been reported to biologically manipulate the risk and progression of certain neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Samar S M Elsheikh
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Alessandro Crimi
- University Hospital of Zürich, Zürich, 8091, Switzerland
- African Institute for Mathematical Sciences, Biriwa, Ghana
| |
Collapse
|
281
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
282
|
Yan T, Liang J, Gao J, Wang L, Fujioka H, Zhu X, Wang X. FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nat Commun 2020; 11:411. [PMID: 31964863 PMCID: PMC6972869 DOI: 10.1038/s41467-019-13962-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and progressive cerebral atrophy. Here, we report FAM222A as a putative brain atrophy susceptibility gene. Our cross-phenotype association analysis of imaging genetics indicates a potential link between FAM222A and AD-related regional brain atrophy. The protein encoded by FAM222A is predominantly expressed in the CNS and is increased in brains of patients with AD and in an AD mouse model. It accumulates within amyloid deposits, physically interacts with amyloid-β (Aβ) via its N-terminal Aβ binding domain, and facilitates Aβ aggregation. Intracerebroventricular infusion or forced expression of this protein exacerbates neuroinflammation and cognitive dysfunction in an AD mouse model whereas ablation of this protein suppresses the formation of amyloid deposits, neuroinflammation and cognitive deficits in the AD mouse model. Our data support the pathological relevance of protein encoded by FAM222A in AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
283
|
Gialluisi A, Reccia MG, Tirozzi A, Nutile T, Lombardi A, De Sanctis C, International Parkinson's Disease Genomic Consortium (IPDGC), Varanese S, Pietracupa S, Modugno N, Simeone A, Ciullo M, Esposito T. Whole Exome Sequencing Study of Parkinson Disease and Related Endophenotypes in the Italian Population. Front Neurol 2020; 10:1362. [PMID: 31998221 PMCID: PMC6965311 DOI: 10.3389/fneur.2019.01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Parkinson Disease (PD) is a complex neurodegenerative disorder characterized by large genetic heterogeneity and missing heritability. Since the genetic background of PD can partly vary among ethnicities and neurological scales have been scarcely investigated in a PD setting, we performed an exploratory Whole Exome Sequencing (WES) analysis of 123 PD patients from mainland Italy, investigating scales assessing motor (UPDRS), cognitive (MoCA), and other non-motor symptoms (NMS). We performed variant prioritization, followed by targeted association testing of prioritized variants in 446 PD cases and 211 controls. Then we ran Exome-Wide Association Scans (EWAS) within sequenced PD cases (N = 113), testing both motor and non-motor PD endophenotypes, as well as their associations with Polygenic Risk Scores (PRS) influencing brain subcortical volumes. We identified a variant associated with PD, rs201330591 in GTF2H2 (5q13; alternative T allele: OR [CI] = 8.16[1.08; 61.52], FDR = 0.048), which was not replicated in an independent cohort of European ancestry (1,148 PD cases, 503 controls). In the EWAS, polygenic analyses revealed statistically significant multivariable associations of amygdala- [β(SE) = -0.039(0.013); FDR = 0.039] and caudate-PRS [0.043(0.013); 0.028] with motor symptoms. All subcortical PRSs in a multivariable model notably increased the variance explained in motor (adjusted-R2 = 38.6%), cognitive (32.2%) and other non-motor symptoms (28.9%), compared to baseline models (~20%). Although, the small sample size warrants further replications, these findings suggest shared genetic architecture between PD symptoms and subcortical structures, and provide interesting clues on PD genetic and neuroimaging features.
Collapse
Affiliation(s)
| | | | | | - Teresa Nutile
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | | | | | | | | | | | | | - Antonio Simeone
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Marina Ciullo
- IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Teresa Esposito
- IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| |
Collapse
|
284
|
Gaiteri C, Dawe R, Mostafavi S, Blizinsky KD, Tasaki S, Komashko V, Yu L, Wang Y, Schneider JA, Arfanakis K, De Jager PL, Bennett DA. Gene expression and DNA methylation are extensively coordinated with MRI-based brain microstructural characteristics. Brain Imaging Behav 2020; 13:963-972. [PMID: 29934819 PMCID: PMC6309607 DOI: 10.1007/s11682-018-9910-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cognitive function relies on both molecular levels and cellular structures. However, systematic relationships between these two components of cognitive function, and their joint contribution to disease, are largely unknown. We utilize postmortem neuroimaging in tandem with gene expression and DNA methylation, from 222 deeply-phenotyped persons in a longitudinal aging cohort. Expression of hundreds of genes and methylation at thousands of loci are related to the microstructure of extensive regions of this same set of brains, as assessed by MRI. The genes linked to brain microstructure perform functions related to cell motility, transcriptional regulation and nuclear processes, and are selectively associated with Alzheimer’s phenotypes. Similar methodology can be applied to other diseases to identify their joint molecular and structural basis, or to infer molecular levels in the brain on the basis of neuroimaging for precision medicine applications.
