1
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
2
|
Zammit NW, Wong YY, Walters SN, Warren J, Barry SC, Grey ST. RELA governs a network of islet-specific metabolic genes necessary for beta cell function. Diabetologia 2023; 66:1516-1531. [PMID: 37311878 PMCID: PMC10317895 DOI: 10.1007/s00125-023-05931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 06/15/2023]
Abstract
AIMS/HYPOTHESIS NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (βp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (βNEMOKO mice), as well as βA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as βp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in βp65KO islets. CONCLUSIONS/INTERPRETATION These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.
Collapse
Affiliation(s)
- Nathan W Zammit
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Ying Ying Wong
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stacey N Walters
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna Warren
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Simon C Barry
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Shane T Grey
- Transplantation Immunology Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Osteoprotegerin deficiency aggravates methionine-choline-deficient diet-induced nonalcoholic steatohepatitis in mice. Sci Rep 2023; 13:3194. [PMID: 36823220 PMCID: PMC9950492 DOI: 10.1038/s41598-023-30001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical studies have shown that osteoprotegerin (OPG) is reduced in patients with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. The current study focuses on the role of OPG in the NASH pathogenesis. OPG knockout mice and wild-type control mice fed a methionine choline-deficient diet (MCD) for 4 weeks resulted in an animal model of NASH. Measurement of triglycerides (TG) in serum and liver to assess steatosis. Hematoxylin eosin (HE), Sirius Red and Masson staining were used to assess the liver damage. Transcriptome sequencing analysis, qPCR and western blot were to analyze changes in lipid metabolism and inflammation-related indicators in the liver. In vivo knockout of OPG resulted in a reduction of TG levels in the liver and a significant increase in serum ALT and AST. The expression of inflammatory factors and fibrosis genes was significantly upregulated in the livers of OPG knockout mice. Transcriptome sequencing analysis showed that OPG knockout significantly enhanced MCD diet-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Mechanistically, OPG may inhibit MAPK signaling pathway activity by upregulating the expression of dual specificity phosphatase 14 (DUSP14), thereby reducing inflammatory injury. OPG could regulate the activity of the MAPK signaling pathway via DUSP14, thus regulating the expression of some inflammatory factors in NASH, it may be a promising target for the treatment of NASH.
Collapse
|
4
|
Pancreatic Islet Cells Response to IFNγ Relies on Their Spatial Location within an Islet. Cells 2022; 12:cells12010113. [PMID: 36611907 PMCID: PMC9818682 DOI: 10.3390/cells12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.
Collapse
|
5
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Rui J, Deng S, Perdigoto AL, Ponath G, Kursawe R, Lawlor N, Sumida T, Levine-Ritterman M, Stitzel ML, Pitt D, Lu J, Herold KC. Tet2 Controls the Responses of β cells to Inflammation in Autoimmune Diabetes. Nat Commun 2021; 12:5074. [PMID: 34417463 PMCID: PMC8379260 DOI: 10.1038/s41467-021-25367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2021] [Indexed: 01/02/2023] Open
Abstract
β cells may participate and contribute to their own demise during Type 1 diabetes (T1D). Here we report a role of their expression of Tet2 in regulating immune killing. Tet2 is induced in murine and human β cells with inflammation but its expression is reduced in surviving β cells. Tet2-KO mice that receive WT bone marrow transplants develop insulitis but not diabetes and islet infiltrates do not eliminate β cells even though immune cells from the mice can transfer diabetes to NOD/scid recipients. Tet2-KO recipients are protected from transfer of disease by diabetogenic immune cells.Tet2-KO β cells show reduced expression of IFNγ-induced inflammatory genes that are needed to activate diabetogenic T cells. Here we show that Tet2 regulates pathologic interactions between β cells and immune cells and controls damaging inflammatory pathways. Our data suggests that eliminating TET2 in β cells may reduce activating pathologic immune cells and killing of β cells.
Collapse
Affiliation(s)
- Jinxiu Rui
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Songyan Deng
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Ana Luisa Perdigoto
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Gerald Ponath
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tomokazu Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences and Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jun Lu
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Stancill JS, Kasmani MY, Khatun A, Cui W, Corbett JA. Single-cell RNA sequencing of mouse islets exposed to proinflammatory cytokines. Life Sci Alliance 2021; 4:e202000949. [PMID: 33883217 PMCID: PMC8091599 DOI: 10.26508/lsa.202000949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to proinflammatory cytokines is believed to contribute to pancreatic β-cell damage during diabetes development. Although some cytokine-mediated changes in islet gene expression are known, the heterogeneity of the response is not well-understood. After 6-h treatment with IL-1β and IFN-γ alone or together, mouse islets were subjected to single-cell RNA sequencing. Treatment with both cytokines together led to expression of inducible nitric oxide synthase mRNA (Nos2) and antiviral and immune-associated genes in a subset of β-cells. Interestingly, IL-1β alone activated antiviral genes. Subsets of δ- and α-cells expressed Nos2 and exhibited similar gene expression changes as β-cells, including increased expression of antiviral genes and repression of identity genes. Finally, cytokine responsiveness was inversely correlated with expression of genes encoding heat shock proteins. Our findings show that all islet endocrine cell types respond to cytokines, IL-1β induces the expression of protective genes, and cellular stress gene expression is associated with inhibition of cytokine signaling.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
10
|
Sala E, Vived C, Luna J, Saavedra-Ávila NA, Sengupta U, Castaño AR, Villar-Pazos S, Haba L, Verdaguer J, Ropero AB, Stratmann T, Pizarro J, Vázquez-Carrera M, Nadal A, Lahti JM, Mora C. CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model. Front Immunol 2021; 12:634797. [PMID: 33664748 PMCID: PMC7923961 DOI: 10.3389/fimmu.2021.634797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.
Collapse
Affiliation(s)
- Ester Sala
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Celia Vived
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Júlia Luna
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Noemí Alejandra Saavedra-Ávila
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Upasana Sengupta
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - A. Raúl Castaño
- Departament of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Sabrina Villar-Pazos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Laura Haba
- Experimental Diabetes Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Ana B. Ropero
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Diabetes and Associated Metabolic Disorders CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| |
Collapse
|
11
|
Alpha1-antitrypsin ameliorates islet amyloid-induced glucose intolerance and β-cell dysfunction. Mol Metab 2020; 37:100984. [PMID: 32229246 PMCID: PMC7186564 DOI: 10.1016/j.molmet.2020.100984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Pancreatic β-cell failure is central to the development and progression of type 2 diabetes (T2D). The aggregation of human islet amyloid polypeptide (hIAPP) has been associated with pancreatic islet inflammation and dysfunction in T2D. Alpha1-antitrypsin (AAT) is a circulating protease inhibitor with anti-inflammatory properties. Here, we sought to investigate the potential therapeutic effect of AAT treatment in a mouse model characterized by hIAPP overexpression in pancreatic β-cells. Methods Mice overexpressing hIAPP (hIAPP-Tg) in pancreatic β-cells were used as a model of amyloid-induced β-cell dysfunction. Glucose homeostasis was evaluated by glucose tolerance tests and insulin secretion assays. Apoptosis and amyloid formation was assessed in hIAPP-Tg mouse islets cultured at high glucose levels. Dissociated islet cells were cocultured with macrophages obtained from the peritoneal cavity. Results Nontreated hIAPP-Tg mice were glucose intolerant and exhibited impaired insulin secretion. Interestingly, AAT treatment improved glucose tolerance and restored the insulin secretory response to glucose in hIAPP-Tg mice. Moreover, AAT administration normalized the expression of the essential β-cell genes MafA and Pdx1, which were downregulated in pancreatic islets from hIAPP-Tg mice. AAT prevented the formation of amyloid deposits and apoptosis in hIAPP-Tg islets cultured at high glucose concentrations. Since islet macrophages mediate hIAPP-induced β-cell dysfunction, we investigated the effect of AAT in cocultures of macrophages and islet cells. AAT prevented hIAPP-induced β-cell apoptosis in these cocultures without reducing the hIAPP-induced secretion of IL-1β by macrophages. Remarkably, AAT protected β-cells against the cytotoxic effects of conditioned medium from hIAPP-treated macrophages. Similarly, AAT also abrogated the cytotoxic effects of exogenous proinflammatory cytokines on pancreatic β-cells. Conclusions These results demonstrate that treatment with AAT improves glucose homeostasis in mice overexpressing hIAPP and protects pancreatic β-cells from the cytotoxic actions of hIAPP mediated by macrophages. These results support the use of AAT-based therapies to recover pancreatic β-cell function for the treatment of T2D. Alpha1-antitrypsin (AAT) ameliorates glucose intolerance in hIAPP transgenic mice. AAT improves insulin secretion in hIAPP transgenic mice. AAT prevents apoptosis and amyloid deposition in cultured hIAPP transgenic islets. AAT protects β-cells from hIAPP-induced cytotoxicity mediated by macrophages. AAT abrogates the cytotoxic effects of proinflammatory cytokines on β-cells.
Collapse
|
12
|
Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol 2020; 16:81-90. [PMID: 31836875 PMCID: PMC8315273 DOI: 10.1038/s41574-019-0286-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Chronic, unresolved tissue inflammation is a well-described feature of obesity, type 2 diabetes mellitus (T2DM) and other insulin-resistant states. In this context, adipose tissue and liver inflammation have been particularly well studied; however, abundant evidence demonstrates that inflammatory processes are also activated in pancreatic islets from obese animals and humans with obesity and/or T2DM. In this Review, we focus on the characteristics of immune cell-mediated inflammation in islets and the consequences of this with respect to β-cell function. In contrast to type 1 diabetes mellitus, the dominant immune cell type causing inflammation in obese and T2DM islets is the macrophage. The increased macrophage accumulation in T2DM islets primarily arises through local proliferation of resident macrophages, which then provide signals (such as platelet-derived growth factor) that drive β-cell hyperplasia (a classic feature of obesity). In addition, islet macrophages also impair the insulin secretory capacity of β-cells. Through these mechanisms, islet-resident macrophages underlie the inflammatory response in obesity and mechanistically participate in the β-cell hyperplasia and dysfunction that characterizes this insulin-resistant state. These findings point to the possibility of therapeutics that target islet inflammation to elicit beneficial effects on β-cell function and glycaemia.
Collapse
Affiliation(s)
- Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Bae GD, Park EY, Kim K, Jang SE, Jun HS, Oh YS. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci Rep 2019; 9:16785. [PMID: 31728004 PMCID: PMC6856349 DOI: 10.1038/s41598-019-53278-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (cav-1), the principal structural and signalling protein of caveolae, is implicated in various signalling events, including apoptotic cell death in type 2 diabetes. However, the precise role of beta cells in apoptosis has not been clearly defined. In this study, we investigated the involvement of cav-1 in cytokine-induced beta cell apoptosis and its underlying mechanisms in the rat beta cell line, INS-1 and isolated islets. Treatment of cytokine mixture (CM, TNFα + IL-1β) significantly increased the mRNA and protein expression of cav-1, and resulting in increased formation of caveolae. We found that IL-1 receptor 1 and TNF receptor localized to plasma membrane lipid rafts in the control cells and CM treatment recruited these receptors to the caveolae domain. After cav-1 siRNA transfection, CM-dependent NF-κB activation was reduced and consequently downregulated the mRNA expression of iNOS and IL-1β. Finally, decreased cell viability by CM treatment was ameliorated in both INS-1 cells and isolated islets treated with cav-1 siRNA. These results suggest that increased cav-1 expression and recruitment of cytokine receptors into caveolae contribute to CM-induced beta cell apoptosis.