Collapse
Affiliation(s)
- Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - Robert Dawe
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sara Mostafavi
- Department of Statistics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katherine D Blizinsky
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vitalina Komashko
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Philip L De Jager
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
285
|
Walhovd KB, Fjell AM, Westerhausen R, Nyberg L, Ebmeier KP, Lindenberger U, Bartrés-Faz D, Baaré WF, Siebner HR, Henson R, Drevon CA, Strømstad Knudsen GP, Ljøsne IB, Penninx BW, Ghisletta P, Rogeberg O, Tyler L, Bertram L. Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts (“Lifebrain”). Eur Psychiatry 2020; 50:47-56. [DOI: 10.1016/j.eurpsy.2017.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
AbstractThe main objective of “Lifebrain” is to identify the determinants of brain, cognitive and mental (BCM) health at different stages of life. By integrating, harmonising and enriching major European neuroimaging studies across the life span, we will merge fine-grained BCM health measures of more than 5000 individuals. Longitudinal brain imaging, genetic and health data are available for a major part, as well as cognitive and mental health measures for the broader cohorts, exceeding 27,000 examinations in total. By linking these data to other databases and biobanks, including birth registries, national and regional archives, and by enriching them with a new online data collection and novel measures, we will address the risk factors and protective factors of BCM health. We will identify pathways through which risk and protective factors work and their moderators. Exploiting existing European infrastructures and initiatives, we hope to make major conceptual, methodological and analytical contributions towards large integrative cohorts and their efficient exploitation. We will thus provide novel information on BCM health maintenance, as well as the onset and course of BCM disorders. This will lay a foundation for earlier diagnosis of brain disorders, aberrant development and decline of BCM health, and translate into future preventive and therapeutic strategies. Aiming to improve clinical practice and public health we will work with stakeholders and health authorities, and thus provide the evidence base for prevention and intervention.
Collapse
|
286
|
The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Mol Psychiatry 2020; 25:48-66. [PMID: 31723243 DOI: 10.1038/s41380-019-0592-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder (BPD) are believed to share clinical features, etiological factors, and disease pathologies (such as impaired cognitive functions and dendritic spine pathology). Meanwhile, there is growing evidence of shared genetic risk between schizophrenia and BPD, despite that our knowledge of the functional risk variations and biological mechanisms is still limited. Here, we conduct summary data-based Mendelian randomization (SMR) analyses through combining the statistical data from genome-wide association studies (GWAS) of both schizophrenia and BPD and multiple expression quantitative trait loci (eQTL) datasets of the human brain dorsolateral prefrontal cortex (DLPFC) tissues. These integrative investigations identify a lead risk locus at the chromosome 3p21.1 region, which contains numerous single-nucleotide polymorphisms (SNPs) in varied linkage disequilibrium (LD) and encompasses more than 20 genes. Further analyses suggest that many SNPs at 3p21.1 are significantly associated with both schizophrenia and BPD, and even depression, and the psychiatric risk alleles at 3p21.1 are correlated with mRNA expression of multiple genes such as NEK4, GNL3, and PBRM1. We also identify a 335-bp functional Alu polymorphism rs71052682 in significant LD with the psychiatric GWAS risk SNP rs2251219, and confirm the regulatory effects of this Alu polymorphism on transcription activities. We then explore the involvement of the 3p21.1 locus in the common clinical features and etiology of these illnesses. We reveal that psychiatric risk alleles at 3p21.1 in low-to-high LD consistently predict worse cognitive functions in humans, and manipulating the gene expression (NEK4, GNL3, and PBRM1) linked with higher genetic risk could reduce the density of mushroom dendritic spines in rat primary cortical neurons, mirroring the spine pathology in the prefrontal cortex of psychiatric patients. Our results find that, although the risk alleles at 3p21.1 are in low-to-moderate LD spanning a large genomic area, their underlying biological mechanisms in psychiatric disorders likely converge. These results provide essential insights into the neural mechanisms underlying the chromosome 3p21.1 risk locus in the shared pathological and etiological features of both schizophrenia and BPD.
Collapse
|
287
|
van der Meer D, Rokicki J, Kaufmann T, Córdova-Palomera A, Moberget T, Alnæs D, Bettella F, Frei O, Doan NT, Sønderby IE, Smeland OB, Agartz I, Bertolino A, Bralten J, Brandt CL, Buitelaar JK, Djurovic S, van Donkelaar M, Dørum ES, Espeseth T, Faraone SV, Fernández G, Fisher SE, Franke B, Haatveit B, Hartman CA, Hoekstra PJ, Håberg AK, Jönsson EG, Kolskår KK, Le Hellard S, Lund MJ, Lundervold AJ, Lundervold A, Melle I, Monereo Sánchez J, Norbom LC, Nordvik JE, Nyberg L, Oosterlaan J, Papalino M, Papassotiropoulos A, Pergola G, de Quervain DJF, Richard G, Sanders AM, Selvaggi P, Shumskaya E, Steen VM, Tønnesen S, Ulrichsen KM, Zwiers MP, Andreassen OA, Westlye LT, for the Alzheimer’s Disease Neuroimaging Initiative, for the Pediatric Imaging, Neurocognition and Genetics Study. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Mol Psychiatry 2020; 25:3053-3065. [PMID: 30279459 PMCID: PMC6445783 DOI: 10.1038/s41380-018-0262-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022]
Abstract
The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.
Collapse
Affiliation(s)
- Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida E. Sønderby
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B. Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Bertolino
- grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy ,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Janita Bralten
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Christine L. Brandt
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan K. Buitelaar
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Srdjan Djurovic
- grid.55325.340000 0004 0389 8485Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,grid.7914.b0000 0004 1936 7443NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marjolein van Donkelaar
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Erlend S. Dørum
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Thomas Espeseth
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Stephen V. Faraone
- grid.411023.50000 0000 9159 4457Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Guillén Fernández
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Simon E. Fisher
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands ,grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Barbara Franke
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Beathe Haatveit
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Catharina A. Hartman
- grid.4494.d0000 0000 9558 4598University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, Groningen, The Netherlands
| | - Pieter J. Hoekstra
- grid.4494.d0000 0000 9558 4598University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, Netherlands
| | - Asta K. Håberg
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Erik G. Jönsson
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.4714.60000 0004 1937 0626Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Knut K. Kolskår
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Stephanie Le Hellard
- grid.7914.b0000 0004 1936 7443NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Martina J. Lund
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astri J. Lundervold
- grid.7914.b0000 0004 1936 7443Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Arvid Lundervold
- grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Monereo Sánchez
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn C. Norbom
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Jan E. Nordvik
- grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Lars Nyberg
- grid.12650.300000 0001 1034 3451Departments of Radiation Sciences and Integrative Medical Biology, Umeå Center for Functional Brain Imaging (UFB), Umeå University, Umeå, Sweden
| | - Jaap Oosterlaan
- Amsterdam UMC, University of Amsterdam & Vrije Universiteit Amsterdam, Emma Neuroscience Group at Emma Children’s Hospital, department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Marco Papalino
- grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Andreas Papassotiropoulos
- grid.6612.30000 0004 1937 0642Division of Molecular Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Life Sciences Training Facility, Department Biozentrum, University of Basel, Basel, Switzerland
| | - Giulio Pergola
- grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Dominique J. F. de Quervain
- grid.6612.30000 0004 1937 0642Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland
| | - Geneviève Richard
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Anne-Marthe Sanders
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Pierluigi Selvaggi
- grid.7644.10000 0001 0120 3326Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy ,grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Elena Shumskaya
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vidar M. Steen
- grid.7914.b0000 0004 1936 7443NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Siren Tønnesen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristine M. Ulrichsen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.416731.60000 0004 0612 1014Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Marcel P. Zwiers
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
288
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
289
|
Tulver K, Bachmann M, Vaht M, Harro J, Bachmann T. Effects of HTR1A rs6295 polymorphism on emotional attentional blink. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
290
|
Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. CACNA1C Gene rs11832738 Polymorphism Influences Depression Severity by Modulating Spontaneous Activity in the Right Middle Frontal Gyrus in Patients With Major Depressive Disorder. Front Psychiatry 2020; 11:73. [PMID: 32161558 PMCID: PMC7052844 DOI: 10.3389/fpsyt.2020.