Collapse
Affiliation(s)
- Gong Deuk Bae
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam, South Korea
| | - Kyong Kim
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Se-Eun Jang
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea.
| |
Collapse
|
14
|
Huang Z, Zhao Q, Chen M, Zhang J, Ji L. Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury. Toxicology 2019; 428:152307. [PMID: 31589899 DOI: 10.1016/j.tox.2019.152307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a life-threatening liver disease caused by the damage to liver sinusoidal endothelial cells (LSECs). Liquiritigenin and liquiritin are two main compounds in Glycyrrhizae Radix et Rhizoma (Gan-cao). Our previous study has shown that both liquiritigenin and liquiritin alleviated monocrotaline (MCT)-induced HSOS in rats via inducing the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway. This study aims to further investigate whether inhibiting liver inflammatory injury also contributed to the liquiritigenin and liquiritin-provided alleviation on MCT-induced HSOS. The results of serum alanine/aspartate aminotransferases (ALT/AST) activities and total bilirubin (TBil) amount, liver histological evaluation, scanning electron microscope observation and hepatic metalloproteinase-9 (MMP9) expression showed that liquiritigenin and liquiritin both alleviated MCT-induced HSOS in rats. Liquiritigenin and liquiritin reduced the increased liver myeloperoxidase (MPO) activity, mRNA expression of pro-inflammatory factors, hepatic infiltration of immune cells, hepatic toll-like receptor 4 (TLR4) expression and nuclear factor κB (NFκB) nuclear accumulation induced by MCT in rats. Furthermore, liquiritigenin and liquiritin attenuated MCT-induced liver mitochondrial injury, increased the decreased Lon protein expression and reduced the release of heat shock protein 60 (HSP60). Moreover, liquiritigenin and liquiritin also reduced NFκB nuclear accumulation and decreased the elevated cellular mRNA expression of NFκB-downstream pro-inflammatory cytokines induced by HSP60 in macrophage RAW264.7 cells. In conclusion, our study revealed that both liquiritigenin and liquiritin alleviated MCT-induced HSOS by inhibiting hepatic inflammatory responses triggered by HSP60.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Al-Romaiyan A, Liu B, Persaud S, Jones P. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phytother Res 2019; 34:161-172. [PMID: 31515869 DOI: 10.1002/ptr.6512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/04/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023]
Abstract
Inflammatory cytokines such as interleukin-1β, TNF-α, and interferon-γ are known to be involved in mediating β-cells death in diabetes mellitus (DM). Thus, protecting from β-cells death in patients with DM may be a useful target in alleviating symptoms of hyperglycemia. Traditional plant-based remedies have been used to treat DM for many centuries and may play a role in protecting β-cell from death. An example of these remedies is Gymnema sylvestre (GS) extract. In this study, we investigated the effect of this plant extract on β-cells apoptosis. Om Santal Adivasi (OSA®) maintained cell membrane integrity in MIN6 cells and mouse islets. Om Santal Adivasi significantly protected MIN6 cells and mouse islets from cytokine-induced apoptosis. In the presence of cytokines, OSA® significantly reduced the expression and activity of caspase-3. The antiapoptotic effect of OSA® as shown by microarray analysis is largely mediated by activating pathways involved in cell survival (mainly casein kinase II pathway) and the free radical scavenger system (specifically superoxide dismutase and catalase). This study indicates that the GS isolate OSA® protects against cytokine-induced apoptosis of β-cells by increasing the expression of cell survival pathways and free radical scavenger system.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Peter Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
16
|
Grieco FA, Schiavo AA, Brozzi F, Juan-Mateu J, Bugliani M, Marchetti P, Eizirik DL. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells. J Mol Endocrinol 2019; 63:139-149. [PMID: 31277072 PMCID: PMC6938585 DOI: 10.1530/jme-19-0066] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.
Collapse
Affiliation(s)
- Fabio Arturo Grieco
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Flora Brozzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Dr. Décio L. Eizirik, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium, 808 Route de Lennik, 1070 Brussels, Belgium, Phone: +32 2 555 6242, Fax: +32 2 555 6239,
| |
Collapse
|
17
|
Nardelli TR, Vanzela EC, Benedicto KC, Brozzi F, Fujita A, Cardozo AK, Eizirik DL, Boschero AC, Ortis F. Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. J Mol Endocrinol 2018; 61:25-36. [PMID: 29632026 DOI: 10.1530/jme-16-0257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes is caused by an autoimmune assault that induces progressive beta-cell dysfunction and dead. Pro-inflammatory cytokines, such as interleukin 1 beta (IL1B), tumor necrosis factor (TNF) and interferon gamma (IFNG) contribute for beta-cell death, which involves the activation of the nuclear factor kappa B (NFκB) and c- Jun N-terminal kinase (JNK). Prolactin (PRL), a physiological mediator for beta-cell proliferation, was shown to protect beta cells against cytokines pro-apoptotic effects. We presently investigated the mechanisms involved in the protective effects of prolactin against cytokine-induced beta-cell death. The findings obtained indicate that STAT3 activation is involved in the anti-apoptotic role of PRL in rat beta cells. PRL prevents the activation of JNK via AKT and promotes a shift from expression of pro- to anti-apoptotic proteins downstream of the JNK cascade. Furthermore, PRL partially prevents the activation of NFκB and the transcription of its target genes IkBa, Fas, Mcp1, A20 and Cxcl10 and also decreases NO production. On the other hand, the pro-survival effects of PRL do not involve modulation of cytokine-induced endoplasmic reticulum stress. These results suggest that the beneficial effects of PRL in beta cells involve augmentation of anti-apoptotic mechanisms and, at the same time, reduction of pro-apoptotic effectors, rendering beta cells better prepared to deal with inflammatory insults. The better understanding of the pro-survival mechanisms modulated by PRL in beta cells can provide tools to prevent cell demise during an autoimmune attack or following islet transplantation.