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES This study aimed to examine whether the CACNA1C gene rs11832738 polymorphism and major depressive disorder (MDD) have an interactive effect on the untreated regional amplitude of low-frequency fluctuation (ALFF) and to determine whether regional ALFF mediates the association between CACNA1C rs11832738 and MDD. METHODS A total of 116 patients with MDD and 66 normal controls (NCs) were recruited. The MDD and NC groups were further divided into two groups according to genotype: carriers of the G allele (G-carrier group, GG/GA genotypes; MDD, n = 61; NC, n = 26) and AA homozygous group (MDD, n = 55; NC, n = 40). MDD was diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Depression severity was assessed using the Hamilton Depression Scale-24 (HAMD-24) at baseline and follow-up (after 2 and 8 weeks of treatment). All subjects underwent functional MRI (fMRI) scans at baseline, and the ALFF was calculated to reflect spontaneous brain activity. The interactions between MDD and CACNA1C single nucleotide polymorphism rs11832738 were determined using two-way factorial analysis of covariance, with age, sex, education, and head motion as covariates. We performed mediation analysis to further determine whether regional ALFF strength could mediate the associations between rs11832738 and depression severity, MDD treatment efficacy. RESULTS MDD had a main effect on regional ALFF distribution in three brain areas: the right medial frontal gyrus (MFG_R), the left anterior cingulate cortex (ACC_L), and the right cerebellum posterior lobe (CPL_R); CACNA1C showed a significant interactive effect with MDD on the ALFF of MFG_R. For CACNA1C G allele carriers, the ALFF of MFG_R had a significant positive correlation with the baseline HAMD-24 score. Exploratory mediation analysis revealed that the intrinsic ALFF in MFG_R significantly mediated the association between the CACNA1C rs11832738 polymorphism and baseline HAMD-24 score. CONCLUSIONS A genetic variant in CACNA1C rs11832738 may influence depression severity in MDD patients by moderating spontaneous MFG_R activity.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
291
|
Salminen LE, Wilcox RR, Zhu AH, Riedel BC, Ching CRK, Rashid F, Thomopoulos SI, Saremi A, Harrison MB, Ragothaman A, Knight V, Boyle CP, Medland SE, Thompson PM, Jahanshad N. Altered Cortical Brain Structure and Increased Risk for Disease Seen Decades After Perinatal Exposure to Maternal Smoking: A Study of 9000 Adults in the UK Biobank. Cereb Cortex 2019; 29:5217-5233. [PMID: 31271414 PMCID: PMC6918926 DOI: 10.1093/cercor/bhz060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44-80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE-) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.
Collapse
Affiliation(s)
- Lauren E Salminen
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Rand R Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Alyssa H Zhu
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Brandalyn C Riedel
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Faisal Rashid
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Arvin Saremi
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Marc B Harrison
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Victoria Knight
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Christina P Boyle
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| |
Collapse
|
292
|
Liu W, Yan H, Zhou D, Cai X, Zhang Y, Li S, Li H, Li S, Zhou DS, Li X, Zhang C, Sun Y, Dai JP, Zhong J, Yao YG, Luo XJ, Fang Y, Zhang D, Ma Y, Yue W, Li M, Xiao X. The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Transl Psychiatry 2019; 9:333. [PMID: 31819045 PMCID: PMC6901563 DOI: 10.1038/s41398-019-0675-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is recognized as a primary cause of disability worldwide, and effective management of this illness has been a great challenge. While genetic component is supposed to play pivotal roles in MDD pathogenesis, the genetic and phenotypic heterogeneity of the illness has hampered the discovery of its genetic determinants. In this study, in an independent Han Chinese sample (1824 MDD cases and 3031 controls), we conducted replication analyses of two genetic loci highlighted in a previous Chinese MDD genome-wide association study (GWAS), and confirmed the significant association of a single nucleotide polymorphism (SNP) rs12415800 near SIRT1. Subsequently, using hypothesis-free whole-brain analysis in two independent Han Chinese imaging samples, we found that individuals carrying the MDD risk allele of rs12415800 exhibited aberrant gray matter volume in the left posterior cerebellar lobe compared with those carrying the non-risk allele. Besides, in independent Han Chinese postmortem brain and peripheral blood samples, the MDD risk allele of rs12415800 predicted lower SIRT1 mRNA levels, which was consistent with the reduced expression of this gene in MDD patients compared with healthy subjects. These results provide further evidence for the involvement of SIRT1 in MDD, and suggest that this gene might participate in the illness via affecting the development of cerebellum, a brain region that is potentially underestimated in previous MDD studies.
Collapse
Affiliation(s)
- Weipeng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Danyang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shiyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huijuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Jia-Pei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Jingmei Zhong
- Psychiatry Department, The first people's hospital of Yunnan province, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
293
|
Schilder BM, Petry HM, Hof PR. Evolutionary shifts dramatically reorganized the human hippocampal complex. J Comp Neurol 2019; 528:3143-3170. [DOI: 10.1002/cne.24822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Brian M. Schilder
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai New York New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai New York New York
| | - Heywood M. Petry
- Department of Psychological and Brain Sciences, University of Louisville Louisville Kentucky
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai New York New York
| |
Collapse
|
294
|
Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, Tan M, Kia DA, Noyce AJ, Xue A, Bras J, Young E, von Coelln R, Simón-Sánchez J, Schulte C, Sharma M, Krohn L, Pihlstrøm L, Siitonen A, Iwaki H, Leonard H, Faghri F, Gibbs JR, Hernandez DG, Scholz SW, Botia JA, Martinez M, Corvol JC, Lesage S, Jankovic J, Shulman LM, Sutherland M, Tienari P, Majamaa K, Toft M, Andreassen OA, Bangale T, Brice A, Yang J, Gan-Or Z, Gasser T, Heutink P, Shulman JM, Wood NW, Hinds DA, Hardy JA, Morris HR, Gratten J, Visscher PM, Graham RR, Singleton AB. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol 2019; 18:1091-1102. [PMID: 31701892 PMCID: PMC8422160 DOI: 10.1016/s1474-4422(19)30320-5] [Citation(s) in RCA: 1475] [Impact Index Per Article: 245.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. METHODS We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. FINDINGS Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10-7). INTERPRETATION These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. FUNDING The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources).
Collapse
Affiliation(s)
- Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA.
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Costanza L Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Manuela Tan
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK; Department of Clinical and Movement Neuroscience and UCL Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK; Department of Clinical and Movement Neuroscience and UCL Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Alastair J Noyce
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK; Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Angli Xue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jose Bras
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Emily Young
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javier Simón-Sánchez
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland; Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA; The Michael J Fox Foundation, New York, NY, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Faraz Faghri
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W Scholz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan A Botia
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Spain
| | - Maria Martinez
- Institut national de la santé et de la recherche médicale Unité mixte de recherche 1220, Toulouse, France; Paul Sabatier University, Toulouse, France
| | - Jean-Christophe Corvol
- Institut national de la santé et de la recherche médicale U1127, CNRS UMR 7225, Paris, France; Sorbonne Université centre national de la recherche médicale, unité mixte de recherche 1127, Paris, France; Assistance Publique Hôpitaux de Paris, Paris, France; Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Suzanne Lesage
- Institut national de la santé et de la recherche médicale U1127, CNRS UMR 7225, Paris, France; Sorbonne Université centre national de la recherche médicale, unité mixte de recherche 1127, Paris, France; Assistance Publique Hôpitaux de Paris, Paris, France; Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Lisa M Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret Sutherland
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pentti Tienari
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland; Helsinki University Hospital, Helsinki, Finland
| | - Kari Majamaa
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland; Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
| | - Tushar Bangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Alexis Brice
- Institut national de la santé et de la recherche médicale U1127, CNRS UMR 7225, Paris, France; Sorbonne Université centre national de la recherche médicale, unité mixte de recherche 1127, Paris, France; Assistance Publique Hôpitaux de Paris, Paris, France; Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Nicholas W Wood
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK; Department of Clinical and Movement Neuroscience and UCL Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - John A Hardy
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience and UCL Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jacob Gratten
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Peter M Visscher
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Robert R Graham
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
295
|
Lancaster TM. Associations between rare microglia-linked Alzheimer's disease risk variants and subcortical brain volumes in young individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:368-373. [PMID: 31080872 PMCID: PMC6501059 DOI: 10.1016/j.dadm.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Recent exome sequencing studies have identified three novel risk variants associated with Alzheimer's disease (AD). However, the mechanisms by which these variants confer risk are largely unknown. METHODS In the present study, the impact of these rare coding variants (in ABI3, PLCG2, and TREM2) on all subcortical volumes is determined in a large sample of young healthy individuals (N = 756-765; aged 22-35 years). RESULTS After multiple testing correction (P CORRECTED < .05), rare variants were associated with basal ganglia volumes (TREM2 and PLCG2 effects within the putamen and pallidum, respectively). Nominal associations between TREM2 and reduced hippocampal and thalamic volumes were also observed. DISCUSSION Our observations suggest that rare variants in microglia-mediated immunity pathway may contribute to the subcortical alterations observed in AD cases. These observations provide further evidence that genetic risk for AD may influence the volume of subcortical volumes and increase AD risk in early life processes.
Collapse
Affiliation(s)
- Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, School of Medicine, Cardiff University, UK
| |
Collapse
|
296
|
Geerts H, Wikswo J, van der Graaf PH, Bai JPF, Gaiteri C, Bennett D, Swalley SE, Schuck E, Kaddurah-Daouk R, Tsaioun K, Pelleymounter M. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 9:5-20. [PMID: 31674729 PMCID: PMC6966183 DOI: 10.1002/psp4.12478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania, USA
| | - John Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jane P F Bai
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Katya Tsaioun
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
297
|
Ganmore I, Livny A, Ravona-Springer R, Cooper I, Alkelai A, Shelly S, Tsarfaty G, Heymann A, Schnaider Beeri M, Greenbaum L. TCF7L2 polymorphisms are associated with amygdalar volume in elderly individuals with Type 2 Diabetes. Sci Rep 2019; 9:15818. [PMID: 31676834 PMCID: PMC6825182 DOI: 10.1038/s41598-019-48899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The association between several Single Nucleotide Polymorphisms (SNPs) within the transcription factor 7-like 2 (TCF7L2) gene and Type 2 Diabetes (T2D) as well as additional T2D-related traits is well established. Since alteration in total and regional brain volumes are consistent findings among T2D individuals, we studied the association of four T2D susceptibility SNPS within TCF7L2 (rs7901695, rs7903146, rs11196205, and rs12255372) with volumes of white matter hyperintensities (WMH), gray matter, and regional volumes of amygdala and hippocampus obtained from structural MRI among 191 T2D elderly Jewish individuals. Under recessive genetic model (controlling for age, sex and intracranial volume), we found that for all four SNPs, carriers of two copies of the T2D risk allele (homozygous genotype) had significantly smaller amygdalar volume: rs7901695- CC genotype vs. CT + TT genotypes, p = 0.002; rs7903146-TT vs. TC + CC, p = 0.003; rs11196205- CC vs. CG + GG, p = 0.0003; and rs12255372- TT vs. TG + GG, p = 0.003. Adjusting also for T2D-related covariates, body mass index (BMI), and ancestry did not change the results substantively (rs7901695, p = 0.003; rs7903146, p = 0.005; rs11196205, p = 0.001; and rs12255372, p = 0.005). Conditional analysis demonstrated that only rs11196205 was independently associated with amygdalar volume at a significant level. Separate analysis of left and right amygdala revealed stronger results for left amygdalar volume. Taken together, we report association of TCF7L2 SNPs with amygdalar volume among T2D elderly Jewish patients. Further studies in other populations are required to support these findings and reach more definitive conclusions.