Collapse
Affiliation(s)
- Tarlliza R Nardelli
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Keli C Benedicto
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Flora Brozzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo (USP), São Paulo, Brazil
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Science (ICB), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
18
|
Kotsarenko K, Lylo V, Ruban T, Macewicz L, Lukash L. Effects of Some Growth Factors and Cytokines on the Expression of the Repair Enzyme MGMT and Protein MARP in Human Cells In Vitro : Effect of Some Growth Factors and Cytokines. Biochem Genet 2018; 56:459-477. [PMID: 29589213 DOI: 10.1007/s10528-018-9854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/21/2018] [Indexed: 11/28/2022]
Abstract
The inducible repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) eliminates O6-methylguanine adducts in DNA and protects the cells from damaging effects of alkylating agents. We have found that anti-MGMT antibodies recognize both the MGMT protein with a mol. weight ~ 24 kDa and a protein with a mol. weight ~ 48 kDa, which was named MARP (anti-methyltransferase antibody recognizable protein). A number of growth factors and cytokines were shown to regulate the expression of MGMT and MARP proteins. The ranges of concentrations of several growth factors and cytokines that caused increasing or decreasing protein amounts in human cell cultures were determined. The results of special biological experiments have allowed us to assume a possible role of MARP in the repair of alkyl adducts in human cells.
Collapse
Affiliation(s)
- Kateryna Kotsarenko
- University of South Bohemia in České Budějovice, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic.
| | - Valentyna Lylo
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kiev, 03680, Ukraine
| | - Tetiana Ruban
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kiev, 03680, Ukraine
| | - Larysa Macewicz
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kiev, 03680, Ukraine
| | - Lyubov Lukash
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kiev, 03680, Ukraine
| |
Collapse
|
19
|
|
20
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
21
|
Herchuelz A, Pachera N. The Na +/Ca 2+ exchanger and the Plasma Membrane Ca 2+-ATPase in β-cell function and diabetes. Neurosci Lett 2017; 663:72-78. [PMID: 28780165 DOI: 10.1016/j.neulet.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
Abstract
The rat pancreatic β-cell expresses 6 splice variants of the Plasma Membrane Ca2+-ATPase (PMCA) and two splice variants of the Na+/Ca2+ exchanger 1 (NCX1). In the β-cell Na+/Ca2+ exchange displays a high capacity, contributes to both Ca2+ outflow and influx and participates to the control of insulin release. Gain of function studies show that overexpression of PMCA2 or NCX1 leads to endoplasmic reticulum (ER) Ca2+ depletion with subsequent ER stress, decrease in β-cell proliferation and β-cell death by apoptosis. Loss of function studies show, on the contrary, that heterozygous inactivation of NCX1 (Ncx1+/-) leads to an increase in β-cell function and a 5 fold increase in both β-cell mass and proliferation. The mutation also increases β-cell resistance to hypoxia, and Ncx1+/- islets show a 2-4 times higher rate of diabetes cure than Ncx1+/+ islets when transplanted in diabetic animals. Thus, down-regulation of the Na+/Ca2+ exchanger leads to various changes in β-cell function that are opposite to the major abnormalities seen in diabetes. In addition, the β-cell includes the mutually exclusive exon B in the alternative splicing region of NCX1, which confers a high sensitivity of its NCX splice variants (NCX1.3 & 1.7) to the inhibitory action of compounds like KBR-7943. Heterozygous inactivation of PMCA2 leads to apparented, though not completely similar results.These provide 2 unique models for the prevention and treatment of β-cell dysfunction in diabetes and following islet transplantation.
Collapse
Affiliation(s)
- André Herchuelz
- Laboratoire de Pharmacodynamie et de Thérapeutique, Université Libre de Bruxelles (ULB), Faculté de Médicine, Brussels, Belgium.
| | - Nathalie Pachera
- Laboratoire de Pharmacodynamie et de Thérapeutique, Université Libre de Bruxelles (ULB), Faculté de Médicine, Brussels, Belgium
| |
Collapse
|
22
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
23
|
Grieco FA, Sebastiani G, Juan-Mateu J, Villate O, Marroqui L, Ladrière L, Tugay K, Regazzi R, Bugliani M, Marchetti P, Dotta F, Eizirik DL. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. Diabetes 2017; 66:100-112. [PMID: 27737950 PMCID: PMC5204315 DOI: 10.2337/db16-0592] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease leading to β-cell destruction. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression and organ formation. They participate in the pathogenesis of several autoimmune diseases, but the nature of miRNAs contributing to β-cell death in T1D and their target genes remain to be clarified. We performed an miRNA expression profile on human islet preparations exposed to the cytokines IL-1β plus IFN-γ. Confirmation of miRNA and target gene modification in human β-cells was performed by real-time quantitative PCR. Single-stranded miRNAs inhibitors were used to block selected endogenous miRNAs. Cell death was measured by Hoechst/propidium iodide staining and activation of caspase-3. Fifty-seven miRNAs were detected as modulated by cytokines. Three of them, namely miR-23a-3p, miR-23b-3p, and miR-149-5p, were downregulated by cytokines and selected for further studies. These miRNAs were found to regulate the expression of the proapoptotic Bcl-2 proteins DP5 and PUMA and consequent human β-cell apoptosis. These results identify a novel cross talk between a key family of miRNAs and proapoptotic Bcl-2 proteins in human pancreatic β-cells, broadening our understanding of cytokine-induced β-cell apoptosis in early T1D.
Collapse
Affiliation(s)
- Fabio Arturo Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Umberto Di Mario ONLUS Foundation-Toscana Life Sciences Foundation, Siena, Italy
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladrière
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Ksenya Tugay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marco Bugliani
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Umberto Di Mario ONLUS Foundation-Toscana Life Sciences Foundation, Siena, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Duan P, Tu P, Si L, Hu W, Liu M, Liu J, Xue Y. Gene Polymorphisms in the RANKL/RANK/OPG Pathway Are Associated with Type 2 Diabetes Mellitus in Southern Han Chinese Women. Genet Test Mol Biomarkers 2016; 20:285-90. [PMID: 27171030 DOI: 10.1089/gtmb.2015.0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Peng Duan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Ping Tu
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Lian Si
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Wan Hu
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Meng Liu
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Tennant BR, Vanderkruk B, Dhillon J, Dai D, Verchere CB, Hoffman BG. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction. Cell Death Dis 2016; 7:e2233. [PMID: 27195679 PMCID: PMC4917670 DOI: 10.1038/cddis.2016.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways.