Collapse
Affiliation(s)
- Ithamar Ganmore
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Shahar Shelly
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
298
|
Zhao B, Luo T, Li T, Li Y, Zhang J, Shan Y, Wang X, Yang L, Zhou F, Zhu Z, Zhu H. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet 2019; 51:1637-1644. [PMID: 31676860 PMCID: PMC6858580 DOI: 10.1038/s41588-019-0516-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Volumetric variations of the human brain are heritable and are associated with many brain-related complex traits. Here we performed genome-wide association studies (GWAS) of 101 brain volumetric phenotypes using the UK Biobank sample including 19,629 participants. GWAS identified 365 independent genetic variants exceeding a significance threshold of 4.9 × 10-10, adjusted for testing multiple phenotypes. A gene-based association study found 157 associated genes (124 new), and functional gene mapping analysis linked 146 additional genes. Many of the discovered genetic variants and genes have previously been implicated in cognitive and mental health traits. Through genome-wide polygenic-risk-score prediction, more than 6% of the phenotypic variance (P = 3.13 × 10-24) in four other independent studies could be explained by the UK Biobank GWAS results. In conclusion, our study identifies many new genetic associations at the variant, locus and gene levels and advances our understanding of the pleiotropy and genetic co-architecture between brain volumes and other traits.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingwen Zhang
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liuqing Yang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fan Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
299
|
Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, Smith AV, Bis JC, Jian X, Luciano M, Hofer E, Teumer A, van der Lee SJ, Yang J, Yanek LR, Lee TV, Li S, Hu Y, Koh JY, Eicher JD, Desrivières S, Arias-Vasquez A, Chauhan G, Athanasiu L, Rentería ME, Kim S, Hoehn D, Armstrong NJ, Chen Q, Holmes AJ, den Braber A, Kloszewska I, Andersson M, Espeseth T, Grimm O, Abramovic L, Alhusaini S, Milaneschi Y, Papmeyer M, Axelsson T, Ehrlich S, Roiz-Santiañez R, Kraemer B, Håberg AK, Jones HJ, Pike GB, Stein DJ, Stevens A, Bralten J, Vernooij MW, Harris TB, Filippi I, Witte AV, Guadalupe T, Wittfeld K, Mosley TH, Becker JT, Doan NT, Hagenaars SP, Saba Y, Cuellar-Partida G, Amin N, Hilal S, Nho K, Mirza-Schreiber N, Arfanakis K, Becker DM, Ames D, Goldman AL, Lee PH, Boomsma DI, Lovestone S, Giddaluru S, Le Hellard S, Mattheisen M, Bohlken MM, Kasperaviciute D, Schmaal L, Lawrie SM, Agartz I, Walton E, Tordesillas-Gutierrez D, Davies GE, Shin J, Ipser JC, Vinke LN, Hoogman M, Jia T, Burkhardt R, Klein M, Crivello F, Janowitz D, Carmichael O, Haukvik UK, Aribisala BS, Schmidt H, et alSatizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, Smith AV, Bis JC, Jian X, Luciano M, Hofer E, Teumer A, van der Lee SJ, Yang J, Yanek LR, Lee TV, Li S, Hu Y, Koh JY, Eicher JD, Desrivières S, Arias-Vasquez A, Chauhan G, Athanasiu L, Rentería ME, Kim S, Hoehn D, Armstrong NJ, Chen Q, Holmes AJ, den Braber A, Kloszewska I, Andersson M, Espeseth T, Grimm O, Abramovic L, Alhusaini S, Milaneschi Y, Papmeyer M, Axelsson T, Ehrlich S, Roiz-Santiañez R, Kraemer B, Håberg AK, Jones HJ, Pike GB, Stein DJ, Stevens A, Bralten J, Vernooij MW, Harris TB, Filippi I, Witte AV, Guadalupe T, Wittfeld K, Mosley TH, Becker JT, Doan NT, Hagenaars SP, Saba Y, Cuellar-Partida G, Amin N, Hilal S, Nho K, Mirza-Schreiber N, Arfanakis K, Becker DM, Ames D, Goldman AL, Lee PH, Boomsma DI, Lovestone S, Giddaluru S, Le Hellard S, Mattheisen M, Bohlken MM, Kasperaviciute D, Schmaal L, Lawrie SM, Agartz I, Walton E, Tordesillas-Gutierrez D, Davies GE, Shin J, Ipser JC, Vinke LN, Hoogman M, Jia T, Burkhardt R, Klein M, Crivello F, Janowitz D, Carmichael O, Haukvik UK, Aribisala BS, Schmidt H, Strike LT, Cheng CY, Risacher SL, Pütz B, Fleischman DA, Assareh AA, Mattay VS, Buckner RL, Mecocci P, Dale AM, Cichon S, Boks MP, Matarin M, Penninx BWJH, Calhoun VD, Chakravarty MM, Marquand AF, Macare C, Kharabian Masouleh S, Oosterlaan J, Amouyel P, Hegenscheid K, Rotter JI, Schork AJ, Liewald DCM, de Zubicaray GI, Wong TY, Shen L, Sämann PG, Brodaty H, Roffman JL, de Geus EJC, Tsolaki M, Erk S, van Eijk KR, Cavalleri GL, van der Wee NJA, McIntosh AM, Gollub RL, Bulayeva KB, Bernard M, Richards JS, Himali JJ, Loeffler M, Rommelse N, Hoffmann W, Westlye LT, Valdés Hernández MC, Hansell NK, van Erp TGM, Wolf C, Kwok JBJ, Vellas B, Heinz A, Olde Loohuis LM, Delanty N, Ho BC, Ching CRK, Shumskaya E, Singh B, Hofman A, van der Meer D, Homuth G, Psaty BM, Bastin ME, Montgomery GW, Foroud TM, Reppermund S, Hottenga JJ, Simmons A, Meyer-Lindenberg A, Cahn W, Whelan CD, van Donkelaar MMJ, Yang Q, Hosten N, Green RC, Thalamuthu A, Mohnke S, Hulshoff Pol HE, Lin H, Jack CR, Schofield PR, Mühleisen TW, Maillard P, Potkin SG, Wen W, Fletcher E, Toga AW, Gruber O, Huentelman M, Davey Smith G, Launer LJ, Nyberg L, Jönsson EG, Crespo-Facorro B, Koen N, Greve DN, Uitterlinden AG, Weinberger DR, Steen VM, Fedko IO, Groenewold NA, Niessen WJ, Toro R, Tzourio C, Longstreth WT, Ikram MK, Smoller JW, van Tol MJ, Sussmann JE, Paus T, Lemaître H, Schroeter ML, Mazoyer B, Andreassen OA, Holsboer F, Depondt C, Veltman DJ, Turner JA, Pausova Z, Schumann G, van Rooij D, Djurovic S, Deary IJ, McMahon KL, Müller-Myhsok B, Brouwer RM, Soininen H, Pandolfo M, Wassink TH, Cheung JW, Wolfers T, Martinot JL, Zwiers MP, Nauck M, Melle I, Martin NG, Kanai R, Westman E, Kahn RS, Sisodiya SM, White T, Saremi A, van Bokhoven H, Brunner HG, Völzke H, Wright MJ, van 't Ent D, Nöthen MM, Ophoff RA, Buitelaar JK, Fernández G, Sachdev PS, Rietschel M, van Haren NEM, Fisher SE, Beiser AS, Francks C, Saykin AJ, Mather KA, Romanczuk-Seiferth N, Hartman CA, DeStefano AL, Heslenfeld DJ, Weiner MW, Walter H, Hoekstra PJ, Nyquist PA, Franke B, Bennett DA, Grabe HJ, Johnson AD, Chen C, van Duijn CM, Lopez OL, Fornage M, Wardlaw JM, Schmidt R, DeCarli C, De Jager PL, Villringer A, Debette S, Gudnason V, Medland SE, Shulman JM, Thompson PM, Seshadri S, Ikram MA. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet 2019; 51:1624-1636. [PMID: 31636452 PMCID: PMC7055269 DOI: 10.1038/s41588-019-0511-y] [Show More Authors] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
Collapse
Affiliation(s)
- Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
- The Framingham Heart Study, Framingham, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles C White
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jason L Stein
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xueqiu Jian
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle Luciano
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jia Yu Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - John D Eicher
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Sylvane Desrivières
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alejandro Arias-Vasquez
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Lavinia Athanasiu
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sungeun Kim
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Hoehn
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Anouk den Braber
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Thomas Espeseth
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Oliver Grimm
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Lucija Abramovic
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saud Alhusaini
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Martina Papmeyer
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
- Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Ehrlich
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Asta K Håberg
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hannah J Jones
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - G Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Allison Stevens
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Irina Filippi
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Tulio Guadalupe
- International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James T Becker
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nhat Trung Doan
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Saskia P Hagenaars
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazanin Mirza-Schreiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Phil H Lee
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Lexington, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - Sudheer Giddaluru
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Manuel Mattheisen
- Centre for integrated Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Marc M Bohlken
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dalia Kasperaviciute
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Ingrid Agartz
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
| | - Esther Walton
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Department of Psychology, University of Bath, Bath, UK
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | | | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Louis N Vinke
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tianye Jia
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ralph Burkhardt
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | | | - Unn K Haukvik
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Adult Psychiatry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benjamin S Aribisala
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, Lagos State University, Ojo, Nigeria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lachlan T Strike
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amelia A Assareh
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California. San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
| | - Marco P Boks
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mar Matarin
- UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Vince D Calhoun
- Department of ECE, University of New Mexico, Albuquerque, NM, USA
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Québec, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Christine Macare
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shahrzad Kharabian Masouleh
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Neuroscience and Medicine: Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Emma Neuroscience Group, Department of Pediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Philippe Amouyel
- LabEx DISTALZ-U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille, France
- Inserm U1167, Lille, France
- Centre Hospitalier Universitaire Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Medicine Research Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, UNSW, Sydney, New South Wales, Australia
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Susanne Erk
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kristel R van Eijk
- Brain Center Rudolf Magnus, Human Neurogenetics Unit, UMC Utrecht, Utrecht, the Netherlands
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew M McIntosh
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kazima B Bulayeva