Collapse
Affiliation(s)
- B R Tennant
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - B Vanderkruk
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - J Dhillon
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - D Dai
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - C B Verchere
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - B G Hoffman
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| |
Collapse
|
26
|
Chau A, Markley J, Juang J, Tsen L. Cytokines in the perinatal period – Part II. Int J Obstet Anesth 2016; 26:48-58. [DOI: 10.1016/j.ijoa.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/28/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
|
27
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
28
|
Brozzi F, Gerlo S, Grieco FA, Juusola M, Balhuizen A, Lievens S, Gysemans C, Bugliani M, Mathieu C, Marchetti P, Tavernier J, Eizirik DL. Ubiquitin D Regulates IRE1α/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells. J Biol Chem 2016; 291:12040-56. [PMID: 27044747 DOI: 10.1074/jbc.m115.704619] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells.
Collapse
Affiliation(s)
- Flora Brozzi
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sarah Gerlo
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Fabio Arturo Grieco
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Matilda Juusola
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Alexander Balhuizen
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sam Lievens
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Conny Gysemans
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Marco Bugliani
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Chantal Mathieu
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Piero Marchetti
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Jan Tavernier
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Décio L Eizirik
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium,
| |
Collapse
|
29
|
Prause M, Mayer CM, Brorsson C, Frederiksen KS, Billestrup N, Størling J, Mandrup-Poulsen T. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res 2016; 2016:1312705. [PMID: 26962537 PMCID: PMC4745310 DOI: 10.1155/2016/1312705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022] Open
Abstract
The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 mRNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β-induced INS-1 cell apoptosis associated with decreased 46 kDa isoform JNK protein phosphorylation and attenuated Myc expression. Transient knockdown of Myc also prevented IL-1β-induced apoptosis as well as caspase 3 cleavage. JNK2 shRNA potentiated IL-1β-induced apoptosis and caspase 3 cleavage, whereas JNK3 shRNA did not affect IL-1β-induced β-cell death compared to nonsense shRNA expressing INS-1 cells. In conclusion, JNK1 mediates INS-1 cell death associated with increased Myc expression. These findings underline the importance of differentiated targeting of JNK subtypes in the development of inflammatory β-cell failure and destruction.
Collapse
Affiliation(s)
- Michala Prause
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- *Michala Prause:
| | | | - Caroline Brorsson
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | | | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
30
|
Gleizes C, Kreutter G, Abbas M, Kassem M, Constantinescu AA, Boisramé-Helms J, Yver B, Toti F, Kessler L. β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control. J Cell Mol Med 2015; 20:231-42. [PMID: 26607759 PMCID: PMC4727568 DOI: 10.1111/jcmm.12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 08/14/2015] [Indexed: 01/11/2023] Open
Abstract
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events.
Collapse
Affiliation(s)
- Céline Gleizes
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Malak Abbas
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Doctoral School of Sciences and Technologies, Lebanese University, Beiruth-Hadath, Lebanon
| | - Mohamad Kassem
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France
| | - Andrei Alexandru Constantinescu
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Department of Parasitology and Parasitic Diseases and Animal Biology, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Julie Boisramé-Helms
- Department of Reanimation, Nouvel hopital civil, Strasbourg CEDEX, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Blandine Yver
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France
| | - Florence Toti
- UMR7213 CNRS, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Laurence Kessler
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France.,Department of Diabetology, University Hospital, Strasbourg Cedex, France
| |
Collapse
|
31
|
Tennant BR, Hurley P, Dhillon J, Gill A, Whiting C, Hoffman BG. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets. PLoS One 2015; 10:e0141470. [PMID: 26505193 PMCID: PMC4623983 DOI: 10.1371/journal.pone.0141470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Peter Hurley
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Jasmine Dhillon
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Amol Gill
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Cheryl Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
32
|
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, Bugliani M, Engin F, Hotamisligil GS, Marchetti P, Eizirik DL. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 2015; 58:2307-16. [PMID: 26099855 DOI: 10.1007/s00125-015-3669-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-βH1 cells were exposed to the cytokines IL-1β, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.
Collapse
Affiliation(s)
- Flora Brozzi
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Isabelle Millard
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Jenny Barthson
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Fabio A Grieco
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Olatz Villate
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Joana M Oliveira
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marina Casimir
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Sabri Ülker Center, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| |
Collapse
|
33
|
Marroqui L, Lopes M, dos Santos RS, Grieco FA, Roivainen M, Richardson SJ, Morgan NG, Op de Beeck A, Eizirik DL. Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells. eLife 2015; 4:e06990. [PMID: 26061776 PMCID: PMC4480275 DOI: 10.7554/elife.06990] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic β cells via apoptosis while neighboring α cells are preserved. Viral infections by coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and β cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than β cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than β cells. These differences may explain why pancreatic β cells, but not α cells, are targeted by an autoimmune response during T1D. DOI:http://dx.doi.org/10.7554/eLife.06990.001 Type 1 diabetes is caused by a person's immune system attacking the cells in their pancreas that produce insulin. This eventually kills off so many of these cells—known as beta cells—that the pancreas is unable to make enough insulin. As a result, individuals with type 1 diabetes must inject insulin to help their bodies process sugars. One of the mysteries of type 1 diabetes is why the beta cells in the pancreas are killed by the immune system while neighboring alpha cells, which produce the hormone glucagon, are spared. Scientists suspect a combination of genetic and environmental factors contributes to type 1 diabetes. Certain viruses, including one called Coxsackievirus, appear to trigger type 1 diabetes in susceptible individuals. Other factors may also make these individuals more likely to develop the disease. For example, they may ‘express’ genes that are thought to increase the risk of type 1 diabetes, many of which control how the immune system responds to viral