- Department of Evolution and Genetics, Dagestan State University, Makhachkala, Russia
| | - Manon Bernard
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Richards
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Jayandra J Himali
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Nanda Rommelse
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Section Epidemiology of Health Care and Community Health, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars T Westlye
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria C Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - John B J Kwok
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Vellas
- Department of Internal Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
- Department of Geriatric Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Norman Delanty
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Neurology Division, Beaumont Hospital, Dublin, Ireland
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, CA, USA
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Baljeet Singh
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dennis van der Meer
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, Sydney, New South Wales, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Andrew Simmons
- Biomedical Research Unit for Dementia, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christopher D Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Mohnke
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Honghuang Lin
- The Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, UNSW, Sydney, New South Wales, Australia
| | - Thomas W Mühleisen
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pauline Maillard
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Evan Fletcher
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Matthew Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Radiation Sciences, Umeå University, Umeå, Sweden
| | - Erik G Jönsson
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Benedicto Crespo-Facorro
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Douglas N Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Iryna O Fedko
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | | | | | - William T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marie-Jose van Tol
- Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessika E Sussmann
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hervé Lemaître
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Matthias L Schroeter
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany
| | - Bernard Mazoyer
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Ole A Andreassen
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | - Chantal Depondt
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Jessica A Turner
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gunter Schumann
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Katie L McMahon
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocentre Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Massimo Pandolfo
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Thomas H Wassink
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joshua W Cheung
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Wolfers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Ingrid Melle
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ryota Kanai
- Department of Neuroinformatics, Araya, Tokyo, Japan
- Institute of Cognitive Neuroscience, University College London, London, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - René S Kahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arvin Saremi
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catharina A Hartman
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Anita L DeStefano
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dirk J Heslenfeld
- Department of Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Paul A Nyquist
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Andrew D Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanna M Wardlaw
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Charles DeCarli
- Department of Neurology, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Stéphanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, Bordeaux, France
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
300
|
Uddén J, Hultén A, Bendtz K, Mineroff Z, Kucera KS, Vino A, Fedorenko E, Hagoort P, Fisher SE. Toward Robust Functional Neuroimaging Genetics of Cognition. J Neurosci 2019; 39:8778-8787. [PMID: 31570534 PMCID: PMC6820208 DOI: 10.1523/jneurosci.0888-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10-100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.
Collapse
Affiliation(s)
- Julia Uddén
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD,
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
- Department of Linguistics
- Department of Psychology, Stockholm University, Sweden, SE-106 91
| | - Annika Hultén
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| | - Katarina Bendtz
- Department of Psychology, Stockholm University, Sweden, SE-106 91
| | - Zachary Mineroff
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307
| | - Katerina S Kucera
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
| | - Arianna Vino
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, and
- Psychiatry Department, Massachusetts General Hospital, Charlestown, Massachusetts MA 02144
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD,
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| |
Collapse
|