infections. These genes may make susceptible individuals experience excessive inflammation, because inflammation is what ultimately kills off the beta cells. Now, Marroqui, Lopes, dos Santos et al. provide evidence that suggests why the alpha cells are spared the immune onslaught in type 1 diabetes. In initial experiments, clusters of cells—known as islets—from the human pancreas were either exposed to small proteins that cause inflammation or infected with the Coxsakievirus. Both events caused a similar increase in the expression of particular immune response genes in the islets. This indicates that these islet cells are able to react to the virus and trigger a first line of defense, which will be further boosted when the immune system is subsequently called into action. Islets contain both alpha and beta cells, and so further experiments on alpha and beta cells from rats investigated whether the two cell types respond differently when infected by the Coxsakievirus. The results revealed that alpha cells boost the expression of the genes needed to clear the virus to a greater extent than the beta cells, and so respond more efficiently to the virus. Therefore, an infection is more likely to establish itself in the beta cells and consequently trigger inflammation and the immune system's attack on the cells. These observations explain one of the puzzling questions in the diabetes field and reinforce the possibility that a long-standing viral infection in beta cells—which seem to have a limited capacity to clear viral infections—may be one of the mechanisms leading to progressive beta cell destruction in type 1 diabetes. This knowledge will help in the search for ways to protect beta cells against both viral infections and the consequent immune assault. DOI:http://dx.doi.org/10.7554/eLife.06990.002
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Reinaldo S dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Merja Roivainen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Crèvecoeur I, Rondas D, Mathieu C, Overbergh L. The beta-cell in type 1 diabetes: What have we learned from proteomic studies? Proteomics Clin Appl 2015; 9:755-66. [PMID: 25641783 DOI: 10.1002/prca.201400135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/05/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
Pancreatic beta-cells have a crucial role in the regulation of blood glucose homeostasis by the production and secretion of insulin. In type 1 diabetes (T1D), an autoimmune reaction against the beta-cells together with the presence of inflammatory cytokines and ROS in the islets leads to beta-cell dysfunction and death. This review gives an overview of proteomic studies that lead to better understanding of beta-cell functioning in T1D. Protein profiling of isolated islets and beta-cell lines in health and T1D contributed to the unraveling of pathways involved in cytokine-induced cell death. In addition, by studying the serological proteome of T1D patients, new biomarkers and beta-cell autoantigens were discovered, which may improve screening tests and follow-up of T1D development. Interestingly, an important role for PTMs was demonstrated in the generation of beta-cell autoantigens. To conclude, proteomic techniques are of indispensable value to improve the knowledge on beta-cell function in T1D and the search toward therapeutic targets.
Collapse
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Brozzi F, Gerlo S, Grieco FA, Nardelli TR, Lievens S, Gysemans C, Marselli L, Marchetti P, Mathieu C, Tavernier J, Eizirik DL. A combined "omics" approach identifies N-Myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-Jun N-terminal kinase in pancreatic beta cells. J Biol Chem 2015; 289:20677-93. [PMID: 24936061 DOI: 10.1074/jbc.m114.568808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from "physiological" to "pathological" UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell "adaptation," "stress response," or "apoptosis" remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells
Collapse
|
36
|
Diaz-Ganete A, Baena-Nieto G, Lomas-Romero IM, Lopez-Acosta JF, Cozar-Castellano I, Medina F, Segundo C, Lechuga-Sancho AM. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int J Endocrinol 2015; 2015:235727. [PMID: 26257781 PMCID: PMC4519548 DOI: 10.1155/2015/235727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.
Collapse
Affiliation(s)
| | - Gloria Baena-Nieto
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Endocrinology and Nutrition, Jerez de la Frontera General Hospital, 11407 Jerez de la Frontera, Spain
| | - Isabel M. Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, 41092 Sevilla, Spain
| | - Jose Francisco Lopez-Acosta
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Irene Cozar-Castellano
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Francisco Medina
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- *Carmen Segundo: and
| | - Alfonso M. Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Maternal and Pediatric Medicine and Radiology, Pediatrics Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- *Alfonso M. Lechuga-Sancho:
| |
Collapse
|
37
|
Cyclin D3 promotes pancreatic β-cell fitness and viability in a cell cycle-independent manner and is targeted in autoimmune diabetes. Proc Natl Acad Sci U S A 2014; 111:E3405-14. [PMID: 25092329 DOI: 10.1073/pnas.1323236111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune condition caused by the lymphocyte-mediated destruction of the insulin-producing β cells in pancreatic islets. We aimed to identify final molecular entities targeted by the autoimmune assault on pancreatic β cells that are causally related to β cell viability. Here, we show that cyclin D3 is targeted by the autoimmune attack on pancreatic β cells in vivo. Cyclin D3 is down-regulated in a dose-dependent manner in β cells by leukocyte infiltration into the islets of the nonobese diabetic (NOD) type 1 diabetes-prone mouse model. Furthermore, we established a direct in vivo causal link between cyclin D3 expression levels and β-cell fitness and viability in the NOD mice. We found that changes in cyclin D3 expression levels in vivo altered the β-cell apoptosis rates, β-cell area homeostasis, and β-cell sensitivity to glucose without affecting β-cell proliferation in the NOD mice. Cyclin D3-deficient NOD mice exhibited exacerbated diabetes and impaired glucose responsiveness; conversely, transgenic NOD mice overexpressing cyclin D3 in β cells exhibited mild diabetes and improved glucose responsiveness. Overexpression of cyclin D3 in β cells of cyclin D3-deficient mice rescued them from the exacerbated diabetes observed in transgene-negative littermates. Moreover, cyclin D3 overexpression protected the NOD-derived insulinoma NIT-1 cell line from cytokine-induced apoptosis. Here, for the first time to our knowledge, cyclin D3 is identified as a key molecule targeted by autoimmunity that plays a nonredundant, protective, and cell cycle-independent role in β cells against inflammation-induced apoptosis and confers metabolic fitness to these cells.
Collapse
|
38
|
Cudratricusxanthone A protect pancreatic beta cells from cytokines-mediated toxicity through the inhibition of NF-κB and STAT pathways. Int Immunopharmacol 2014; 21:26-33. [DOI: 10.1016/j.intimp.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
|
39
|
Vasiliadis I, Kolovou G, Mavrogeni S, Nair DR, Mikhailidis DP. Sudden cardiac death and diabetes mellitus. J Diabetes Complications 2014; 28:573-9. [PMID: 24666923 DOI: 10.1016/j.jdiacomp.2014.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Sudden cardiac death (SCD) affects a significant percentage of diabetic patients. SCD in these patients can be due to several factors, such as diastolic dysfunction, heart failure, altered platelet function, inflammation, sympathetic nervous stimulation and other factors. In the present review, we discuss the association between diabetes mellitus and SCD.
Collapse
MESH Headings
- Animals
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/therapy
- Diabetic Angiopathies/complications
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Diabetic Angiopathies/therapy
- Diabetic Cardiomyopathies/complications
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/therapy
- Disease Progression
- Evidence-Based Medicine
- Humans
Collapse
Affiliation(s)
- I Vasiliadis
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom; Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - G Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - S Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - D R Nair
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - D P Mikhailidis
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom.
| |
Collapse
|
40
|
Marroquí L, Santin I, Dos Santos RS, Marselli L, Marchetti P, Eizirik DL. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 2014; 63:2516-27. [PMID: 24608439 DOI: 10.2337/db13-1443] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by specific destruction of pancreatic β-cells by the immune system. Linkage and genome-wide association studies have identified more than 50 loci across the human genome associated with risk of type 1 diabetes. Recently, basic leucine zipper transcription factor 2 (BACH2) has been associated with genetic risk to develop type 1 diabetes, in an effect ascribed to the immune system. We evaluated whether BACH2 may also play a role in immune-mediated pancreatic β-cell apoptosis. BACH2 inhibition exacerbated cytokine-induced β-cell apoptosis in human and rodent β-cells by the mitochondrial pathway of cell death, whereas BACH2 overexpression had protective effects. BACH2 silencing and exposure to proinflammatory cytokines increased phosphorylation of the proapoptotic protein JNK1 by upregulation of mitogen-activated protein kinase kinase 7 (MKK7) and downregulation of PTPN2. JNK1 increased phosphorylation of the proapoptotic protein BIM, and both JNK1 and BIM knockdown protected β-cells against cytokine-induced apoptosis in BACH2-silenced cells. The present findings suggest that the type 1 diabetes candidate gene BACH2 regulates proinflammatory cytokine-induced apoptotic pathways in pancreatic β-cells by crosstalk with another candidate gene, PTPN2, and activation of JNK1 and BIM. This clarifies an unexpected and relevant mechanism by which BACH2 may contribute to diabetes.
Collapse
Affiliation(s)
- Laura Marroquí
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, BelgiumEndocrinology and Diabetes Research Group, BioCruces Health Research Institute and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barakaldo, Spain
| | - Reinaldo Sousa Dos Santos
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
41
|
Abstract
Menin, the product of the MEN1 gene, functions as a tumor suppressor and was first identified in 1997 due to its causative role in the endocrine tumor disorder multiple endocrine neoplasia, type 1 (MEN1). More recently, menin has been identified as a key player in pancreatic islet biology with the observation of an inverse relationship between menin levels and pancreatic islet proliferation. However, the factors regulating menin and the MEN1 gene in the pancreas are poorly understood. Here, we describe the regulation of menin by miR-24 and demonstrate that miR-24 directly decreases menin levels and impacts downstream cell cycle inhibitors in MIN6 insulinoma cells and in βlox5 immortalized β-cells. This regulation of menin impacts cell viability and proliferation in βlox5 cells. Furthermore, our data show a feedback regulation between miR-24 and menin that is present in the pancreas, suggesting that miR-24 regulates menin levels in the pancreatic islet.
Collapse
Affiliation(s)
- Jyothi Vijayaraghavan
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elaine C Maggi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judy S Crabtree
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
42
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
43
|
Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol 2014; 2014:451035. [PMID: 24883060 PMCID: PMC4021753 DOI: 10.1155/2014/451035] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022] Open
Abstract
Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.
Collapse
Affiliation(s)
- Mazhar A. Kanak
- Institute for Biomedical Studies, Baylor University, Waco, TX 76712, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | - Faisal Kunnathodi
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | | | - Marlon F. Levy
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| | - Bashoo Naziruddin
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| |
Collapse
|
44
|
Lopes M, Kutlu B, Miani M, Bang-Berthelsen CH, Størling J, Pociot F, Goodman N, Hood L, Welsh N, Bontempi G, Eizirik DL. Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference. Genomics 2014; 103:264-75. [DOI: 10.1016/j.ygeno.2013.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023]
|
45
|
Gleizes C, Constantinescu A, Abbas M, Bouhadja H, Zobairi F, Kessler L, Toti F. Liraglutide protects Rin-m5f β cells by reducing procoagulant tissue factor activity and apoptosis prompted by microparticles under conditions mimicking Instant Blood-Mediated Inflammatory Reaction. Transpl Int 2014; 27:733-40. [DOI: 10.1111/tri.12286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/02/2013] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Céline Gleizes
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
| | - Andrei Constantinescu
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Department of Parasitology and Parasitic Diseases and Animal Biology; Faculty of Veterinary Medicine; University of Agronomical Sciences and Veterinary Medicine; Bucharest Romania
| | - Malak Abbas
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Faculty of Sciences; Lebanon University; Hadath Lebanon
| | - Houda Bouhadja
- Faculty of Pharmacy; University of Strasbourg; UMR7213 CNRS; Laboratory of Biophotonics and Pharmacology; Illkirch France
| | - Fatiha Zobairi
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
| | - Laurence Kessler
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Department of Diabetology; University Hospital; Strasbourg Cedex France
| | - Florence Toti
- Faculty of Pharmacy; University of Strasbourg; UMR7213 CNRS; Laboratory of Biophotonics and Pharmacology; Illkirch France
| |
Collapse
|
46
|
Wolden-Kirk H, Rondas D, Bugliani M, Korf H, Van Lommel L, Brusgaard K, Christesen HT, Schuit F, Proost P, Masini M, Marchetti P, Eizirik DL, Overbergh L, Mathieu C. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinology 2014; 155:736-47. [PMID: 24424042 DOI: 10.1210/en.2013-1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported. The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion and β-cell survival were analyzed by glucose-stimulated insulin release and electron microscopy or Hoechst/propidium iodide staining, respectively. Gene expression profiles were assessed by Affymetrix microarrays. Nuclear factor-κB activity was tested, whereas effects on secreted chemokines/cytokines were confirmed by ELISA and migration studies. Cytokine exposure caused a significant increase in β-cell apoptosis, which was almost completely prevented by 1,25(OH)2D3. In addition, 1,25(OH)2D3 restored insulin secretion from cytokine-exposed islets. Microarray analysis of murine islets revealed that the expression of approximately 4000 genes was affected by cytokines after 6 and 24 hours (n = 4; >1.3-fold; P < .02), of which nearly 250 genes were modified by 1,25(OH)2D3. These genes belong to functional groups involved in immune response, chemotaxis, cell death, and pancreatic β-cell function/phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3 against the induction of autoimmune diabetes.
Collapse
Affiliation(s)
- H Wolden-Kirk
- Clinical and Experimental Endocrinology (H.W.-K., D.R., H.K., L.O., C.M.), University Hospital Gasthuisberg, Gene Expression Unit (L.V.L., F.S.), Department of Molecular and Cellular Medicine, Department of Microbiology and Immunology (P.P.), B-3000 Leuven, Belgium; Hans Christian Andersen Children's Hospital (H.W.-K., H.T.C.) and Department of Clinical Genetics (K.B., D.L.E.), Odense University Hospital, DK-5000, Odense, Denmark; Department of Endocrinology and Metabolism (M.B., P.M.), Metabolic Unit, and Department of General Pathology (M.M.), University of Pisa, Pisa, Italy; and Laboratory of Experimental Medicine (D.L.E.), Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L, Rondas D, Korf H, Overbergh L, Dotta F, Marchetti P, Mathieu C, Eizirik DL. IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia 2014; 57:502-11. [PMID: 24352375 DOI: 10.1007/s00125-013-3135-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Cytotoxic T cells and macrophages contribute to beta cell destruction in type 1 diabetes at least in part through the production of cytokines such as IL-1β, IFN-γ and TNF-α. We have recently shown the IL-17 pathway to be activated in circulating T cells and pancreatic islets of type 1 diabetes patients. Here, we studied whether IL-17A upregulates the production of chemokines by human pancreatic islets, thus contributing to the build-up of insulitis. METHODS Human islets (from 18 donors), INS-1E cells and islets from wild-type and Stat1 knockout mice were studied. Dispersed islet cells were left untreated, or were treated with IL-17A alone or together with IL-1β+IFN-γ or TNF-α+IFN-γ. RNA interference was used to knock down signal transducer and activator of transcription 1 (STAT1). Chemokine expression was assessed by quantitative RT-PCR, ELISA and histology. Cell viability was evaluated with nuclear dyes. RESULTS IL-17A augmented IL-1β+IFN-γ- and TNF-α+IFN-γ-induced chemokine mRNA and protein expression, and apoptosis in human islets. Beta cells were at least in part the source of chemokine production. Knockdown of STAT1 in human islets prevented cytokine- or IL-17A+cytokine-induced apoptosis and the expression of particular chemokines, e.g. chemokine (C-X-C motif) ligands 9 and 10. Similar observations were made in islets isolated from Stat1 knockout mice. CONCLUSIONS/INTERPRETATION Our findings indicate that IL-17A exacerbates proinflammatory chemokine expression and secretion by human islets exposed to cytokines. This suggests that IL-17A contributes to the pathogenesis of type 1 diabetes by two mechanisms, namely the exacerbation of beta cell apoptosis and increased local production of chemokines, thus potentially aggravating insulitis.
Collapse
Affiliation(s)
- Fabio A Grieco
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zammit NW, Grey ST. Emerging roles for A20 in islet biology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:141-62. [PMID: 25302370 DOI: 10.1007/978-1-4939-0398-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic beta-cells. Loss of beta-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional beta-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of beta-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-kappaB is a central mediator of inflammatory mediated beta-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-kappaB activation in islets and hence limit beta-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-kappaB blockade in beta-cells is due to concommittant loss of the important, NF-kappaB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a beta-cell expressed gene, raising questions about its role in beta-cell development and function, and in beta-cell related pathologies. Involvement of apoptosis, inflammation and NF-kappaB activation as beta-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that beta-cells express the A20 gene, implies an important role for A20 in both normal beta-cell biology as well as beta-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in beta-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic beta-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.
Collapse
|
49
|
Storling J, Brorsson CA. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep 2013; 13:633-41. [PMID: 23925433 DOI: 10.1007/s11892-013-0408-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function. Recent studies, however, indicate that most T1D candidate genes are expressed in human islets suggesting that the functions of the genes are not restricted to immune cells, but also play roles in the islets and possibly the β cells. Several candidates change expression levels within the islets following exposure to proinflammatory cytokines highlighting that these genes may be involved in the response of β cells to immune attack. In this review, the compiling evidence that many of the candidate genes are expressed in islets and β cells will be presented. Further, we perform the first systematic human islet expression analysis of all genes located in 50 T1D-associated GWAS loci using a published RNA sequencing dataset. We find that 336 out of 857 genes are expressed in human islets and that many of these interact in protein networks. Finally, the potential pathogenetic roles of some candidate genes will be discussed.
Collapse
Affiliation(s)
- Joachim Storling
- Copenhagen Diabetes Research Center, Department of Paediatrics, Herlev University Hospital, Herlev Ringvej, DK-2730, Herlev, Denmark,
| | | |
Collapse
|
50
|
Rondas D, Bugliani M, D'Hertog W, Lage K, Masini M, Waelkens E, Marchetti P, Mathieu C, Overbergh L. Glucagon-like peptide-1 protects human islets against cytokine-mediated β-cell dysfunction and death: a proteomic study of the pathways involved. J Proteome Res 2013; 12:4193-206. [PMID: 23937086 DOI: 10.1021/pr400527q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.
Collapse
Affiliation(s)
- Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|